• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

DMCA

Eigentaste: A Constant Time Collaborative Filtering Algorithm (2000)

Cached

  • Download as a PDF

Download Links

  • [www.ieor.berkeley.edu]
  • [jamesthornton.com]
  • [goldberg.berkeley.edu]
  • [queue.ieor.berkeley.edu]
  • [www.seas.harvard.edu]
  • [www.ieor.berkeley.edu]
  • [queue.ieor.berkeley.edu]
  • [citeseerx.ist.psu.edu]
  • [online.sfsu.edu]
  • [goldberg.berkeley.edu]
  • [www.ieor.berkeley.edu]
  • [queue.ieor.berkeley.edu]
  • [queue.berkeley.edu]
  • [queue.ieor.berkeley.edu]

  • Other Repositories/Bibliography

  • CiteULike
  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Ken Goldberg , Theresa Roeder , Dhruv Gupta , Chris Perkins
Citations:376 - 6 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Goldberg00eigentaste:a,
    author = {Ken Goldberg and Theresa Roeder and Dhruv Gupta and Chris Perkins},
    title = {Eigentaste: A Constant Time Collaborative Filtering Algorithm},
    year = {2000}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Eigentaste is a collaborative filtering algorithm that uses universal queries to elicit real-valued user ratings on a common set of items and applies principal component analysis (PCA) to the resulting dense subset of the ratings matrix. PCA facilitates dimensionality reduction for offline clustering of users and rapid computation of recommendations. For a database of n users, standard nearest-neighbor techniques require O(n) processing time to compute recommendations, whereas Eigentaste requires O(1) (constant) time. We compare Eigentaste to alternative algorithms using data from Jester, an online joke recommending system. Jester has collected approximately 2,500,000 ratings from 57,000 users. We use the Normalized Mean Absolute Error (NMAE) measure to compare performance of different algorithms. In the Appendix we use Uniform and Normal distribution models to derive analytic estimates of NMAE when predictions are random. On the Jester dataset, Eigentaste computes recommendations two ...

Keyphrases

constant time collaborative filtering algorithm    component analysis    different algorithm    dense subset    rating matrix    universal query    normalized mean absolute error    normal distribution model    whereas eigentaste    rapid computation    offline clustering    common set    online joke    real-valued user rating    analytic estimate    standard nearest-neighbor technique    jester dataset    processing time    collaborative filtering algorithm    dimensionality reduction   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University