• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Partial Functions

Cached

  • Download as a PDF

Download Links

  • [mizar.uwb.edu.pl]
  • [ftp.cs.ualberta.ca]
  • [ftp.cs.ualberta.ca]
  • [mizar.org]
  • [markun.cs.shinshu-u.ac.jp]
  • [www.cs.ualberta.ca]
  • [mizar.uwb.edu.pl]
  • [mizar.uwb.edu.pl]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Czes Law Byli'nski
Citations:486 - 10 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Byli'nski_partialfunctions,
    author = {Czes Law Byli'nski},
    title = {Partial Functions},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

this article we prove some auxiliary theorems and schemes related to the articles: [1] and [2]. MML Identifier: PARTFUN1. WWW: http://mizar.org/JFM/Vol1/partfun1.html The articles [4], [6], [3], [5], [7], [8], and [1] provide the notation and terminology for this paper. We adopt the following rules: x, y, y 1 , y 2 , z, z 1 , z 2 denote sets, P , Q, X , X 0 , X 1 , X 2 , Y , Y 0 , Y 1 , Y 2 , V , Z denote sets, and C, D denote non empty sets. We now state three propositions: (1) If P ` [: X 1

Keyphrases

partial function    denote set    mml identifier    non empty set    org jfm vol1 partfun1    following rule    auxiliary theorem   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University