• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Learning a classification model for segmentation (2003)

Cached

  • Download as a PDF

Download Links

  • [lear.inrialpes.fr]
  • [www.cs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www2.seattle.intel-research.net]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [ttic.uchicago.edu]
  • [seattle.intel-research.net]
  • [seattle.intel-research.net]
  • [www.cs.cmu.edu]
  • [www.cs.cmu.edu]
  • [homes.cs.washington.edu]
  • [www.csd.uwo.ca]
  • [www.csd.uwo.ca]
  • [www-2.cs.cmu.edu]
  • [seattle.intel-research.net]
  • [www.seattle.intel-research.net]
  • [www.seattle.intel-research.net]
  • [www2.seattle.intel-research.net]
  • [www.csd.uwo.ca]
  • [www.csd.uwo.ca]
  • [www.csd.uwo.ca]
  • [www2.seattle.intel-research.net]
  • [ttic.uchicago.edu]
  • [homes.cs.washington.edu]
  • [www.csd.uwo.ca]
  • [seattle.intel-research.net]
  • [www.csd.uwo.ca]
  • [www.seattle.intel-research.net]
  • [www.seattle.intel-research.net]
  • [www-2.cs.cmu.edu]
  • [www.cs.berkeley.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Xiaofeng Ren , Jitendra Malik
Venue:In Proc. 9th Int. Conf. Computer Vision
Citations:281 - 2 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Ren03learninga,
    author = {Xiaofeng Ren and Jitendra Malik},
    title = {Learning a classification model for segmentation},
    booktitle = {In Proc. 9th Int. Conf. Computer Vision},
    year = {2003},
    pages = {10--17}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We propose a two-class classification model for grouping. Human segmented natural images are used as positive examples. Negative examples of grouping are constructed by randomly matching human segmentations and images. In a preprocessing stage an image is oversegmented into superpixels. We define a variety of features derived from the classical Gestalt cues, including contour, texture, brightness and good continuation. Information-theoretic analysis is applied to evaluate the power of these grouping cues. We train a linear classifier to combine these features. To demonstrate the power of the classification model, a simple algorithm is used to randomly search for good segmentations. Results are shown on a wide range of images. 1.

Keyphrases

classification model    two-class classification model    human segmentation    preprocessing stage    natural image    positive example    linear classifier    wide range    good continuation    classical gestalt cue    simple algorithm    information-theoretic analysis    negative example    good segmentation   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University