• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Bandit based Monte-Carlo Planning (2006)

Cached

  • Download as a PDF

Download Links

  • [zaphod.aml.sztaki.hu]
  • [www.lri.fr]
  • [www.informatik.uni-freiburg.de]
  • [engr.case.edu]
  • [www.informatik.uni-freiburg.de]
  • [www.lri.fr]
  • [www2.informatik.uni-freiburg.de]
  • [www2.informatik.uni-freiburg.de]
  • [www.sztaki.hu]
  • [www.ualberta.ca]
  • [www.ualberta.ca]
  • [www.bailopan.net]
  • [papersdb.cs.ualberta.ca]
  • [papersdb.cs.ualberta.ca]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Levente Kocsis , Csaba Szepesvári
Venue:In: ECML-06. Number 4212 in LNCS
Citations:444 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Kocsis06banditbased,
    author = {Levente Kocsis and Csaba Szepesvári},
    title = {Bandit based Monte-Carlo Planning},
    booktitle = {In: ECML-06. Number 4212 in LNCS},
    year = {2006},
    pages = {282--293},
    publisher = {Springer}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Abstract. For large state-space Markovian Decision Problems Monte-Carlo planning is one of the few viable approaches to find near-optimal solutions. In this paper we introduce a new algorithm, UCT, that applies bandit ideas to guide Monte-Carlo planning. In finite-horizon or discounted MDPs the algorithm is shown to be consistent and finite sample bounds are derived on the estimation error due to sampling. Experimental results show that in several domains, UCT is significantly more efficient than its alternatives. 1

Keyphrases

monte-carlo planning    viable approach    estimation error    new algorithm    several domain    near-optimal solution    finite sample bound    experimental result   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University