• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Approximate Frequency Counts over Data Streams (2002)

Cached

  • Download as a PDF

Download Links

  • [www.cs.ust.hk]
  • [www.vldb.org]
  • [www-db.stanford.edu]
  • [magna.cs.ucla.edu]
  • [www.cs.umd.edu]
  • [infolab.stanford.edu]
  • [www.cs.uiuc.edu]
  • [dns2.icar.cnr.it]
  • [www.cse.unsw.edu.au]
  • [www.searchforum.org.cn]
  • [www.cse.ust.hk]
  • [vldb.org]
  • [web.cacs.louisiana.edu]
  • [ece.ut.ac.ir]
  • [www.cacs.louisiana.edu]
  • [www-db.stanford.edu]

  • Other Repositories/Bibliography

  • CiteULike
  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Gurmeet Singh Manku , Rajeev Motwani
Venue:VLDB
Citations:418 - 1 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Manku02approximatefrequency,
    author = {Gurmeet Singh Manku and Rajeev Motwani},
    title = {Approximate Frequency Counts over Data Streams},
    booktitle = {VLDB},
    year = {2002},
    pages = {346--357},
    publisher = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We present algorithms for computing frequency counts exceeding a user-specified threshold over data streams. Our algorithms are simple and have provably small memory footprints. Although the output is approximate, the error is guaranteed not to exceed a user-specified parameter. Our algorithms can easily be deployed for streams of singleton items like those found in IP network monitoring. We can also handle streams of variable sized sets of items exemplified by a sequence of market basket transactions at a retail store. For such streams, we describe an optimized implementation to compute frequent itemsets in a single pass.

Keyphrases

data stream    approximate frequency count    frequency count    user-specified threshold    user-specified parameter    small memory footprint    ip network monitoring    market basket transaction    frequent itemsets    singleton item    optimized implementation    retail store    variable sized set    single pas   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University