• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Automatic Subspace Clustering of High Dimensional Data (2005)

Cached

  • Download as a PDF

Download Links

  • [www.cs.cornell.edu]
  • [www.cs.cornell.edu]
  • [users.cs.dal.ca]
  • [cs-people.bu.edu]
  • [barbera.cnuce.cnr.it]
  • [www.cs.uiuc.edu]
  • [www.cs.uml.edu]
  • [www.cs.uml.edu]
  • [www.cs.sfu.ca]
  • [miles.cnuce.cnr.it]
  • [www.almaden.ibm.com]
  • [rakesh.agrawal-family.com]
  • [www.rakesh.agrawal-family.com]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Rakesh Agrawal , Johannes Gehrke , Dimitrios Gunopulos , Prabhakar Raghavan
Venue:Data Mining and Knowledge Discovery
Citations:723 - 12 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Agrawal05automaticsubspace,
    author = {Rakesh Agrawal and Johannes Gehrke and Dimitrios Gunopulos and Prabhakar Raghavan},
    title = {Automatic Subspace Clustering of High Dimensional Data},
    year = {2005}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity to the order of input records. We present CLIQUE, a clustering algorithm that satisfies each of these requirements. CLIQUE identifies dense clusters in subspaces of maximum dimensionality. It generates cluster descriptions in the form of DNF expressions that are minimized for ease of comprehension. It produces identical results irrespective of the order in which input records are presented and does not presume any specific mathematical form for data distribution. Through experiments, we show that CLIQUE efficiently finds accurate clusters in large high dimensional datasets.

Keyphrases

high dimensional data    automatic subspace clustering    input record    data mining application    canonical data distribution    accurate cluster    identical result    specific mathematical form    maximum dimensionality    special requirement    present clique    large high dimensional datasets    end-user comprehensibility    dnf expression    cluster description    dense cluster    data distribution   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University