• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Automatically Refining the Wikipedia Infobox Ontology (2008)

Cached

  • Download as a PDF

Download Links

  • [www.cs.washington.edu]
  • [alchemy.cs.washington.edu]
  • [www.cs.washington.edu]
  • [www.cs.washington.edu]
  • [turing.cs.washington.edu]
  • [ai.cs.washington.edu]
  • [www2008.org]
  • [www.sis.pitt.edu]
  • [www.ra.ethz.ch]
  • [www.sis.pitt.edu]
  • [odur.let.rug.nl]
  • [odur.let.rug.nl]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Fei Wu , Daniel S. Weld
Citations:102 - 7 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Wu08automaticallyrefining,
    author = {Fei Wu and Daniel S. Weld},
    title = {Automatically Refining the Wikipedia Infobox Ontology },
    year = {2008}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

The combined efforts of human volunteers have recently extracted numerous facts from Wikipedia, storing them as machine-harvestable object-attribute-value triples in Wikipedia infoboxes. Machine learning systems, such as Kylin, use these infoboxes as training data, accurately extracting even more semantic knowledge from natural language text. But in order to realize the full power of this information, it must be situated in a cleanly-structured ontology. This paper introduces KOG, an autonomous system for refining Wikipedia’s infobox-class ontology towards this end. We cast the problem of ontology refinement as a machine learning problem and solve it using both SVMs and a more powerful joint-inference approach expressed in Markov Logic Networks. We present experiments demonstrating the superiority of the joint-inference approach and evaluating other aspects of our system. Using these techniques, we build a rich ontology, integrating Wikipedia’s infobox-class schemata with WordNet. We demonstrate how the resulting ontology may be used to enhance Wikipedia with improved query processing and other features.

Keyphrases

wikipedia infobox ontology    cleanly-structured ontology    ontology refinement    full power    wikipedia infobox-class schema    human volunteer    wikipedia infoboxes    powerful joint-inference approach    semantic knowledge    improved query processing    wikipedia infobox-class ontology    markov logic network    combined effort    machine learning problem    training data    natural language text    autonomous system    numerous fact    present experiment    joint-inference approach    machine-harvestable object-attribute-value triple    rich ontology   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University