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Abstract

Snakes are now a very popular technique for shape extraction by minimising a suitably formulated energy
functional. A dual snake configuration using dynamic programming has been developed to locate a global
energy minimum. This complements recent approaches to global energy minimisation via simulated annealing
and genetic algorithms. These differ from a conventional evolutionary snake approach, where an energy
function is minimised according to a local optimisation strategy and may not converge to extract the target
shape, in contrast with the guaranteed convergence of a global approach. The new technique employing
dynamic programming is deployed to extract the inner face boundary, along with a conventional normal-
driven technique to extract the outer face boundary. Application to a database of 75 subjects showed that
the outer contour was extracted successfully for 96% of the subjects and the inner contour was successful
for 82%. The results demonstrated the benefits that could accrue from inclusion of face features, giving an
appropriate avenue for future research.
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1 Introduction

The objective of this research is to develop robust active contour techniques which are suitable for the extraction
of the head boundary. A dual active contour has been developed previously (Gunn and Nixon, 1995) which
relieved difficulty in contour initialisation and reduced the number of parameters controlling evolution. The
technique uses two contours to seek a global energy minimum between two initial contours. The concept of a
dual contour for initialisation can be used with dynamic programming to guarantee the global energy minimum
in a non-evolutionary manner. Dynamic programming is an optimal exhaustive minimisation technique, unlike
other global minimisation strategies such as simulated annealing, (Rueckert and Burger, 1995; Storvik, 1994).
Amongst previous active contour methods implemented with dynamic programming, one implemented the
original gradient descent minimisation to find local energy minima (Amini et al., 1990), whereas others have
aimed for a global solution (Geiger et al., 1995; Lai and Chin, 1995). Dynamic programming is particularly
suited to the minimisation of the snake since dependency is local within the snake model. In this paper we
focus on the merits of the conventional snake approaches and the search-based approaches. These are applied to
extract the head and face boundary in face images. Location and description of these boundaries is important
in facial feature extraction (C.L.Huang and Chen, 1992) and in model-based coding (W.J. Welsh and Waite,
8).

Classical techniques based on local edge data are limited by their inability to provide an implicit description,
which active contours provide. Waite and Welsh (1990), Lam and H.Yan (1994) and C.L.Huang and Chen
(1992) have all used snakes, using a closed contour, to extract the head boundary. However, the extracted
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boundaries differ; Waite extracts a boundary including the chin and the upper part of the hair using an
external contracting contour, whereas Huang and Lam extract the boundary of the chin and lower part of the
hair using an internal expanding contour. Lam takes account of the actual face, by heuristically varying the
snake parameters around the face boundary. Lam and Huang both use the greedy method (Williams and Shah,
1992) for the active contour technique. This technique is fast, but is restricted by the inability to guarantee a
local minimum solution. As with the previous approaches, our new approach uses front view face images. Our
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Figure 1: Head Boundary Definitions

approach uses two contours; an open contour to extract the outer head and shoulders’ boundary and a closed
contour to extract an inner boundary of the chin and inner hair line, Figure 1. In order to extract the inner and
outer head boundaries two different active contour approaches are employed. An evolutionary (conventional)
approach which has an outlining capability and is compatible with the extraction of the outer contour and a
search-based technique which is better suited to the extraction of the inner contour, where an unobstructed
initialisation is unrealistic. By application to a face database of 75 images, we show how this new technique
can extract the boundaries of interest successfully.

2 Snakes

The original snake model was introduced by Kass et al. (1988). A contour is described parametrically by
v(s) = (x(s), y(s)) where x(s), y(s) are x, y co-ordinates along the contour and s ∈ [0, 1) is normalised arc
length. The snake model defines the energy of a contour v(s), the snake energy Esnake , to be

Esnake (v(s)) =

1∫
s=0

λEint (v(s)) + (1− λ)Eimage (v(s)) ds, (1)

where Eint is the internal energy of the contour, imposing continuity and curvature constraints, Eimage is
the image energy constructed to attract the snake to desired feature points in the image, λ ∈ [0, 1] is the
regularisation parameter governing the compromise between adherence to the internal forces and the external
image data; the functional, Eimage = − |∇I(x, y)| attracts the snakes to edges in the image. An initial contour
evolves by minimising Equation 1 using a gradient descent technique.

Active contour techniques can be divided into two groups: evolutionary (local) approaches and search-based
(global) approaches. Evolutionary approaches follow the original gradient descent technique, whereas search-
based techniques search for a global minimum.

2.1 Evolutionary Approach (Local)

The term ‘evolutionary’ is applied to snakes which use a gradient descent technique. A characteristic of the
original snake model (Kass et al., 1988) was that if the snake was not submitted to any image forces it would
contract to a point. To enhance versatility, Cohen and Cohen (1993) proposed an additional normal force which
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could be applied to the contour. Recent work by Xu et al. (1994) and Gunn and Nixon (1995) has developed
alternative schemes for unifying expanding and contracting contours, by removing the internal contraction force
without affecting the regularising property.

2.2 Search Approach (Global)

A weakness of the evolutionary, or local minimum, approach is the sensitivity to initialisation and difficulty in
determining suitable parameters. This can be exaggerated by noise. To overcome this problem we propose a
technique which searches for a global minimum within a specified region, constraining the initialisation as in
the dual active contour. This region is described by two initial contours which define a search space for the
technique. Dynamic programming is used to search the space for the optimum solution, illustrated in Figure
2. A discrete contour is defined by, vi = (xi, yi) for i = 0 . . . N − 1 where subscripted arithmetic is modulo N

Figure 2: Dynamic Programming Contour Space

for closed contours. Each contour point is constrained to lie on a line joining the two initial contours, Figure 2.
Each line is discretised into M points for the dynamic programming search. An open contour is especially
compatible with minimisation via dynamic programming.

The energy of an open snake is given by,

Esnake (v(s)) =
N−3∑
i=0

Ei (vi,vi+1,vi+2) , (2)

emphasising the local dependencies, since a point is dependent only on its immediate neighbours for its energy.
The energy of a closed snake contains two extra energy terms arising from the joining of the open snake. The
upper limit of Equation 2 is adjusted to N − 1 accordingly. The energy at each snake point vi is given by

Ei−1 (vi−1,vi,vi+1) = λiEint (vi−1,vi,vi+1) + (1− λi)Eext (vi) (3)

where λi ∈ [0, 1] is the regularisation parameter.

In order to apply dynamic programming to Equation 3, a two element vector of state variables, (vi+1,vi), is
calculated at each stage. The optimal value function, Si, is a function of two adjacent points on the contour
and is calculated as

Si (vi+1,vi) = min
vi−1

[Si−1 (vi,vi−1) + λiEint (vi−1,vi,vi+1) + (1− λi)Eext (vi)] , (4)

given the initial conditions S0 (v1,v0) = 0.

In addition to the energy matrix corresponding to the optimal value function, a position matrix is also required.
Each entry of the position matrix at stage i stores the value of vi−1 that minimises Equation 4. The optimality
function, Equation 4, is evaluated for i = 1 . . . N − 2. The result is obtained by back-tracking through the
position matrix.
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The internal energy function is given by

Eext (vi−1,vi,vi+1) =
(

vi+1 − 2vi + vi−1

vi+1 − vi−1

)2

. (5)

The numerator is the discrete curvature term from the original snake. The continuity term is less important
because point spacing is controlled by constraining the points to lie on the specified lines. The denominator
ensures that the internal energy is scale invariant giving no preference for large or small contours, only smooth
ones.

The efficiency of dynamic programming is compromised when applied to closed contour problems. To guarantee
a global minimum, using the method of (Geiger et al., 1995), requires a separate optimisation to be calculated
for all values of v0 and v1, incurring an M2 increase in complexity over the open contour optimisation. To avoid
this increase we propose an approximate solution using a two stage technique which transforms the problem into
two open contour optimisations. First an open contour solution is found, which does not apply any continuity
or smoothness constraints at the ends. The two points at the mid point of this contour are then taken as the
start and end points for the closed contour. A second optimisation of the energy function given in Equation 3
is computed with the fixed v0 and v1. The optimality function, Equation 4, is evaluated for i = 1 . . . N . By
fixing the two points v0 and v1 the closed contour optimisation can be achieved. Experimental results support
the validity of the approximation used.

The search-based technique is not prejudiced to solutions near the initialisation as with evolutionary-based
normal-driven techniques, but considers all solutions within the initialisation region. Furthermore it avoids the
difficult problem of determining the evolution parameters, and requires a single regularisation parameter.

3 Head Boundary Extraction

Implementation of these techniques assumes a front-view face image on a plain background. An initial estimate
of the head boundary is required to prime the normal-driven snake. Alternative methods for locating the head
boundary from a complex background include, a difference image exploiting temporal properties (Turk and
Pentland, 1991), and neural networks (Sung and Poggio, 1995) searching to locate facial features. In our study,
the emphasis is placed on the extraction technique. Accordingly a simple location scheme based on a binary
edge image is employed. A convex hull is used to extract a suitable contour representation from this image
to provide an initialisation for the outer contour. The outer contour uses a conventional evolutionary-based
technique. The inner contour extraction uses the results of the outer contour to calculate a suitable search
space for the initialisation for the inner search-based technique.

3.1 Outer Extraction

The extraction of the outer contour makes the assumption that the head is on a plain background. Consequently
any edge data must lie on the boundary or within the head. The original head images are intensity normalised,
filtered using a 9×9 Gaussian mask (σ=1.0) and then passed through a first-order gradient-based edge operator.
The resulting image is then thresholded to obtain a binary edge image. A fixed threshold value was used, which
was selected to extract those parts of the edge image with intensity above the edge noise floor. The initial
contour is obtained by generating an open convex hull. The end points are initially determined by searching
with a vertically scanning technique, as in Figure 3. The resulting convex hull provides the initialisation for
an open contour. This contour is then minimised according to an evolutionary based strategy. A normal force
is applied to push the contour towards the head boundary and allow the contour to find non-convex solutions.
The normal force parameter was determined heuristically on a limited selection of images, and was then fixed
for the remainder of the tests.
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Figure 3: Convex Hull Extractions

3.2 Inner Extraction

The inner boundary is more difficult to extract with a local minimum based technique due to the quantity of
edge data in the face boundary region. To develop a robust extraction technique it is necessary to use a search
based strategy which overcomes the sensitivity to initialisation of the evolutionary techniques. Furthermore a
particular problem in the extraction of head boundaries is that the chin is often poorly characterised in the
edge functional as a consequence of poor image contrast. Normal driven techniques will often drive the snake
out of the weak minimum associated with the chin. The search-based technique has a greater tolerance with
respect to initialisation than a comparable evolutionary technique.

To provide an initialisation, simple geometrical reasoning about the outer boundary is used, Figure 4. The search
space uses the centroid of the outer contour as its origin. The outer part of the search region is comprised of
the top half of the outer contour augmented with a semi-ellipse to complete the bottom half. The semi-ellipse
has a fixed aspect ratio of 1.5. The inner region is defined by a circular contour, of radius equal to half the
minor axis of the ellipse. The circle is vertically offset by a constant factor. A constant value of λ =0.7 was
used for the regularisation parameter, making no distinction between different parts of the face boundary. The
number of snake points was fixed at N=64, and the constraint lines were subdivided into M=40 points.
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Figure 4: Inner Contour Search Space

4 Results

The head boundary extraction technique was applied to a face database comprising 75 subjects. The database
was compiled from an undergraduate portrait session and consequently the majority of subjects are trying to
smile and have prepared hair styles. The lighting was controlled, and illuminated the subjects from the front.
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The database included male, female, bearded, spectacle wearers and two subjects wearing head gear. The

Outline Inline (inner) Inline (outer)

Correct 71 61 66
Incorrect 4 14 9

Table 1: Initialisation results

results of the initialisation were rated according to correctness, Table 1. A correct outline being exterior to
the head and terminating at the shoulders. A correct inline describing an annular region containing the inner
contour. The inner and outer contour results were overlaid on the original image and the correspondences were
assessed. The results were rated as ‘excellent’, ‘good’ or ‘poor’. ‘Excellent’ implies that the result could not
be improved by manual intervention, whereas a ‘good’ could, but only for a very small region. A ‘poor’ result
implies that the result is obviously wrong in more than one respect. Alternatively, an empirical measure, as
described in (Gunn and Nixon, 1994), could be employed to interpret the results.

The initialisation was successful for 95% of the outer contours and for 73% of the inner contours. Failures in the
outer initialisation were mainly due to poor contrast in the hair region. As a result there was no edge marked
in the binary edge image causing the convex hull to cut across the head. The failures in the inner initialisation
were partly due to the dependence on the outer result, but primarily on the weakness of the geometrical model
used to derive the inner contours. Wide faces produced an over-sized interior contour which made the extraction
of the correct contour impossible. The outer contour then produced a large region dropping below the neckline.
The “good’ and ‘excellent’ categories can be grouped since they only differ by one respect. Considering only
the results for which the initialisation was appropriate, Table 2, the outer contour was extracted with a 96%
success rate, and the inner contour with a 82% success rate. The results for four of the faces are shown in
Figure 5, with (from top to bottom): outer initialisation, outer result, inner initialisation and inner result. Two
of the ‘excellent’ results are subjects, Face 1 and Face 2. The convex hull can be seen to lie on the top of the
head and terminate correctly at the shoulders. This primed the open contour well and the outer contour can be
seen to track the upper head and shoulders’ boundary correctly. This gave a good initialisation for the dynamic
programming technique, with an appropriate inner contour. The final inner contour extraction for both faces
can be seen to track the inner face boundary correctly. Two faces showing reduced performance are shown, Face

Outer Inner

Excellent 37 38
Good 33 12
Poor 5 25

Table 2: Head boundary contour results

3 and Face 4. The outer contour in Face 3 and Face 4 are ‘good’; for Face 3 the left shoulder is slightly incorrect,
and Face 4 misses the left ear slightly, both contours are excellent in all other areas. The inner contours of Face
3 and Face 4 were rated as ‘poor’; Face 3 because the edge intensity on the right side of the cheek caused by
the subject’s smile is more prominent than neighbouring boundary and the final contour included this section
erroneously; Face 4 highlights a weakness in the technique whereby the global minimum does not correspond
to the full face boundary and could only be compensated for with additional prior information. However,
the chin boundary which is often poorly defined is extracted precisely in all the presented results reflecting
the performance available from a global approach. Inclusion of face features within the extraction technique
appears eminently suitable as an approach to resolve the difficulty with the upper boundary. Accordingly, the
technique could be used to provide a set of good solutions which could be passed on to a higher level process,
and refined by feedback.

5 Boundary Recognition

This section demonstrates that the extracted contours can be used to discriminate between faces. The internal
boundary is used because it contains less information from high variance features, such as the hair. The results
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(a) Face 1

(b) Face 2

(c) Face 3

(d) Face 4

Figure 5: Head Boundary Extraction Results
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that were classed as ‘excellent’ from the inner contour extraction were assembled to form a known face contour
database. Then two ‘unknown’ inner contours were compared against the 38 ‘known’ contours to find a best
match, using a Euclidean metric. The similarity graphs in Figure 6 demonstrate the discriminating ability of
the inner face contour. Figure 6(a) and 6(c) illustrate how the ‘known’ contours of faces 13 and 22 compare
with the other ‘known’ contours, and give an indication of the variance. Figure 6(b) and 6(d) show how the
‘unknown’ contours of faces 13 and 22 compare to the known database. It can be seen that the technique
correctly identifies both faces 13 and 22 as the best match. The measure is no longer zero in both cases giving a
similarity of about 5. Figure 7(a)-7(d) illustrates the extracted inner contours used. Figure 7(e) and 7(f) show
the two contours which were the most dissimilar to faces 13 and 22.
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(a) ’known’ contour of face 13
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(b) ’unknown’ contour of face 13

5 10 15 20 25 30 35
Face No.

5

10

15

20

25

30

35

Similarity

(c) ’known’ contour of face 22
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(d) ’unknown’ contour of face 22

Figure 6: Similarity graphs

6 Conclusions

Implementations of active contour techniques can use evolutionary or global search to determine energy minima
in feature extraction. The dual active contour technique has been modified to use dynamic programming to
search for a global contour solution within the target region. Extraction by dynamic programming is superior
because no evolutionary parameters are used. The two techniques have been shown to provide complementary
characteristics for contour extraction. This gives an appropriate basis for head and face boundary extraction.

The new technique has been applied to a database of 75 face images and resulted in a successful extraction
rate of 96% for the outer contour and 82% for the inner contour, given a good initialisation. The results
showed a need to improve the initialisation techniques for a more robust head boundary technique for, say,
a face recognition system. The results demonstrates that with valid initialisations both the evolutionary and
search-based active contour technique provide a promising approach for outlining and boundary extraction
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(a) Face 13 ’known’ contour (b) Face 13 ’unknown’ con-
tour

(c) Face 22 ’known’ contour

(d) Face 22 ’unknown’ con-
tour

(e) Face 18 ’known’ contour (f) Face 6 ’known’ contour

Figure 7: Inner extracted boundaries

respectively. The main limitation is the dependence upon the quality of the edge detection and the factors
affecting this, namely illumination and boundary contrast.
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