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Basic equations for description and modelling of electric, thermal and diffusion processes in
multicomponent viscoelactic structures under presence of the external electric field are presented.
The corresponding constitutive relations are analyzed.
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Introduction. We shall analyze a multicomponent continuous medium in which diffu-
sive transport takes place being caused by both chemical potential gradient and by the
action of electric field.

In the medium there is a skeleton component of the mass density p° which is one

order higher than that for the remaining components p° >> p® a=1,n. We shall treat

this skeleton, as a viscoelastic body. The medium analyzed is in an electric field which
generates ionization of the particular components of the medium and diffusive flow.
Thus, the sources of mass appear as a result of the ionization and recombination
processes. We shall also assume that the skeleton of the body is dielectric while the
remaining components are the ions which diffuse with respect to this skeleton.

The model of the medium assumed in this paper can serve, among others, for
describing the transport of electrolyte, electrodiffusion in a body with capillary-porous
structure, and in the description of electrochemical corrosion of reinforced concrete or
the mass transfer processes in the plastics [4, 10, 11].

The starting point of our consideration is the system of balances for multicompo-
nent mixture which is in the electric field. Within this range, we analyze the balance of
mass, momentum, energy and inequality of entropy increase.

The interaction of electric field generates Lorentz's force and electric polariza-
tion which appear consequently as an additional body forces in the balance of momen-
tum and energy. As the final result we obtain residual inequality which determines the
trend of evolution of the electrodiffusive process.

Taking into consideration the constitutive assumption we shall obtain the sought
physical equations describing the process of thermal-electrodiffusion in viscoelastic body.
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1. Balances of the process

The equations of multicomponent simple mixture in the electromagnetic field are the
starting point of our consideration.

In these equations each component is cinematically equivalent, as opposed to
diffusion, in which the migration of components in relation to the solid (o =0) gene-

rally takes place; at the same time the mass density of the skeleton is one order higher

than that of the migrating component p*, a=1,n.

The fields describing processes are as follows [1, 9]:

X =y%X*,t) is function of motion of the particle X*;

X= f((f( ,t) is function of motion of the solid component in reference
configuration (x;, =y, (Xg,?1); k,Kzl,_3);

= O
v = d X0 is velocity of particle X“;

ot
Lo OUX CARCE: 0= . . :
v0 = aX(a -1) = Ol a(x,t),t) =v%(%,7) is Eulerian velocity of the solid com-
t t
ponent. (D)
The mean velocity of the mixture and diffusion velocities are defined respectively as
W=t St ol ul v —w, i=13 @
P a=0

In the classical notations the balance laws have the forms:
e Conservation of mass

P o) =R, 3)
ot ’

where R" is the mass supply of the constituent a. An index following a comma denotes
the partial derivation and repeated Latin indicates are summed but not Greek indices.
Let us sum up the components of the mixture considered. Then from (3) we obtain

Pt ow) =0, YR =0. @

If we introduce the mass concentration of the o-th constituent ¢“ defined as
¢ =p*/p, we will obtain another version of (3)
pc* =R* —ji';. (%)
In the above equation, j* =p“u;" denotes mass flux of the constituent o and
a(°)
()=
ot

+w-grad(o) indicates material derivative following the motion w.
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e Balance of momentum [1, 2]

%(p“vﬁ)+(p“v?v?)’ =0; +p“F" +p%e”E; +oj; ;, a=ln;

0
E(povio)ﬁL(vaiOv?)’ -—d) +p +E P +Gl] IE (6)

where p“e” is the charge density of o -th component, ¢;" is the momentum supply,

F" is body force density acting for the o -th constituent, oy is partial stress tensor, F,

is electric polarization per unit volume and E; is electric field. The terms p“e“E; and
E; ;P; on the right-hand side of this equation are the volume electric force.

After summing up we obtain [6, 7]

a

Here pF, = Zp“Fka , Oy = Zcz, .
e Balance of energy [1, 2].
pUzpr qi.i +O;W; JerMOL Z:]Q‘MQL h, ®)
a=1
In the above equation U is specific internal energy, g, is the heat flux, r is the

heat supply, M* is chemical potential for the o -th constituent. The quantity /4, is the
electric energy source [2] given by

h, = zJiaEi +pET,;, )

where m; is polarization per unit mass m, = F./p.
The complete set of balances of the process closes the inequality of the entropy
increase. This inequality proposed in [2, 8] is taken in the following form

pS——L_Zig Plso (10)

2. Residual inequality

Making use of the balance of energy (8) and inequality of entropy (10) we shall obtain
the following residual inequality

pTS — pU+0'U IJ+ZpM°‘ ¢ ZJIO‘M“

a=1

Ti .
S’ +pr,E, +ZJ;*E,. >0. (11)

a=1
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In further considerations it is convenient to make use of function
A=U-ST-E, P, /p.

Then residual inequality has the form

—pTS—pA+oyw; ;+ 3 pM " =3 jiM | +

a=1 a=1

n
+%qi ~PE,+Y J'E; 20 (12)
a=1
Although descriptions of the coupled flow phenomena of interest are naturally
posed in current configuration, numerical solutions of governing equations are more
conveniently carried out on a fixed Lagrangian reference configuration. It is, therefore
necessary to define the following material tensor field [3]

TKL :JXK,kXL,ini P QK ZJXK,qu’

Cxr =% k Xk L T g =T X k>

EK :Ekxk,K’ J:detxk’K,

Jk =Xk 1Ji s M =M X k- (13)

The residual inequality in terms of the material field can be written as

o : 1 L .
_pO(A"'ST)"'EETKLCKL+?QKT,K+ZP Y -

a=l1

o=1 a=1
where Ty, =JXg X1 1gOys gOu =0y +FE;.

Inequality (14) is the significant importance for defining physical equations of thermo-
diffusion.
3. Constitutive equations
Let us now define the process by history A
N ={0(), Ec(s), Eg(s), ¢“o)f
O=T-T,, c"=c"—c; '
Here Ey; =(Cy; —8;)/2 is the Lagrangian tensor deformation, ® and ¢ denotes the

increment of the temperature and of the concentration, respectively.
We make the following constitutive assumptions

pA=p§)[A(t—s);A(t)] (15)
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from which we obtain physical equations

el = JiJ[A(f—S);A(t)]a 5S-G INGHINGI!

5=0 s=0

I, =D, [A—s):A )], g =Q,[VT(-s)],
5=0 s=0

je=devamee-s) Ji=Yet (16)
s=0 o

Then the present set of equations has the form partly close to the equations of
viscoelasticity and thermodiffusion.

Changes appear, however, when defining the flux of mass. In the simplest case,
the flux of ions is defined by equation

s = (VM=) = =DM, g =X a7 = DM, (1)
or in an isotropic case
VR W Wy )

Confining ourselves to the linear problems, we approximate the functional p 4
only by the linear and square functionals of the form [5]

pA=pA4,+ _[L (-1 ——— 8®(r)

—00

+ZIL3QO 2ct0), IL SLLILY

aEKL(T) 2
A jL (t-1

t t

1 OE (1) OE (M)
b | [Guma o= -m 22 g;”drdn—

OE,(7) 0O(n)

—00 —00
t t

_.[ chU(t—r,t— n)—L 5 om =L drdn
t ot
O0E, (1) 0c*
] [ S a(n)drdn—
A —op—oo n
t t
OE, (7) OF
_I JAIJK(t_Tat_n) 61‘]1:() aKn(n)denJr
1 ¢ ¢ a® 00 (n)
_EI _[m(t T,t—MN)—— (T) dt dn -

S om

—00 —00
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! 00 (1 o
[re@-nt-n ()aca(”)drdm

t
a_'[o loks
t t
ot om 0
1 0 dc* (1) 0c*(m)
+2 jijn (1=t 1= = o dr dn +
t ot
Gc () 0Ex (M)
+Zj jc (t— ~ aKn dr dn +
Lo OEx (1) OEL (M) 2
+E:[O__[OWKL(t—r,t—n) A on dtdn+0(g7). (19)

Here Lj (1), L*(1), L'*(v), L} (1), Grgr(t,m), @y (t,m), Wy (1), Ay (1,1), m(T,m),

I*(t,m), R,(t,m), C{(t,m), n*(t,m), Wy, (t,m) are the relaxation functions, which de-

termine physical properties of the material. These functions are continuous for
120, n2=0 and disappear for t<0 and n<O0.

Let us introduce the functional (19) into the inequality (16). After transformation
we obtain the following set of the constitutive equations for:
e stress tensor

£ Ty(0=Ly(0)+ j Gy (1=, 0)Ej ()t - j (0,6 ~7)O (1) d -

t
=Y [ 0.-e (s —jA,,K(o,z ~ 1) Eg(v)dr; (20)
a 0 0
e entropy

S(6) = I2(0) + j m(t—1,0)0(t) dt + j ®,(-1,0E, (t)dt+
0 0

t t
+ > [0, =) (D du+ [ R, (0, =) E (1) de 1)
a0 0
e chemical potential

M%(t)=IL*(0) +jna(t—r,O)éa(r)dHIW,J(t—r,O)E,J(r)dr—
0 0

—J.l“(t—r,O)@(r)errJ.C}*(O,t—I)E,(t)dr; 22)
0 0

&9



Jadwiga Jedrzejczyk-Kubik
Viscoelasticity and Thermodiffusion in Electric Field

e clectric polarization

I, (6) = 411L} (0) + [ Wy, (1= 5,0) £ (v)de = [ Ay (¢ = 7,0) E () e -
0 0

—J.R (t—t,O)@(r)dr+ZIC“(t—r,O)é“(t)dt. (23)
0 a 0

The suggested set of equations is the simplest description of the diffusive flows
in the electric field.
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B’a3konpyxHicTb i Tepmoandy3is B eNeKTpu4yHoMy norsti
Apngira €Hopxenunk-Kyoik
Chopmynvbosano GuxiOHi PIGHAHHS MOOENbHO20 ONUCY eNleKMpPOmepMoouQysitinux npoyecie y

N-KOMNOHEHMHUX 8 SI3KONPYICHUX CIPYKMYPAx 3a HAA6HOCMI 306HIUHBO20 eleKMPUUHO20 NOAL.
IIpogeodeno ananiz ompumanux U3HAYANLHUX CHIBEIOHOUIEHD.

Bsaskoynpyroctb n Tepmoaunccysna B aneKTpuyecKom norsne

Apsura EHpxenybik-Kyouk

Cpopmynuposarnvl ucxoOnvle ypagHeHuss MOOEIbHO2O0 ONUCAHUSL INEKMPOMEPMOOUPDY3UOHHbIX
npoyeccos 8 N-KOMNOHEHMHBIX BA3KOVAPY2UX CIPYKMYPAX NPU HATUYUU 6HEUIHe20 dNeKmpudec-
K020 nona. Ilposeden ananu3s noIyYeHHbIX ONpPeoesaioWUX COOMHOUEHUIL.
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