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ABSTRACT
Motivation: Gene expression profiling experiments in cell lines and
animal models characterized by specific genetic or molecular pertur-
bations have yielded sets of genes annotated by the perturbation.
These gene sets can serve as a reference base for interrogating other
expression datasets. For example, a new dataset in which a specific
pathway gene set appears to be enriched, in terms of multiple genes
in that set evidencing expression changes, can then be annotated by
that reference pathway. We introduce in this paper a formal statistical
method to measure the enrichment of each sample in an expression
dataset. This allows us to assay the natural variation of pathway acti-
vity in observed gene expression data sets from clinical cancer and
other studies.
Results: Validation of the method and illustrations of biological
insights gleaned are demonstrated on cell line data, mouse models,
and cancer-related datasets. Using oncogenic pathway signatures,
we show that gene sets built from a model system are indeed enri-
ched in the model system. We employ ASSESS for the use of
molecular classification by pathways. This provides an accurate clas-
sifier that can be interpreted at the level of pathways instead of
individual genes. Finally, ASSESS can be used for cross-platform
expression models where data on the same type of cancer are
integrated over different platforms into a space of enrichment scores.
Availability: Versions are available in Octave and Java (with
a graphical user interface). Software can be downloaded at
http://people.genome.duke.edu/assess.
Contact: sayan@stat.duke.edu

1 INTRODUCTION
Gene expression profiling experiments have been conducted on a
wide variety of cell lines and animal models with the goal of charac-
terizing genes sets whose expression patterns characterize specific
genetic or molecular perturbations. These gene sets contain can-
didate players in pathways, or sub-pathways, that are “annotated”
by the experimental perturbation. The fundamental idea in pathway
based analysis approaches (Huang et al., 2003; Black et al., 2003;
Mootha et al., 2003; Sweet-Cordero et al., 2005; Alvarez et al.,
2005; Febbo et al., 2005; Subramanian et al., 2005) is that such

a gene set serves as a reference base for interrogating other expres-
sion data sets. A new data set in which a specific pathway gene set
appears to be enriched, in terms of multiple genes in that set evi-
dencing expression changes can then be annotated by that reference
pathway. An analogy can be made here with sequence annotation
in a BLAST search: sets of experimentally derived pathways serve
as annotation reference sets for future experiments in the same way
that annotated sequences serve as references in a sequence search.
Statistical methods are needed and have been developed (Subrama-
nian et al., 2005; Barry et al., 2005; Kim and Volsky, 2005; Tomfohr
et al., 2005) to define computational tools for such expression-based
pathway annotation. Two of these methods, GSEA (Subramanian
et al., 2005) and SAFE (Barry et al., 2005), use nonparametric
statistics to provide formal statistical evaluation, and confidence
assessments, for annotation of an expression data set by measu-
ring the overlap of significantly perturbed genes with those in each
pathway in a database of pathways. Gene Set Enrichment Analysis
(GSEA) (Subramanian et al., 2005) has been successfully applied
in many basic science and clinical studies (Mootha et al., 2003;
Sweet-Cordero et al., 2005; Alvarez et al., 2005; Febbo et al., 2005;
Subramanian et al., 2005; Bild et al., 2006), including pathway dere-
gulation in cancer genomics. A fundamental shortcoming of GSEA
and other methods (Barry et al., 2005; Kim and Volsky, 2005; Tom-
fohr et al., 2005) is that they do not characterize the variation in
enrichment over individual samples in the data set.

If the enrichment of each sample in an expression data set can
be annotated, then one can assay the natural variation of pathway
activity in observed gene expression data sets from clinical can-
cer and other studies. The ability to assay pathway variation in
samples allows the implementation of a general methodology to
dissect tumor samples in terms of oncogenic pathways. The logic
behind this methodology is to develop gene expression “signatu-
res” of oncogenic pathways from model systems and then use these
“signatures” to annotate human tumors in terms of the deregulation
of oncogenic pathways (Bild et al., 2006).

In this paper we introduce a statistical method that allows us to
assay pathway variation, Analysis of Sample Set Enrichment Scores
(ASSESS). Given gene sets defined by prior biological knowledge
or genes co-expressed in an experiment with a specific genetic or
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molecular perturbation, and a data set of expression profiles from
samples belonging to two classes, ASSESS provides: a measure of
the enrichment of each gene set in each sample and a confidence
assessment. This extends the methodology developed in GSEA and
SAFE to annotate individual samples.

A family of methods for pathway annotation was developed and
used to measure pathway deregulation in breast cancer and lung can-
cer (Huang et al., 2003; Black et al., 2003; Bild et al., 2006). The
approach involved: (a) building statistical models of pathway dere-
gulation from cell lines where recombinant adenoviruses were used
to express oncogenic activities corresponding to pathway deregula-
tion, (b) applying the models to each sample in a data set of tumors
and estimating the probability of deregulation of the pathways. The
main drawback of this methodology is that cell line perturbation data
as well as tumor data are required for the analysis. For ASSESS,
only the list of genes characterizing the pathway deregulation is
required, the entire model and cell line data is not needed. This
provides a great advantage when the gene sets are determined by
literature review or a non-expression based assay, such as immuno-
histochemical, for which building an accurate model subsequently
applicable to expression data is a very difficult challenge.

2 RESULTS
2.1 Analysis of Sample Set Enrichment Scores
ASSESS is an annotation methodology that takes as inputs:

1. Genome-wide expression profiles consisting of p genes and n

samples with each sample corresponding to one of two classes,
C1, C2. The expression of the j-th gene in the i-th sample is
xi

j ;
2. A database of m gene sets Γ = {γ1, ...γm} where each gene

set γk is a list of genes (a subset of the p genes in the data
set) belonging to a pathway or other functional or structural
category;

3. A ranking procedure and correlation statistic that takes the
expression data set and labels as inputs and produces corre-
lation statistics for each sample that reflects the correlation of
the p genes in that sample with respect to the the distribution of
expression in the two classes. The correlation statistics for the
i-th sample would be ci = {ci

1, ..., c
i
p} where ci

j is calculated
by any likelihood ratio statistic for measuring the correlation of
a sample to one class rather than the other:

c
i
j = log

„

P(xi
j ∈ C1|xi

j , data)
P(xi

j ∈ C2|xi
j , data)

«

.

An example of a parametric and nonparametric correlation
statistic is described in detail in the following sections;

and produces as outputs:

1. An enrichment score for each sample in the data set with
respect to each gene set in the database. ESk

i corresponds to
the enrichment of the i-th sample with respect to the k-th gene
set;

2. A measure of confidence for each enrichment score is given by
a p-value with multiplicity taken into account by Family-wise
error rate (FWER) p-values and False Discovery rate (FDR)
q-values.

Given the correlation statistics for the i-th sample, ci =
{ci

1, ..., c
i
p}, and a gene set γk, we construct the following dis-

crete random walk over the indices of the rank-ordered correlation
statistic

ν(`) =

P`
j=1 |c(j)|τI(g(j) ∈ γk)

Pp
j=1 |c(j)|τI(g(j) ∈ γk)

−
P`

j=1 I(g(j) 6∈ γk)

p − |γk|
, (1)

where c(j) is the rank-ordered correlation statistic, τ is a parameter
(in general τ = 1), γk is the k-th gene set, I(g(j) ∈ γk) is the
indicator function on whether the j-th gene (the gene corresponding
to the j-th ranked correlation statistic) is in gene set γk, |γk| is the
number of genes in the k-th gene set, and p is the number of genes in
the data set. The enrichment statistic for the i-th sample with respect
to the k-th gene set is the maximum deviation of the random walk
from zero

ES
k
i = ν[arg max

`=1,..,p
|ν(`)|]. (2)

The random walk is a tied-down Brownian bridge process and
the deviation from zero is very closely related to the classical
Kolmogorov-Smirnov statistic (Feller, 1971). There are simpler
ways to define the enrichment score such as taking the average rank
of the genes in the gene set from the rank-ordered list of genes.
However, using a random walk is advantageous because it allows
one to see how the genes in the set are distributed in the rank-ordered
list. The random walk could alternatively be solved by ranking

˛

˛c(j)

˛

˛

rather than c(j). While in certain situations a more extreme enrich-
ment score may be sacrificed, this ranking will not allow for the
access to the additional information of which genes in the set are
up or down regulated. Therefore we choose to calculate the ES by a
random walk using values ranked by c(j), and suggest gene sets be
constructed to capture genes correlated with either over expression
or under expression in a class but not both.

To measure significance we assume under the null hypothesis that
the labels are exchangeable and therefore we can compute the null
distribution by permuting labels, ranking the genes according to
the recomputed statistic cπ

(j), and computing the “random” enrich-
ment statistic ESk

i (π). This is done over many label permutations,
π = 1, ..., Π. The p-value is computed by comparing the enrichment
score to the empirical distribution generated from {ESk

i (π)}Π
π=1.

Correction for multiple hypothesis testing is preformed in the same
manner as in GSEA and is addressed via FWER p-values or FDR
q-values (see (Subramanian et al., 2005) for details). Overlapping
gene sets do not influence the calculation of q-values.

The key technical innovation in extending methods such as GSEA
or SAFE to provide enrichment scores for individual samples is pro-
ducing a correlation statistic and subsequent rankings that model
how representative each gene for a given sample is with respect
to the two classes. The ranking should reflect the natural variation
of how each sample is correlated with class labels. We introduce
two correlation statistics which reflect this variation: (1) based on a
simple parametric normal model, (2) based on a nonparametric ran-
dom walk model. Both methods preform well, as likely would other
well-defined likelihood ratios such as a binary regression model. We
choose to use the nonparametric model on the data in this paper as
this method is a novel means for calculating class membership like-
lihoods. However, the parametric method as well as other methods
not discussed here give comparable results.
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2.1.1 Parametric model The parametric model assumes that the
expression of a given gene can be modeled by a mixture of two
normal distributions corresponding to the two classes. The mean
and standard deviations are computed from the data

µ̂j1 =
1

n1

X

i∈C1

x
i
j , µ̂j2 =

1

n2

X

i∈C2

x
i
j ,

σ̂
2
j1 =

1

n1

X

i∈C1

(xi
j − µ̂j1)

2
, σ̂

2
j2 =

1

n2

X

i∈C2

(xi
j − µ̂j2)

2
,

where n1 and n2 are the number of samples in class 1 and 2.
The expression of the j-th gene is modeled as N(µ̂j1, σ̂j1) or
N(µ̂j2, σ̂j2) depending on whether the sample belongs to class 1
or 2. We define the class membership likelihood of expression xi

j

from the models of classes 1 and 2 as pj1 and pj2 respectively.

pj1 = P(ξ ≥ x
i
j |ξ ∼ N(µ̂j1, σ̂j1)), if x

i
j ≥ µ̂j1,

pj1 = P(ξ < x
i
j |ξ ∼ N(µ̂j1, σ̂j1)), if x

i
j < µ̂j1,

pj2 = P(ξ ≥ x
i
j |ξ ∼ N(µ̂j2, σ̂j2)), if x

i
j ≥ µ̂j2,

pj2 = P(ξ < x
i
j |ξ ∼ N(µ̂j2, σ̂j2)), if x

i
j < µ̂j2.

We use the distribution function rather than the density because
there is a very natural directionality assumption in this model in that
if the Gaussians are well separated then the deeper inside the respec-
tive class a point x resides the higher should be the membership
probability. We then use the log-likelihood ratio as the correlation
statistic. Given expression, xi

j , of the j-th gene of the i-th sample
the correlation statistic is computed as:

c
i
j = log

„

pj1

pj2

«

, if µ̂j1 ≥ µ̂j2

c
i
j = log

„

pj2

pj1

«

, otherwise.

Thus, genes are ranked based upon the differential probability of
their membership in either class and because of this, genes are
ranked as a continuum from those with the greatest probability of
belonging to class 1 ranked at the top and genes with the greatest
probability of belonging to class 2 near the bottom. As most genes
will have limited differential expression between the two classes,
these genes will have similar probabilities of belonging to either
group and the log-likelihood ratio will be near zero.

2.1.2 Nonparametric model The assumption of normality in the
parametric model is often inappropriate for expression data. For
this reason, a nonparametric model to compute class membership
likelihoods is used in most applications. The class membership
likelihoods are computed based upon absorption probabilities of a
Brownian motion (random walk) (see Figure 1 for an illustration of
the model).

We first estimate the densities of the j-th gene for the two classes,
p̂j1(x) and p̂j2(x), using a Parzen estimator (Vapnik, 1998) with a
Gaussian kernel:

p̂j1(x) =
1

n1σj1

√
2π

X

i∈C1

e
−|xi

j−x|2/2σ2

j1 ,

p̂j2(x) =
1

n2σj2

√
2π

X

i∈C2

e
−|xi

j−x|2/2σ2

j2 ,

where n1 and n2 are the number of samples in C1 and C2 and band-
widths σj1 and σj2 are set to the average distance between points of
the j-th gene in C1 and C2 respectively. We define two points, ei

j1

and ei
j2, as the left or right extremes of the random walk starting at

xi
j .

e
i
j1 = min

i
{xi

j} if x
i
j < µ̂j1, e

i
j1 = max

i
{xi

j} if x
i
j ≥ µ̂j1,

e
i
j2 = min

i
{xi

j} if x
i
j < µ̂j2, e

i
j2 = max

i
{xi

j} if x
i
j ≥ µ̂j2.

The membership likelihood of expression xi
j for class 1 and 2 is

given by the absorption probability at the points ei
j1 and ei

j2 for a
Brownian motion starting at xi

j with initial conditions distributed as
p̂j1(x) and p̂j2(x).

We again use the log-likelihood ratio as the correlation stati-
stic. Given expression, xi

j , of the j-th gene of the i-th sample the
correlation statistic is computed as:

c
i
j = log

„

P(absorption at ei
j1 starting at xi

j |p̂j1)

P(absorption at ei
j2 starting at xi

j |p̂j2)

«

. (3)

The absorption probabilities can be computed as the solution of
the Dirichlet problem (Durrett, 1996) which for the Parzen estima-
tors results in a weighted sum of error functions and exponentials
(see methods section for the exact form and derivation). So the
correlation statistics can be computed efficiently.
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Fig. 1. The two classes’ densities are displayed by the red and blue cur-
ves, pr, pb. Assume we have a diffusion process (random walk) starting
at x. We compute the probability of absorption at the point b if the initial
conditions are distributed as pb, P(absorption at b starting at x|pb). We also
compute the probability of absorption at the point a if the initial conditions
are distributed as pr, P(absorption at a starting at x|pr). These two probabi-
lities serve as a measure that an individual sample belongs to one of the two
distributions.

2.2 Validation on Model Systems
The objective of ASSESS is to annotate each sample in an expres-
sion data set in terms of a priori defined gene sets often constructed
from model systems. In this section we validate the method by
demonstrating that gene sets built from model systems or with
known genetic perturbations are indeed enriched in gene expression
data from the same model systems or related systems.
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2.2.1 Mouse models In (Majumder et al., 2004) transgenic mice
were generated that developed a highly penetrant prostatic intrae-
pithelial neoplasia (PIN) phenotype and expressed a constitutively
active AKT1 gene in the ventral prostate of the mouse. This AKT-
induced PIN phenotype can be reversed with treatment of RAD001,
a mTOR inhibitor. The transgenic mice were split into two groups,
with one group receiving RAD001 and the other a placebo. Tissue
was taken from the prostate of both groups and DNA microar-
ray analysis was preformed using the Affymetrix Murine U430A
microarray. This resulted in two sets of expression data: samples
treated with RAD001 (n = 19) and placebo (n = 19). These data
sets were split into a training and test set. The training set consisted
of the first 10 samples treated with RAD001 and the first 10 samples
treated with the placebo. The test set was comprised of the compli-
mentary samples. The training set was used to construct an AKT
gene set using a logistic regression model (see methods section for
details).

We applied ASSESS to the test set using the AKT gene set derived
from the training data. The enrichment scores of the samples trea-
ted with RAD001 strongly indicate that genes in the AKT gene set
were under expressed compared to the samples given placebo which
showed enrichment in the gene set (see Figure 2). All samples were
significantly enriched (p-value < 0.001).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1
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5

6

Enrichment Score

treated
placebo

Fig. 2. A histogram of enrichment scores for the 9 treated and 9 untreated
mouse prostate samples in the test data with respect to the AKT pathway
gene set computed from the training data.

2.2.2 Cell culture models In (Bild et al., 2006) human primary
mammary epithelial cell cultures (HMECs) were used to develop a
series of pathway signatures which were then used to assay pathway
disregulation in non-small cell lung carcinoma (NSCLC). We use
this data set to validate our method.

The data was generated by using recombinant adenoviruses to
express specific oncogenes in an otherwise quiescent cell, the-
reby isolating the subsequent events as defined by the activa-
tion/deregulation of that single pathway. The cells were infected
with adenovirus expressing either human c-Myc, activated H-Ras,
human c-Src, human E2F3, or activated β-cantenin. RNA from
these multiple independent infections, as well as from normal
cells (with green florescent protein, GFP), was collected for DNA
microarray analysis using the Affymetrix Human Genome U133
Plus 2.0 Array.

Given the independent replicates from the six conditions, the five
perturbed pathways and the normal GFP cells, we split each condi-
tion into a train and test set. Thus given expression data from: 10
Myc, 10 Ras, 7 Src, 10 E2F3, 9 β-catenin, and 10 normal/GFP

samples we construct five training sets with the first half of the
samples from each experimental data set along with the first 5 nor-
mal samples. Similarly, five independent test sets were constructed
using the complimentary samples (the second half of samples in the
six conditions). The training sets were used to construct gene sets
for each of the five pathways, Myc, Ras, Src, E2F3, and β-catenin
using a logistic regression model (see methods section for details).

ASSESS was applied to the five test sets to calculate enrichment
with respect to the five gene sets computed from the training data.

Experiment ES for GFP cells ES for infected cells
BCAT -0.87(±0.031) 0.88(±0.042)
E2F3 -0.97(±0.0069) 0.98(±0.0061)
MYC -0.89(±0.018) 0.91(±0.067)
RAS -0.96(±0.012) 0.91(±0.021)
SRC -0.90(±0.016) 0.91(±0.022)

Table 1. Average enrichment scores(±sd) for the comparison of normal
(GFP cells) to infected cells for the gene set built from the respective infected
cell type.

2.2.3 Literature based models The approach developed in
(Huang et al., 2003; Black et al., 2003; Bild et al., 2006) of building
statistical models of pathway deregulation in controlled experiments
and then applying these to new data sets could have been used in the
previous two examples. However, this approach requires that the
cell line perturbation data as well as new data and that the data are
on comparable platforms. This approach cannot be used for gene
sets derived from literature whereas ASSESS is still applicable.

In (Subramanian et al., 2005) a data set generated from mRNA
expression from lymphoblastoid cell lines derived from 15 males
and 17 females served as a validation set. We then sought to address
the following: which gene sets were over expressed in males and
which in females. Gene sets defined by cytogenetic bands and gene
sets defined by pathway or functional properties were examined. As
expected for males, chromosome Y as well as its two bands (Yp11
and Yq11) and a gene set corresponding to genes enriched in male
reproductive tissue (testis) were overexpressed. For females two
gene sets of genes that escape X-inactivation were overexpressed
in addition to a gene set corresponding to genes enriched in female
reproductive tissue (uterus). Genes on the X-chromosome would not
be expected to be overexpressed due to dosage compensation by
X-inactivation.

The enrichment of these seven gene sets with respect to the male
and female samples in the lymphoblastoid cell lines is displayed in
Figure 3. The male samples are clearly enriched with respect to:
Y, Yq11, Yp11, and testis. The female samples are clearly enri-
ched with respect to: the two escape of X-inactivation gene sets
(X-inactivation and Willard X-inactivation) and the uterus gene set
(labeled in the figure as Reproduction Genes). We used a Myc gene
set as a control in that it is not expected to be enriched with respect
to the male/female distinction and indeed this is the case.

We further illustrate the procedure by plotting the random walk
(Equation (1)) for a male and female sample with respect to one of
the escape from X-inactivation gene sets and a Myc gene set (see
Figure 4). For a female sample with respect to this gene set, the
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samples
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chrYp11

chrYq11

testis genes

X−inactivation

Willard X−inact

Reproduction Genes

Myc

Fig. 3. Enrichment scores for the comparison of males to females in the
8 gene sets. The male samples (1 − 15) show enrichment in the Y, Yq11,
Yp11, and testis gene sets. The female samples (16 − 32) show enrichment
in the two escape of X-inactivation gene sets and the uterus gene set. The
Myc pathway shows no differential expression between males and females,
as expected.

random walk increases very rapidly initially indicating that genes
escaping X-inactivation appear at the top of the list of genes orde-
red by correlation with the female phenotype. This results in a very
positive enrichment score. For the male sample the random walk is
basically a mirror image of the female case indicating that genes
escaping X-inactivation appear at the end of a list of genes ordered
by correlation with the male phenotype. This results in a very nega-
tive enrichment score. The third case is for a female sample with
respect to the Myc gene set. In this case the genes in the gene set are
randomly spread over the ranked list and so the enrichment score
never deviates far from zero.

2.3 Classification and Clustering in the Space of
Pathways

A very natural consequence of obtaining enrichment scores for each
sample in the data set is that classification and clustering can now
be performed in the space of gene sets rather than individual genes.
Being able to interpret classification models using pathways offers
an alternative and possibly more intuitive perspective than models
using individual genes. Another aspect of building models in the
space of pathways that was emphasized in (Bild et al., 2006) is kno-
wing which pathways are disregulated with respect to outcome and
how this can help suggest targeted therapeutics.

2.3.1 Clustering In (Brunet et al., 2004) a matrix factoriza-
tion method (NMF) was applied to an expression data set with
acute myelogenous leukemia (AML) and acute lymphoblastic leu-
kemia (ALL) samples (Golub et al., 1999). The matrix factorization
allowed the clustering of the samples into subsets. A parame-
ter in this clustering method is the number of subsets k. For
this data set results with k = 2, 3 were computed. For the two
cases the clusters comprised of {(25 ALL), (11 AML, 2 ALL)}
and {(8 ALL-T), (17 ALL-B), (11 AML, 2 ALL-B)}, where ALL-
T and ALL-B are two subtypes of ALL. We applied ASSESS to this
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Fig. 4. Random walks. (a) The random walk for a female sample with
respect to one of the escape from X-inactivation gene sets. The hatches of
the top line indicate where the genes in the gene set fall with respect to the
rank-ordering. (b) The random walk for a male sample with respect to one
of the escape from X-inactivation gene sets. (c) The random walk for female
sample with respect to a Myc gene set. This gene set is not significantly
enriched and so the hatches appear randomly dispersed with respect to the
rank-ordering.

leukemia data set using a database of 523 gene sets (Subramanian
et al., 2005). We then applied NMF to this space of enrichment sco-
res and obtained identical results. The only difference is according
to the measure of confidence developed in (Brunet et al., 2004), as
the clustering obtained from the enrichment space had greater con-
fidence than that from the raw expression data. The result of the
clustering and the factors are displayed in Figure 5.

2.3.2 Classification We examined six gene expression data sets
for which single gene classification models have been built: (a) Gen-
der – male vs. female (Subramanian et al., 2005), (b) cDNA Lung
cancer – squamous vs. adenocarcinoma (Garber et al., 2001), (c)
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Fig. 5. The top and left figure are the left and right matrix factors for the
matrix of enrichment scores in the Leukemia data with k = 3. The red
line is a plot of the first metapathway over the data and this metapathway
selects for the ALL-T samples. The green line is the second metapathway
and it selects for the ALL-B samples. The blue line is a plot of the third
metapathway which selects for the AML samples.

oligonucleotide Lung cancer – squamous vs. adenocarcinoma (Potti
et al., 2006), (d) Medulloblastoma – survival vs. failure (Pomeroy
et al., 2002), (e) Prostate cancer – recurrence vs. nonrecurrence
(Glinsky et al., 2004), and (f) Leukemia – AML vs. ALL (Golub
et al., 1999).

We applied the classification using enrichment scores procedure
outlined in the methods section to compute classification accuracy
on these six data sets (see Table 2). For all the data sets except for
the Leukemia data set the leave-one-out method was used (Algo-
rithm 1). For the Leukemia data set the train-test procedure was
used (Algorithm 2) with the train-test split outlined in (Golub et al.,
1999). The classification accuracy was comparable or better than
that for single gene classifiers for all the data sets except for the
Leukemia data.

The pathways associated with recurrent prostate cancer tumors
supports ASSESS’s ability to both accurately predict outcome as
well as provide biological insight. Both AKT and PTEN gene sets
were found to have increased coordinate expression in samples of
recurrent prostate cancer. PTEN loss is one of the most common
genetic alterations seen in advanced prostate cancer resulting in acti-
vation of the PI3K-AKT pathway. Activation of this pathway is
known to occur at a greater frequency in advanced prostate can-
cer and has prognostic significance. A “TERT-up” gene set was
similarly found to be associated with recurrent prostate cancer. An
essential requirement for tumor progression is avoidance of cellu-
lar senescence, telomerase restores chromosomal telomeres and is
associated with the development of prostate cancer. Finally, ano-
ther interesting observation is the presence of the “DNA damage

signaling” and “Cell cycle checkpoint” pathways both representing
common cellular processes disregulated in aggressive cancer.

Classes Accuracy
Gender: males vs. Females 94%

Lung Cancer(cDNA): Adeno vs. Squamous 91%

Lung Cancer(oglio): Adeno vs. Squamous 84%

Medulloblastoma: survival vs. failure 72%

Prostate: recurrent vs. nonrecurrent 73%

Leukemia: ALL vs. AML 85%

Table 2. Classification accuracy for six data sets building classification
models in the space of enrichment scores.

2.4 Cross-platform Expression Models
DNA microarray studies have been carried out on a variety of
platforms for the same case-control experiment, for example both
cDNA microarrays and oligonucleotide microarrays are popular in
cancer genomics. The integration of data across platforms is appe-
aling for a variety of reasons: increasing the sample size of the data,
allowing for interstudy validation, mitigating platform based biases,
and mitigating study based biases.

Building a model from raw expression data from one platform and
applying the model to data from another platform directly will not
work since the expression data from the two platforms have different
distributions. One approach to normalize between the platforms is
to use median rank scores and and quantile discretization to map the
data to a common space and then build a classification model in this
space (Warnat et al., 2005).

We advocate an alternative approach of applying ASSESS to
expression data to map the data into the space of enrichment scores
for pathways and then building models in this space. Methods such
as median rank scores are no longer needed as enrichment scores
between platforms are numerically comparable. There are several
advantages to this approach: (1) the need to map genes using Uni-
Gene ids is avoided; (2) the problem of multiple probe mappings
between platforms is avoided; (3) gene sets defined separately by
probes specific to each platform can be used; (4) the enrichment sta-
tistic is much more robust than the rank of a single gene so the loss
of genes between platforms is mitigated; (5) interpreting results on
the level of pathways instead of single genes is appealing.

We first applied this approach to two prostate cancer studies
(Welsh et al., 2001; Dhanasekaran et al., 2001). The two platforms
for the studies were cDNA microarrays (Dhanasekaran et al., 2001)
and Affymetrix oligonucleotide microarrays (Welsh et al., 2001).
The cDNA data set contained 53 samples of which 34 were tumors
and 19 were normal. The oligo data set contained 33 samples of
which 24 were tumors and 9 were normal. The catalog of human
functional gene sets comprised of 433 sets annotated for both plat-
forms (Subramanian et al., 2005) was used as the gene set. The error
rate for using the cDNA and oligo data sets as train-test sets respec-
tively is reported in Table 3, as is the error rate for a leave-one-out
procedure using all the cDNA and oligo samples (see methods sec-
tion for details on on both test-train and leave-one-out classification
using gene sets). We compare these results with the leave-one-out
error computed on the individual data sets (see Table 3).
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We next applied this approach to two lung cancer studies (Garber
et al., 2001; Potti et al., 2006). The two studies involved the same
platforms as the prostate example. The cDNA data set contained 55
samples of which 38 were adenocarcinomas and 17 were squamous
cell lung carcinomas (Garber et al., 2001). The oligo data set con-
tained 93 samples of which 45 were adenocarcinomas and 48 were
squamous cell lung carcinomas (Potti et al., 2006). The same cata-
log of gene sets as used in the prostate example was used. The error
rates for the cross-platform predictions as well as predictions within
the individual data sets are summarized in Table 3.

cDNA LOO oligo LOO train-test combined LOO
prostate T/N 85.7% 76.5% (cDNA-oligo) 73.5% 80.7%

lung A/S 88.0% 90.9% (oligo-cDNA) 78.2% 88.5%

Table 3. Classification accuracy for cross-platform models for the prostate
and lung cancer data sets.

3 METHODS
3.1 Gene set construction
Given an expression data set with two class labels, we use a linear logistic
regression model with regularization or shrinkage (Hastie et al., 2000) to
construct gene sets. We define the expression data as a matrix xi

j with i =
1, ..., n (the number of samples) and j = 1, ..., p (the number of genes), the
i-th sample is designated as xi, and the class labels as y ∈ {−1, 1}. The
logistic regression model with regularization involves solving the following
optimization problem

arg min
w,b

"

1

n

n
X

i=1

log(1 + e−(yi(w·xi+b))) + λ‖w‖2

#

,

where λ is a model parameter that needs to be set.
Solving the above optimization problem results in a vector ŵ and the abso-

lute magnitude of the elements of the vector correspond to the relevance of
a gene or feature. For the HMEC data sets and the AKT data set, genes
corresponding to 50 elements of ŵ most correlated with the perturbation
phenotype were used to construct the gene sets. In both algorithms 1 and 2
genes corresponding to the top and bottom 50 elements of ŵ were used.

3.2 Classification and Gene Set Selection
Classification using enrichment scores was applied in two settings: a train-
test setting and a leave-one-out cross-validation setting. The leave-one-out
setting was used for all the data sets except the leukemia data set for which
we used the test-train setting. The test-train setting is a simple generalization
of the leave-one-out setting.

3.2.1 Leave-one-out setting: Given data set xi
j of gene expression for

j = 1, .., p genes and i = 1, ..., n samples where the i-th column of the
matrix X correspond to the i-th sample, labels (yi)

n
i=1, and gene sets Γ =

{γ1, ..., γm} the leave-one-out method outlined in Algorithm 1 provides an
unbiased estimate of the error rate (technically leave-one-out estimators are
almost unbiased (Vapnik, 1998)).

3.2.2 Train-test setting: Given a training set of X = (xi)n
i=1 expres-

sion profiles and labels (yi)n
i=1, a test set of Z = (xj)n′

j=1 expression
profiles with labels (tj )n′

j=1 , and gene sets Γ = {γ1, ..., γm} the procedure
outlined in Algorithm 2 provides an unbiased error estimate on the test set.

Algorithm 1: Leave-one-out procedure for pathway based clas-
sification.

input : training data and gene sets

return: error rate

for i = 1 to n do
split the data into xi (the i-th data point) and X\i (the data
with the i-th point removed);
compute Tr = ESk

i for X\i (this is the enrichment of the
m gene sets on the n − 1 data in X\i);
compute Test = ESk

i for xi (this is the enrichment of the
m gene sets on xi, the label i-th point is not used in the
estimation of the enrichment score by leaving this point out
of the Parzen estimator);
use Tr to build logistic regression with variable selection
model Mi;
apply Mi to Test to obtain prediction ŷi;
if yi 6= ŷi then error rate = error rate + 1;

return error rate

Algorithm 2: Test error estimate for pathway based classifica-
tion.

input : training data, test data, and gene sets

return: error rate

compute Tr = ESk
i for X (this is the enrichment of the m gene

sets on the training data X);
use Tr to build logistic regression with variable selection model
M ;
for j = 1 to n′ do

compute Test = ESk
j for zj (this is the enrichment of the

m gene sets on the j-th test sample, use only the training
data X to compute the Parzen estimator);
apply M to Test to obtain prediction t̂j ;
if tj 6= t̂j then error rate = error rate + 1;

return error rate

3.3 Computation of Absorption Probabilities
To compute the correlation coefficients in the nonparametric model we need
to compute the probability that the expression of the j-th gene in the i-th
sample is representative of class 1 or class 2, P(xi

j ∈ C1) and P(xi
j ∈

C2) for all samples i = 1, ..., n and genes j = 1, .., p. We first scale the

expression data for each gene to [0, 1], x̂i
j =

xi
j−mini(x

i
j)

maxi(x
i
j
)−mini(x

i
j
)
. The

class membership probabilities are the probabilities of absorption to the left
or right extreme, which are {0, 1} for the scaled data, depending on whether
x̂i

j is greater or less than the scaled class means (see Table 4). This simply
reflects the directionality assumption of our model.

Let

u(x̂) = P(absorption at 0 starting at x̂),

v(x̂) = P(absorption at 1 starting at x̂),
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P(x̂i
j ∈ C1) x̂i

j ≤ µ̂j1 P(absorption at 0 starting at x̂i
j |p̂j1)

x̂i
j > µ̂j1 P(absorption at 1 starting at x̂i

j |p̂j1)

P(x̂i
j ∈ C2) x̂i

j ≤ µ̂j2 P(absorption at 0 starting at x̂i
j |p̂j2)

x̂i
j > µ̂j2 P(absorption at 1 starting at x̂i

j |p̂j2)

Table 4. Probability of class membership as a function of x̂i
j and the class

means.

and let p(x̂) be supported on [0, 1], then

P(absorption at 0 starting at x̂ |p(x̂)) =

Z x̂

0
u(x̂) p(x̂) dx̂,

P(absorption at 1 starting at x̂ |p(x̂)) =

Z 1

x̂
v(x̂) p(x̂) dx̂.

The absorption probabilities of a Brownian motion at the end points of a
line segment can be computed by solving the heat equation with appropriate
boundary conditions, the Dirichlet problem (Durrett, 1996). In the above
case we solve for

d2u(x̂)

dx̂2
= 0 s.t. u(0) = 0, u(1) = 1

d2v(x̂)

dx̂2
= 0 s.t. v(0) = 1, v(1) = 0.

This results in the solutions

u(x̂) = x̂, v(x̂) = 1 − x̂.

Given the Parzen estimates of the densities for the two classes

p̂j1(x̂) =
1

n1σj1

√
2π

X

i∈C1

e
−|x̂i

j−x̂|2/2σ2

j1 ,

p̂j2(x̂) =
1

n2σj2

√
2π

X

i∈C2

e
−|x̂i

j−x̂|2/2σ2

j2 ,

we can compute the absorption probabilities as

P(absorption at 0 starting at x̂|p̂jc) =

Z x̂

0
s p̂jc(s) ds

P(absorption at 1 starting at x̂|p̂jc) =

Z 1

x̂
(1 − s) p̂jc(s) ds

where c denotes the classes {1, 2}. Solving the integrals results in a weighted
sum of error functions and exponentials.

4 DISCUSSION
In this paper we introduce a formal statistical method to measure the
enrichment of each sample in an expression data set with respect to
a priori defined gene sets. This allows us to assay the natural varia-
tion of pathway activity in observed gene expression data sets. It is
a natural extension of methods that measure the enrichment of an
entire data set with respect to a priori defined gene sets (Subrama-
nian et al., 2005; Barry et al., 2005; Kim and Volsky, 2005; Tomfohr
et al., 2005).

The method was validated on a variety of model systems: onco-
genic cell lines, mouse models, and known gender differences in
expression. The utility of the method was demonstrated by cluste-
ring and building classification models in the space of pathways
or gene sets. These were in general as accurate as methods app-
lied in the space of genes but more interpretable and robust. This
robustness was illustrated by the ability to build models between dif-
ferent expression based technologies— cross-platform models. This
is hard to do in the single gene setting.

A variety of open questions regarding the pathway paradigm
and our implementation of it remain. Some of these questions are
technical and some are fundamental with respect to both statistical
analysis and molecular biology.

We first discuss the technical issues:

• Enrichment statistic: We use a maximum deviation statistic
to compute our enrichment score. The theory behind BLAST
(Ewans and Grant, 2002) offers insights as to how we may
improve our statistic by adding to the maximal extremal excur-
sion the top r excursions. This would especially make sense
when the gene set corresponds to genes in a pathway that sub-
divide into sub-pathways, some of which are up regulated and
some of which are down regulated.

• Correlation statistic: We used a Brownian motion model to
compute our correlation statistic. This outperformed a simple
Gaussian model and a model based upon the cumulative distri-
bution function of the Parzen estimator. However, these models
are by no means exhaustive and other statistics may be as robust
but with greater sensitivity.

• Extension to real-valued phenotypes: We stated the procedure
for the case with binary phenotypes. The crux of an exten-
sion to real-valued phenotypes would be the computation of
an appropriate correlation statistic. In the context of a survi-
val model this would not be difficult but in general it can be
complicated.

There are two fundamental questions with respect to our approach
and they are intimately related

• What is a pathway (gene set): Gene sets can be derived from
experimental perturbations, literature based studies, and a
variety of other origins. A fundamental question is which of
these sets is most appropriate. For example, a database of gene
sets may contain 5 Ras pathways from a variety of experiments
or literature surveys. For a particular analysis which is most
appropriate? The authors believe that a partial answer or con-
sensus is developing that experimentally based gene sets are in
general more robust than ones derived from literature. Howe-
ver, the quantification of this and a statistically formal method
for scoring gene sets is still an open problem.

• Likelihood based testing: The statistic used in our hypothe-
sis testing framework is likelihood based, P(data|pathway).
The problem with using this likelihood based framework is
that in this formulation is that the pathway we condition upon
is not fixed. The Ras pathway as defined today is different
than the Ras pathway as defined in two weeks, some genes
are added and some removed. In the above framework one
can then ask which pathway are we testing, is there multipli-
city in the Ras pathway and if so how many Ras pathways
are there. An alternative approach which is conceptually very
appealing is to build our statistical framework on the poste-
rior, P(pathway|data). This provides a uniform framework and
quantity that we can use to score the different Ras pathways in
the previous example. The fundamental problem in using the
posterior is that a prior is needed on the space of pathways (for
example priors over possible Ras pathways). The construction
or estimation by sampling gene expression data sets of such a
priori defined gene sets starting with a database of pathways is
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a very interesting and challenging computational biology and
statistics problem.
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