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by
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Abstract

Traditionally, statistical signal processing algorithms are developed from probabilistic
models for data. The design of the algorithms and their ultimate perfomance depend
upon these assumed models.

In certain situations, collecting or processing all available measurements may be
inefficient or prohibitively costly. A potential technique to cope with such situations
is data selection, where a subset of the measurements that can be collected and
processed in a cost-effective manner is used as input to the signal processing algorithm.
Careful evaluation of the selection procedure is important, since the probabilistic
description of distinct data subsets can vary significantly. An algorithm designed
for the probabilistic description of a poorly chosen data subset can lose much of the
potential performance available to a well-chosen subset.

This thesis considers algorithms for data selection combined with binary hypoth-
esis testing. We develop models for data selection in several cases, considering both
random and deterministic approaches. Our considerations are divided into two classes
depending upon the amount of information available about the competing hypothe-
ses. In the first class, the target signal is precisely known, and data selection is done
deterministically. In the second class, the target signal belongs to a large class of
random signals, selection is performed randomly, and semi-parametric detectors are
developed.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Electrical Engineering
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Chapter 1

Introduction

Data selection algorithms identify a subset of data for subsequent signal processing.

A variety of hardware architectures amenable to data selection have been proposed.

Specific examples include multiple-antenna wireless communication systems [24], and

wireless sensor networks [19]. In these systems, collecting data can provide a large

portion of the operating cost, so collecting only a subset of available measurements can

yield significant resource savings. Additionally, if the data has sufficient redundancy,

a small subset can yield performance close to that possible with the full data set.

In practice, selection algorithms should be tuned to a particular underlying signal

processing task. In this chapter, we provide the necessary background for analyzing

data selection algorithms in binary hypothesis testing, a mathematical formulation of

signal detection. First, we summarize binary hypothesis testing, and develop notation

to describe data selection. Second, we discuss potential applications for data selection,

and research in a variety of statistical signal processing problems that is related to

data selection.
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1.1 Binary Hypothesis Testing for Signal Detec-

tion

Binary hypothesis testing is a mathematical formulation useful for developing decision-

making algorithms. Binary hypothesis tests are procedures to determine whether a

measurement is consistent with one of two states of the world, called hypotheses.

They are denoted by H0 and H1. Conventionally, H0 is called the null hypothesis,

and H1 is called the target hypothesis. The data that serves as the basis for the

decision is collected in an N -dimensional random vector x, and is described by an a

priori conditional density under each hypothesis: px|H0
(x|H0) and px|H1

(x|H1). The

conditional notation will be used whether the hypothesis is regarded as a parameter

or a random variable.

Based upon the data x and the conditional probability densities, binary hypothesis

testing consists of criteria for deciding whether the state of the world is H0 or H1. A

decision rule is a mapping from the sample space for x to one of the two hypotheses.

It is denoted by Ĥ(x), and it takes a value in the set {H0, H1}. Although Ĥ(x) can

be a random variable in the most general cases, the discussion in this thesis focuses

on situations where it is a deterministic mapping.

The decision rule Ĥ(x) cannot be evaluated without an optimality criterion. A

variety of criteria have been advanced as a basis for judging the performance of

decision rules. In this thesis, we focus on the well-known Neyman-Pearson criteria.

This formulation of the decision problem regards the state of the world as an unknown,

deterministic quantity. It attempts to strike a balance between errors regardless of

which state actually holds. If H0 is true, the case Ĥ(x) = H1 is called a type I error.

In the terminology established by a RADAR analogy, this error is also called a false

alarm. When H1 holds, the error Ĥ(x) = H0 is referred to as a type II error or a

miss.

A more careful definition of the performance criteria requires detailed notation.

Assume that the decision rule Ĥ(x) is a deterministic mapping from elements in the

sample space for x to the two hypotheses. Then, the sample space can be divided

14



into two sets, given by

Ĥ0 = {x|Ĥ(x) = H0}
Ĥ1 = {x|Ĥ(x) = H1}.

(1.1)

The performance criteria are established in terms of the probabilites for these two

events. Specifically, the false alarm and miss probabilities are

PF = Pr[Ĥ1|H0]

PM = Pr[Ĥ0|H1].
(1.2)

The detection probability is PD = 1 − PM . By an examination of extreme cases, we

see that there is an inherent tradeoff between PM and PF . If Ĥ0 is the empty set,

PD = 1 because the decision rule always says that a target is present when H1 holds.

Likewise, PF = 1 for the same reason under H0. Conversely, if Ĥ1 is the empty set,

then both PF and PD are zero. A decision rule that randomly chooses between H0

and H1 without any use of x can get any values of (PF , PD) on the line PF = PD.

Certainly, a decision procedure using x can achieve a more attractive tradeoff between

miss and false alarm probabilities.

The Neyman-Pearson formulation of the decision problem attempts to get the

best PD at a fixed maximum PF . The optimization problem is to find a decision

rule such that PD is maximized subject to the constraint PF ≤ P ′. Such decision

rules are useful in situations where there is a maximum tolerable false alarm rate.

The formulation of the detector depends on the parameter P ′. A curve expressing

the relationship between PF and PD is called the receiver operating characteristic

(ROC).

The solution to the basic Neyman-Pearson formulation of the binary hypothesis

testing problem is expressed in the likelihood ratio test (LRT). Since PF and PD

depend on the event Ĥ(x) = H1 under different hypotheses, they can be expressed

as integrals over the same set in sample space, ignoring the potential for randomness

in the decision rule. A Lagrange multiplier argument leads to the LRT. The test is

15



denoted

L(x) =
px|H(x|H1)

px|H(x|H0)

Ĥ(y)=H1

�
Ĥ(y)=H0

η. (1.3)

The test compares the likelihood ratio L(x), the ratio of the a priori conditional

densities to a threshold, declaring Ĥ(x) = H1 for all x where the ratio exceeds η. In

certain situations, the test is defined in terms of a threshold test on the log-likelihood

�(x) = log(L(x)). In either situation, a detector designer sets the threshold in order

that the test have a specific false alarm probability, PF .

The implementation of the LRT depends upon the specific densities px|H(x|H0)

and px|H(x|H1). In many cases, the signal detection problem is translated into a

hypothesis testing problem by assuming plausible models for these densities. In a

signal detection model, we are are searching for a target signal in a set of noisy

measurements. In this case, under the null hypothesis H0, x = n, where n is a

random vector representing noise. Frequently, we shall assume that n is a zero-mean

Gaussian random vector with a known covariance matrix, written as Λ. Under the

signal hypothesis H1, the data is modeled by x = s+n, where s is a representation of

the signal. Much of the variation in detection based upon binary hypothesis testing

comes from various models for s: whether it is a deterministically known vector, a

random vector, or a random vector with an element of uncertainty in its probability

density, either parameterized or unparameterized.

1.2 Data Selection Problem Formulation

The research presented in this thesis examines binary hypothesis testing in the context

of an additional constraint on the decision algorithm, intended to account for resource

limits in the hardware implementation of the test. Assume that the details of the

model for s are fixed, either as a deterministic or random vector. The data selection

constraint changes the detection problem to one where only a subset of the available

data can be examined in order to make a decision. The detector for a fixed subset

choice is an LRT; the critical issue involves choice of the best such subset. This
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section develops a notation to formalize the problem.

The entire set of data that can be read or collected given unlimited hardware

resources is given by the random vector x. The selection model permits transmission

of a subset of the data, along with indices identifying the measurements. We develop

notations that describe the selection, with the index of the selected samples within

x either preserved or suppressed. As a source of the identity-preserving notation,

consider the set of diagonal matrices with boolean entries, such that the weight of

the main diagonal is constrained to be K. An example may be

G =




1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0




. (1.4)

The notation for a selected data set wtih the identity of the selected measurements

preserved is

xg = Gx. (1.5)

Using the matrix displayed in equation (1.4), the selected data is xg = [x1 0 x2 x3 0]T .

Observation of this vector indicates the values of the selected measurements, as well

as their index in the total data set x.

A compact notation for selection can be denoted by matrix multiplication between

x and a non-square boolean matrix. Let G̃ be a K × N matrix restricted such that

each row has a single non-zero entry, and each column contains at most one non-

zero entry. An example corresponding to the same selection measurements shown in

equation (1.4) is

G̃ =




1 0 0 0 0

0 0 1 0 0

0 0 0 1 0


 . (1.6)
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Likewise, the selected data vector is denoted by

x̃g = G̃x. (1.7)

This alternative notation is not unique; the selected subset is unchanged by any

permutation of the rows of G̃. Given only x̃g, the identity of the data in the original

vector x cannot be determined.

In this notational framework, we can precisely define a detection with data selec-

tion problem. The subset size constraint restricts the number of non-zero entries in

the selection matrix G or G̃ to be K. Subject to this constraint, we must choose a

way to get G that produces the best PD operating point for a fixed maximum value

of PF . In subsequent chapters, we consider deterministic and random techinques

for choosing G. They will also consider a variety of models for s. Varying assump-

tions about the signal model and selection procedure lead to several distinct problems

springing from the subset selection constraint in detection.

1.3 Applications and Connections to Previous Re-

search

The data selection problem formulated in this chapter modifies the traditional formu-

lation of binary hypothesis testing with an additional constraint. The utility of data

selection constraint depends upon the hardware characteristics of the system imple-

menting the hypothesis test. Specifically, data selection can be applied to distributed

signal processing systems, where signal measurement and processing are separated

by a communication network. In many such systems, the communication network

may form the bottleneck determining the overall performance [5]. This occurs if the

majority of the energy consumption or time delay in the signal processing algorithm

arises from congestion it injects in the network. Data selection reduces this conges-

tion, thereby reducing the implementation cost of the algorithm. Additionally, in

some situations, many of the measurements are redundant. Discarding them may not
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seriously impair the performance of the statisitical signal processing algorithm. Even

though the diminishing returns to selecting ever larger data subsets does not always

hold, selection remains useful whenever its efficiency benefit outweighs the cost of lost

information in the discarded data.

A variety of hardware architectures amenable to data selection have been pro-

posed. Specific examples of hardware systems for which data selection has been sug-

gested include multiple-antenna wireless communication systems [15, 24], and wireless

sensor networks [19, 32] for applications such as target detection [7], tracking [3, 45],

and classification [20]. In these systems, communicating data can provide a large

portion of the operating cost, so collecting a subset of available measurements can

yield significant resource savings. Additionally, if the sensors or antenna elements are

sufficiently abundant, a small subset of the data can yield performance close to that

possible with all the data.

Data selection is potential technique for improving the efficiency of a distributed

signal processing system. It can complement several related lines of research in the

design of distributed signal processing hardware and algorithms [34].

Careful design of the hardware topology of the distributed signal processing sys-

tem is sometimes feasible. In situations where fine-grained control of the hardware

and software is available, careful joint design of the hardware communication infras-

tructure and the assignment of algorithms to the distributed processing elements can

benefit the system performance [12, 13].

Information theoretic analysis of combined signal quantization and processing

provides an alternative approach to understanding the impact of commuication con-

straints on distributed signal processing. In fact, data selection can be viewed as a

form of a quantization for spatially-distributed data. There are several strands of

research considering the joint compression and processing of information. One such

technique formulates the problem as a source coding problem using the tools of in-

formation theory [9]. If the ultimate signal processing application is estimation, the

class of joint compression and processing problems are referred to as the CEO prob-

lem. The dependence of the CEO problem on network topology is considered by [11].
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Additionally, there has been research into information theoretic performance bounds

on joint compression and classification [1].

A second approach to the problem of quantization in detection has been termed

distributed detection [38, 29]. This formulation of the problem considers the joint

design of local quantizers at a set of spatially separated sensors and a global decision

rule based on the quantized data, frequently taking the data rate available to each

sensor as fixed. Viewed from this perspective, data selection is a compression rule

where unequal data rates are allocated to each sensor. In cases where data from

separate sensors is correlated, it has been found that unequal allocation of data rate

between sensors can perform better than equal allocations [4]. Additionally, some

research has examined data-dependent selection in the distributed detection model

[35].

Distributed signal processing systems are not the only potential motivation for

data selection algorithms. In a variety of applications, selection can improve the

efficiency of an underlying signal processing algorithm. As an example, consider

a signal approximation problem in source coding. With a redundant signal set, it

may be of interest to find an accurate representation of a signal in which a certain

fraction of the expansion coefficients are zero. In this situation, the reduced number of

coefficients limits the cost of storing or communicating the approximate signal. There

are a wide variety of algorithms to accomplish this task, such as matching pursuit

[21]. Data selection procedures have been applied to many other signal processing

tasks, including filter design [22, 36, 42], statistical regression [23], estimation [18],

and feature selection for data mining [6, 26, 27].

1.4 Outline

The remainder of the thesis applies the data selection constraint to two useful binary

hypothesis testing models. Chapter 2 discusses detection of a deterministic target

signal in correlated Gaussian noise. The data selection constraint alters the familar

matched filter solution to the problem, instead producing an algorithm we call the

20



restricted matched filter. Chapter 3 considers detection of a stochastic signal. The

chapter focuses on randomized selection rules and considers the robustness of the

resulting detector to uncertainties in the probabilistic model for the target signal.
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Chapter 2

Data Selection in Deterministic

Signal Detection

A classic problem in detection theory involves detecting a deterministic signal in

Gaussian noise. The well-known solution to this problem, the matched filter, has ap-

plications such as receivers for communications and RADAR systems. This chapter

considers the matched filter algorithm when combined with a data selection con-

straint. It specifies the signal modeling assumptions that lead to the matched filter

detector, describes the data selection constraint, and considers solutions to the re-

stricted problem.

2.1 Traditional Matched Filtering

As an example of the application of binary hypothesis testing, consider a familiar

model for the detection of a target. Under hypothesis H1, the target produces a

known signal s, representing the measurements of the energy it radiates. For example,

it may represent the samples of a return from a target to a RADAR receiver or an

antenna array. The measurements in s are corrupted by colored noise n, representing

the affect of background interference and measurement noise. For simplicity, n is

modeled as a zero-mean, Gaussian random vector with covariance matrix Λ. The

density of a Gaussian random vector n with mean m and covariance matrix Λ is

23



denoted as

pn(n) = N (n,m,Λ). (2.1)

The noise n is independent of the hypothesis H . The measurement model for each

hypothesis is

x = n H = H0 (2.2)

x = s+ n H = H1. (2.3)

With this model, the conditional probability densities of x under both hypotheses are

px|H(x|H0) = N (x, 0,Λ) (2.4)

px|H(x|H1) = N (x, s,Λ). (2.5)

In this binary hypothesis test model, the vector s and covariance matrix Λ are known

to the receiver. Additionally, we require that the covariance matrix Λ is positive-

definite. Though we motivate this model using RADAR systems, it applies to other

situations such as detecting information-bearing signals in a pulse-amplitude modu-

lation communication system.

The likelihood ratio test for the signal model described by equations (2.2) and (2.3)

is typically referred to as the whitened matched filter [31]. The detector structure can

be decomposed into three elements, a whitening transformation, a projection, and a

threshold operation.

x ✲ Λ− 1
2

Whitening

✲w 〈w, E[w|H1]〉

Inner Product

✲T (x)
T (x)

Ĥ(y)=H1

�
Ĥ(y)=H0

η

Threshold

✲Ĥ

Figure 2-1: Whitened Matched Filter Detector based on x.
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The first block of the detector whitens the observations. The output is

w = Λ− 1
2x. (2.6)

Here, the matrix Λ− 1
2 is the unique, postive-definite square-root matrix of Λ−1. One

can verify that the covariance of w is the identity matrix. In principle, other linear

transformations also produce white output; this transformation is shown for concrete-

ness.

The second block in Figure 2-1 is an inner product with the conditional mean of the

whitened observations E[w|H1]. This produces a sufficient statistic for the detection,

the linear function T (x). The final block compares T (x) to a threshold to determine

if the detector’s decision is Ĥ = H1 or Ĥ = H0. The threshold η determines the

(PF , PD) operating point on the ROC.

An alternative view of the whitening transformation and the inner product pro-

vides additional insight into the computation of T (x). Since the whitening transfor-

mation is applied to the random vector x, it is also applied to the mean, yielding

E[w|H1] = Λ− 1
2 s. Using this relation, the sufficient statistic for detection becomes

T (x) = sTΛ−1x. (2.7)

This form of the inner product produces a simple analysis of the general hypothesis

testing problem in terms of a scalar, Gaussian hypothesis testing problem.

The probability density for T (x), conditioned on either hypothesis, is a scalar

Gaussian density since the statistic is a linear combination of jointly Gaussian random

variables. The conditional variance is the same for both hypotheses. The conditional

densities, however, are distinguishable by their means. Under H = H0, T (x) is

zero-mean. Under H = H1, the mean is

E[T (x)|H1] = sTΛ−1s. (2.8)

The parameter in equation (2.8) generalizes the notion of signal-to-noise ratio devel-
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oped for detecting known signals in white Gaussian noise. In fact, when Λ = σ2I,

the conditional expectation E[T (x)|H1] reduces to the traditional value for signal-

to-noise ratio. Throughout the remainder of this thesis, we refer to this conditional

expectation as SNR. As in the white noise case, this parameter fully determines the

ROC. Thus, for a fixed test threshold in η, the detector performance is

PF = Q(η)

PD = Q(η − SNR),
(2.9)

where the Q function is given by

Q(α) =
1√
2π

∫ ∞

α

e−
u2

2 du. (2.10)

Two basic properties of the Q function are invertibility and monotonicity. The func-

tion is invertible over the interval 0 ≤ α ≤ 1. Additionally, it is monotonically

decreasing, so Q(α1) > Q(α2) for all argument pairs satisfying α1 < α2. These

properties are important for analyzing the subset selection problem for this detector.

2.2 Restricted Matched Filter

The general data selection problem in section 1.2 generalizes the Neyman-Pearson

criteria. In addition to a constraint on the maximum false alarm rate, it fixes the size

of the data subset x̃g available to the detector. Fortunately, for the hypothesis test

considered in this chapter, the subset size constraint does not affect the form of the

detector once the selected subset is fixed. We denoted the selected subset through the

G notation developed in section 1.2. The conditional densities under H0 and H1 for

the selected measurements in x̃g are still Gaussian, though the application ofG alters

the mean and covariance. We refer to a whitened matched filter designed according

to the statistics of a subset of the data as a restricted matched filter (RMF).

For a fixed subset indicated by G, the RMF is designed according to equation

(2.7) using the covariance and the conditional mean of the random vector x̃g. The
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new mean and covariance are

E[x̃g|H1] = s̃g (2.11)

Λx̃g = G̃ΛG̃T . (2.12)

The conditional densities under H0 and H1 are

px̃g|H(x̃g|H0) = N (x̃g, 0,Λx̃g) (2.13)

px̃g|H(x̃g|H1) = N (x̃g, s̃g,Λx̃g). (2.14)

Since the probabilistic description of the hypothesis test after data selection has the

same structure as the original test, the optimal detector is the whitened matched filter

determined by s̃g and Λx̃g . Thus, for a fixed subset of measurements, represented by

a particular instance of G, the performance of the associated whitened matched filter

is given by the quadratic form

SNR(G) = s̃TgΛ
−1
x̃g
s̃g. (2.15)

Throughout the remainder of the thesis, the notation in equation (2.15) represents

the SNR quadratic form for a subset of sensors indicated either symbolically as G or

explicitly, such as {x1, x3, x8}.
The equations (2.9) and (2.15) can evaluate the performance of the detector for

any choice of the selection matrix G or G̃. The following theorem provides a criteria

for the best subset of measurements given constraints on the false alarm probability

and the selected subset size.

Theorem 1 (Restricted Matched Filter) Consider the binary hypothesis testing

model in equations (2.4 - 2.5). With a fixed false alarm rate of the detector, PF , and

a fixed number of non-zero entries in G, K, the selection matrix that maximizes PD

under these constraints maximizes SNR(G) given in equation (2.15).

Proof. Since the Q-function is invertible, the constraint on the false alarm rate fixes
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the detector threshold at η(PF ) = Q−1(PF ). The detection probability depends on

η(PF ) and SNR(G). Increasing SNR(G) increases PD since the derivative Q′(α) < 0

for all α ∈ 
. The covariance matrix Λ is positive definite, so SNR(G) is finite for

any selection matrix with K non-zero entries. There are a finite number of feasible

selection matrices, so SNR(G) has an absolute maximum under the constraints, and

the matrix that maximizes SNR also maximizes PD. The optimal G, however, is not

necessarily unique. �.

Theorem 1 shows that selecting the data subset yielding the best RMF is a com-

binatorial optimization problem. There are

0
BBBBB@

N

K

1
CCCCCA

selection matrices that satisfy the

subset size constraint. Optimization of SNR over this finite set produces the best

detector. Similar optimization problems have been considered by researchers in other

fields, and are frequently called combinatorial feature selection problems [6]. A variety

of heuristic solutions to related optimization problems have been suggested [23, 27].

Common approaches involve tests for local optima, branch and bound search [27],

and incremental searches that add measurements to maximize the change in SNR,

referred to as greedy algorithms.

2.3 Example

Before analyzing specific optimization algorithms, it is important to establish the

impact of subset selection on the detector performance. In some situations, the gap

between the best and worst values of SNR(G) can be large, indicating the need for

careful selection of the data subset processed by the RMF.

In the case where the n is white, the optimal subset selection can be made by

inspection. If the covariance matrix satisfies Λ = aI, the signal-to-noise ratio for any

subset is

SNR(G) =
1

a
‖s̃g‖2 =

1

a

∑
i

Giis
2
i . (2.16)

The maximum energy selection rule, setting Gii = 1 for the K largest values of
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s2
i , maximizes SNR(G), as indicated by Welborn [43]. This result generalizes to

any diagonal covariance matrix by substituting the SNR metrics of the individual

measurements for s2
i .

For covariance matrices that are not diagonal, the maximum energy selection rule

no longer guarantees an optimum, and the covariance matrix can have a large effect

on the distribution of SNR(G) over the possible values of G with K non-zero entries.

There is an interesting trade-off between the energy of the selected signal s̃g and the

effect of the covariance Λx̃g . This section illustrates the trade-off with examples of the

RMF highlighting the impact of Λx̃g on the detector performance. In order to specify

the detection problem precisely, we must define the mean vector s under H = H1 and

the noise covariance Λ. Assume that N = 16 and the mean vector is

sT =
[

1 . . . 1
]
. (2.17)

Since the target signal is constant, the signal energy is ‖s̃g‖2 = K for any selected

subset. The variation in SNR(G) comes from the covariance alone.

In the first example, we choose the covariance matrix as a Toeplitz matrix defined

by the first-order covariance sequence

Knn[α] = c−|α|. (2.18)

The parameter c−1 determines the decay rate of the covariance function. In the

example simulations, we’ve taken c = 0.95. The covariance matrix for is defined by

the relation

[Λ]ij = Knn[|i − j|]. (2.19)

Comparison of the SNR quadratic forms for two specific subsets reveals the impact

of subset selection on the covariance matrixΛx̃g . The first subset selects the beginning

eight measurements in x, as defined by our arbitrary indexing. The measurements

are

x̃Tg,1 =
[

x1 x2 . . . x8

]
. (2.20)
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This set produces a performance metric SNR = 1.242.

The second subset selects measurements from the odd-indexed sensors. The sec-

ond measurement vector is

x̃Tg,2 =
[

x1 x3 . . . x15

]
. (2.21)

This sensor selection essentially changes the decay rate of the covariance function

to c−2. The second set of measurements decorrelate much faster than those in G1.

The performance metric for the second set of measurements is SNR(G2) = 1.430.

The metric in the second case has been increased by about 15 percent by a different

choice of data.

This result can be explained in terms of the eigenvalues and eigenvectors of the

covariance matrices Λx̃g . The covariance matrices can be diagonalized

Λx̃g = UDUT . (2.22)

The matrix U has normalized eigenvectors of Λx̃g as columns and D is a diagonal

matrix of the corresponding eigenvalues. These matrices are dependent on the sensor

measurements selected by G that produce x̃g,1 and x̃g,2.

Substituting the result of equation (2.22) into the expression for the performance

metric SNR in equation (2.15), produces an alternative equation for the performance

metric

SNR(G) =
K∑
i=1

〈uG,i, s̃g〉2
di(G)

. (2.23)

Here, uG,i is an eigenvector of Λx̃g and di(G) is the corresponding eigenvalue. The

result indicates that there is a tradeoff between the projection of the conditional

mean vector s̃g onto the eigenvectors and the corresponding eigenvalues. In order

to maximize SNR, the subset selection should produce a mean that has its largest

projection along eigenvectors with minimal eigenvalues. The subset selection impacts

both the mean vector and the eigenvalues and eigenvectors of the selected data, so

general selection rules that focus only on signal energy or noise correlation can perform
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Figure 2-2: Receiver operating characteristics for best and worst detectors. The best
SNR is 1.384, and the worst is 1.179.

suboptimally.

The example illustrates how the noise covariance influences the overall perfor-

mance of the detector, but does not exhibit the potential magnitude of the effect.

The best and worst ROCs for this example, displayed in Figure 2-2, show a small

worst-case gap in PD. Instances of the RMF with a different covariance matrix can

produce a large gap between the best and worst ROCs. The ROCs in Figure 2-3

result when the covariance matrix is replaced with a randomly generated covariance

matrix. In the instance tested, the maximum and minimum SNR are 1.8085 and

0.1174, respectively. There is a dramatic gap in PD for many values of PF . Although

performance gaps this large do not occur in all cases, the example shows that selec-
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Figure 2-3: Receiver operating characteristics for best and worst detectors generated
for an RMF instance with N = 16, K = 8, a constant signal, and a randomly
generated covariance matrix. The best SNR is 1.8085, and the worst is 0.1174.
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tion algorithms can make a significant impact on RMF performance under the right

circumstances.

2.4 Greedy Algorithms for the RMF Search

As indicated in the prior example, a straightforward selection rule such as signal en-

ergy maximization may not always identify the optimal subset of measurements for

the RMF. In situations where Λ is not diagonal, more complicated heuristic rules for

data selection can improve the performance of the selected subset. A variety of heuris-

tic approaches have been proposed for data selection for filter design [22], regression

[23], and feature selection [27]. The work in these areas has considered several heuris-

tic rules for maximizing the quadratic form in equation (2.15), providing algorithms

that also address the search for a good RMF. For example, Miller [23] suggests a lo-

cal search algorithm. The algorithm exchanges a selected datum for one not selected,

terminating when none of the potential exchanges with the currently selected subset

increase the SNR. Narendra and Fukunaga [27] discuss a branch-and-bound heuris-

tic. They propose discarding data from the original set of N measurements, at each

stage dropping the measurement that least reduces SNR. They suggest an exhaustive

search of the possible K measurement subsets, and rely on the fact that many subsets

may not be examined in detail because the search can be terminated early in cases

when dropping a measurement reduces SNR below the best K measurement subset

previously examined.

The greedy selection rule forms a critical component of these heuristic search

algorithms. In each stage of the algorithms, measurements are added to optimize

the incremental change in SNR given the current state of the subset. The overall

performance of the algorithms depends upon the greedy selection rule as well as the

termination criteria. An analysis of the greedy selection procedure, however, can

illuminate certain aspects of the performance of these algorithms, since it produces

the initial subsets examined by the more detailed heuristic search algorithms.

This section focuses on forward and backward greedy selection algorithms. The
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forward greedy algorithm resembles the local search optimization. It builds a selected

subset by adding measurements that maximize the incremental increase in SNR,

terminating after selecting a K element subset. Frequently, this algorithm serves

as the initialization for the local search procedure. The backward greedy algorithm

discards measurements, minimizing incremental loss in SNR. It terminates after

discarding N −K measurements. This procedure selects the first subset inspected by

the branch and bound algorithm.

2.4.1 Expressions for Incremental SNR Changes During Greedy

RMF Searches

In order to use a greedy approach to the RMF optimization problem, we require an

incremental expression for the SNR, highlighting the effect of adding or subtracting a

measurement from the selected subset. With such an expression, the most beneficial

incremental change to a specific selected subset can be identified.

An incremental expression for the quadratic form can be derived using a block

decomposition of the signal vector s and the covariance matrix Λ. Consider a block

decomposition [14] of the covariance matrix given by

Λ =


 ΛK ΛB

ΛTB ΛR


 (2.24)

where ΛK is the upper-left K × K block of the matrix, ΛR is the lower-right (N −
K) × (N − K) block, and ΛB is the K × (N − K) off-diagonal block. When ΛK is

invertible, the inverse of the matrix can be expressed as

Λ−1 =


 Λ−1

K +Λ−1
K ΛB(ΛR −ΛTBΛ−1

K ΛB)−1ΛTBΛ
−1
K −Λ−1

K ΛB(ΛR −ΛTBΛ−1
K ΛB)−1

−(ΛR −ΛTBΛ−1
K ΛB)−1ΛTBΛ

−1
K (ΛR −ΛTBΛ−1

K ΛB)−1


 .

(2.25)

If we apply a block decomposition a vector sT = [sTKs
T
R], the quadratic form between
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s and Λ can be written as

sTΛ−1s = sTKΛ
−1
K sK + sTKΛ

−1
K ΛB(ΛR −ΛTBΛ−1

K ΛB)−1ΛTBΛ
−1
K sK

−2sTKΛ
−1
K ΛB(ΛR −ΛTBΛ−1

K ΛB)−1sR + sTR(ΛR −ΛTBΛ−1
K ΛB)−1sR.

(2.26)

This equation relates the two quadratic forms of different dimensions, sTΛ−1s and

sTKΛ
−1
K sK , and can be used to evaluate the impact of incremental changes in the

selected data.

The expression (2.26) can be used to determine the change in SNR from adding

or deleting a measurement from the selected subset. Let G denote a subset, and

consider the change in SNR from adding measurement i, such that Gii = 0. Let

zi = G̃Λei, where the only non-zero entry of the vector vector e occupies the ith

row, i.e. the entries of the vector are Kroenecker deltas eij = δij . Thus, zi contains

the elements of the ith column of Λ corresponding to the measurements selected by

G. This vector corresponds to ΛB in equation (2.26). The covariance matrix for the

selected subset Λx̃g corresponds to ΛK , and so forth. Making the proper substitutions

into the equation for the quadratic form, the SNR is

SNR({G ∪ i}) = s̃TgΛ
−1
x̃g
s̃g +

(
si − zTi Λ−1

x̃g
s̃g

)2

Λii − zTi Λ−1
x̃g
zi

. (2.27)

The forward SNR increment, the change in SNR due to adding measurement i to the

subset identified in G, is given by

∆+(G, i) =

(
si − zTi Λ−1

x̃g
s̃g

)2

Λii − zTi Λ−1
x̃g
zi

. (2.28)

The SNR increment when a measurement is discarded from a selected subset has a

similar form. For a subset where Gjj = 1, let G′(j) indicate the selection matrix

formed when j is discarded. The reduction in SNR is ∆+(G′(j), j) using the form of

equation (2.28). For convenience, the SNR reduction is also written as ∆−(G, j). An
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equivalent form for this reduction,

∆−(G, j) =

(
eTj Λ

−1
x̃g
s̃g

)2

eTj Λ
−1
x̃g
ej

, (2.29)

is derived in [27]. Note that in this equation, x̃g and Λx̃g are determined by the G

at the beginning of the stage, including the index for the measurement eventually

discarded.

The greedy algorithms determine the measurement to select or discard by com-

puting the SNR increments for each possible measurement. The forward greedy al-

gorithm begins with no selected measurements and adds the unselected measurement

that maximizes ∆+(G, i); the backward greedy algorithm begins with G = I, and

removes the measurement that minimizes ∆−(G, i). These stages are repeated until

a subset of K measurements remains.

The worst-case computational complexity for a stage of the forward and backward

greedy algorithms are bounded by the same quantity. Equation (2.29) for the SNR

reduction shows that the computation of ∆−(G, j) for all indices remaining in the

subset G is dominated by the matrix inversion of Λx̃g . The computational complex-

ity of this operation for a subset of size K is O(K3) for a general positive-definite

covariance matrix. For the forward greedy algorithm, the complexity for calculating

∆+(G, i) for each i not included in the subset G is dominated by the computation

of K quadratic forms given by zTi Λ
−1
x̃g
zi. The computational complexity of this oper-

ation is also O(K3). The total computational complexity of these algorithms is the

sum of the complexities for several stages. For both algorithms, the upper bound on

the total computational complexity to select a subset of size K is O(K4).

2.4.2 Conditions for An Exact Solution with Maximum En-

ergy Selection

The computational complexity of the greedy selection algorithms exceeds the com-

plexity of the maximum energy selection rule by a significant margin. In cases where
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the maximum energy selection rule performs well, the added complexity of the greedy

selection algorithm is unnecessary. In one instance, where Λ = σ2I, the maximum

energy rule selects the optimal subset. Quantifying the robustness of this result iden-

tifies situations where the greedy selection algorithms are unnecessary.

In this section, we determine a condition on s and Λ that guarantees that the

maximum energy subset optimizes SNR(G) even though Λ is not a diagonal matrix.

Essentially, the result shows that whenever the covariance matrix is similar enough

to I, the maximum energy subset optimizes the RMF. In the cases identified in this

section, use of the detailed greedy selection heuristic is unnecessary.

There are a number of ways to quantify the similarity between two matrices. We

use the condition number as a way to measure similarity between Λ and the identity

matrix [17]. The condition, for positive definite matrices, is defined as the ratio

κ(Λ) =
dmax(Λ)

dmin(Λ)
, (2.30)

where dmax(Λ) and dmin(Λ) are the maximum and minimum eigenvalues of the co-

variance matrix. The condition number obeys the inequality

κ(Λ) ≥ κ(I) = 1. (2.31)

In a global sense, if κ(Λ) ≈ 1, the covariance matrix behaves similarly to a scaled

version of the identity matrix. In such situations, it is reasonable that the maximum

signal energy subset, the optimal choice for the RMF for white noise, remains opti-

mal. A criteria indicating when this subset is the optimal choice for low-condition

covariances can be developed.

As a first step, we consider the relationship between the condition number of

the overall covariance matrix Λ, and the covariance matrix for any set of selected

data, Λx̃g . A variational view of eigenvalues is useful for bounding the condition

of the selected covariance matrix. One way to describe the maximal and minimal
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eigenvalues of a matrix, dmax and dmin, is by reference to the gain R, defined by

R =
vTΛv

vTv
. (2.32)

Sometimes this quantity is called the Rayleigh-Ritz ratio [17]. Since Λ is a positive

definite matrix, the gain satisfies the inequalities

dmin(Λ) ≤ R ≤ dmax(Λ). (2.33)

Thus, for covariance matrices, the maximum and minimum eigenvalues give the

largest and smallest values for the gain.

The bounds on gain in equation (2.33) also apply to the eigenvalues of Λx̃g . For a

selected covariance matrix, we can generate all possible gains by matrix multiplication

between Λ, and a vector v with entries where Gii = 0. This vector is unrestricted

in the dimensions where Gii = 1. For example, if N = 3, and the RMF is formed

by selecting the first two pieces of data, Λx̃g is the upper left 2 × 2 block of Λ. The

restriction v3 = 0 produces a situation where

ṽTgΛx̃g ṽg

ṽTg ṽg
=
vTΛv

vTv
. (2.34)

Thus, the gain for Λx̃g obeys the bounds

dmin(Λ) ≤ dmin(Λx̃g) ≤ R ≤ dmax(Λx̃g) ≤ dmax(Λ). (2.35)

An additional set of useful inequalities relates the value of a quadratic form to

global properties of the signal vector and matrix involved. Since the quadratic form

can be represented as

sTΛ−1s =
N∑
i=1

(uTi s)
2

di(Λ)
, (2.36)

the maximum and minimum possible values for the quadratic form for fixed dmax,
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dmin, and ‖s‖ are

sTΛ−1s ≥ ‖s‖2

dmax(Λ)

sTΛ−1s ≤ ‖s‖2

dmin(Λ)
.

(2.37)

Similar bounds apply to the selected signal and covariance matrix s̃g and Λx̃g . From

the inequalities in equation (2.33), we can further see that the selected quadratic form

obeys the inequalities

s̃TgΛ
−1
x̃g
s̃g ≥ ‖s̃g‖2

dmax(Λx̃g )
≥ ‖s̃g‖2

dmax(Λ)

s̃TgΛ
−1
x̃g
s̃g ≤ ‖s̃g‖2

dmin(Λx̃g )
≤ ‖s̃g‖2

dmin(Λ)
.

(2.38)

The maximum energy subset, denoted by G∗, consists of the data with the K

largest magnitude signal measurements. The corresponding selected signal vector is

denoted s̃g∗ and the corresponding selected covariance matrix is Λx̃g∗ . When Λ = I,

the optimal RMF always corresponds to the maximum energy subset. This follows

because the SNR reduces to ‖s̃g‖2 and the maximum energy subset by definition

satisfies the inequality ‖s̃g∗‖2 ≥ ‖s̃g‖2 for s̃g formed by selecting any K signal samples.

The maximum energy subset remains the source for the optimal RMF if the in-

equality

s̃Tg∗Λ
−1
x̃g∗ s̃g∗ ≥ s̃TgΛ−1

x̃g
s̃g (2.39)

holds for all K sample subsets. The inequalities in equation (2.38) provide a useful

bounds on the quadratic forms. Since s̃Tg∗Λ
−1
x̃g∗ s̃g∗ ≥ ‖s̃g∗‖2

dmax(Λ)
and ‖s̃g‖2

dmin(Λ)
≥ s̃TgΛ−1

x̃g
s̃g,

the inequality
‖s̃g∗‖2

dmax(Λ)
≥ ‖s̃g‖2

dmin(Λ)
(2.40)

provides a condition for the SNR of the maximum energy subset to exceed the SNR of

another subset. If the inequality holds for every arrangement of G with K elements,

the inequality gives a sufficient condition for the maximum energy subset to yield the

best RMF. These arguments prove the following theorem.

Theorem 2 Let s be an N-dimensional vector and Λ be a positive definite matrix

with condition number κ(Λ). The maximum energy subset given by G∗ is the K
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measurement subset such that ‖s̃g∗‖2 ≥ ‖s̃g‖2 for any other K measurement set. If

the condition

κ(Λ)
‖s̃g‖2

‖s̃g∗‖2
≤ 1 (2.41)

holds for all selection matrices G �= G∗, then G∗ maximizes SNR(G) over all K

element subsets.

This theorem relates global properties of the signal and covariance matrix to the

RMF solution. Specifically, if the signal energy in the maximum energy subset exceeds

the signal energy in any other K-sample subset, the RMF remains the maximum

energy subset, as in the case of white noise. The exact solution to the selection

problem does not change significantly if Λ resembles the identity matrix sufficiently

closely.

Interestingly, the bound does not make any assumptions on the structure of the

covariance matrix. A drawback, however, occurs when the signal has energy spread

approximately evenly in its samples. In this case, the gap in signal energy between

s̃g∗ and other subsets can be very small for large N . In the pathological case where

the signal is constant, the bound in Theorem 2 is no guide at all.

Finally, note that the theorem analyzes only the case of a maximum energy subset

selection rule. It does not account for the exact selection rules in the heuristic greedy

algorithms. An analysis of their performance, however, reveals a similar form for their

worst-case approximation ratios.

2.4.3 Worst-Case Performance of the Greedy Algorithm

The greedy algorithm relies upon a heuristic rule for choosing a subset of data. As

such, it is not guaranteed to produce the optimal answer. This section character-

izes the worst-case performance of the greedy algorithm, relating it to the condition

number of the covariance matrix Λ and the properties of s.

The bounds on the Rayleigh-Ritz ratio given in equations (2.33) and (2.38) can

be used to determine lower bounds on the SNR achieved by the greedy selection

rule. Let the SNR values for the subset selected by the greedy algorithm and the
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optimal subset be denoted by SNRgreedy and SNRopt. The signal vectors for these

subsets are sgreedy and sopt. The performance bound can be expressed in terms of an

approximation ratio α. The relation

SNRopt = αSNRgreedy (2.42)

defines α. If the greedy algorithm finds the optimal solution the ratio is α = 1.

The approximation ratio can be bounded using the linear algebra techniques from

the previous section. A large value of α, however, does not always lead to a significant

loss in detection probability. The relationship between SNR(G) and the RMF detec-

tor performance depends upon the actual value of SNRopt. As indicated in equation

(2.9), the detection probability is PD = Q(t − SNR(G)) for a detector with decision

threshold t. This function is non-linear; it changes rapidly from 0.97 to 0.02 over the

interval [−2, 2]. If SNRopt is large, large values of α may not seriously impact detector

performance. However, if α is such that SNRgreedy falls in the interval [−2, 2], the loss

in performance can be significant.

The bounds on α are derived with the SNR bounds in equation (2.38). From these

inequalities, we can conclude that SNRopt satisfies

SNRopt ≤ ‖sopt‖2

dmin(Λ)
. (2.43)

In this expression, sopt serves as a placeholder for the signal vector corresponding to

the optimal RMF subset. Additionally, the performance of the greedy algorithm can

be bounded from below by

SNRgreedy ≥ ‖sgreedy‖2

dmax(Λ)
. (2.44)

The notation sgreedy is a placeholder for the signal vector entries selected by the

greedy algorithm. Combining these two inequalities, we find the following bound on
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the approximation ratio

α ≤ ‖sopt‖2

dmin(Λ)SNRgreedy
≤ ‖sopt‖2

‖sgreedy‖2

dmax(Λ)

dmin(Λ)
. (2.45)

In terms of the condition number, the approximation ratio is bounded by

α ≤ ‖sopt‖2

‖sgreedy‖2
κ(Λ). (2.46)

The overall bounds on the approximation performance of the greedy algorithm are

1 ≤ α ≤ κ(Λ)
‖sopt‖2

‖sgreedy‖2
. (2.47)

In this bound, the quantity ‖sopt‖2

‖sgreedy‖2 cannot be determined exactly without knowing

the optimal subset selection. The ratio between maximum energy and minimum

energy for K element subsets of s can be used as a bound on this term. In some

cases, this term can be large. In other cases, the condition for Λ dominates the bound.

Unfortunately, there are instances where the greedy algorithm selects a subset where

α is close to the upper bound in equation.

2.4.4 Nearly Tight Example of the Forward Greedy Algo-

rithm

In this subsection, we construct an example where the forward greedy selection al-

gorithm nearly meets the worst-case performance bound in equation (2.47). The

strategy in this section is to fix Λgreedy and sgreedy, and construct an overall signal s

and covariance Λ such that forward greedy algorithm selects the subset indentified

by sg, and the resulting α is proportional to κ(Λ), which can be chosen arbitrarily

large.
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Consider a covariance matrix that is block diagonal. It has the form

Λ =


 Λgreedy 0

0 Λo


 . (2.48)

This example is constructed specifically so that the forward greedy algorithm to

choose the K = N/2 measurements corresponding to Λgreedy. The covariance matrix

Λo will be constructed so that the approximation ratio α is proportional to κ(Λ).

In order to construct this example, we require conditions that guarantee that the

greedy algorithm will select measurements associated with Λgreedy rather than Λo.

Recall that the greedy algorithm selects a measurement that maximizes the quantity

given in equation (2.28) using the covariance matrix for the measurements it selected

previously. Consider applying the greedy algorithm to the K measurements that we

intend for it to select. The minimum value of ∆+
i when the greedy algorithm acts on

the restricted set is denoted by ∆min. The condition

s2
j

[Λo]jj
< ∆min for all j ∈ Go. (2.49)

guarantees that the forward greedy algorithm selects no measurements in Go. At the

first stage of the algorithm the increment for any measurement in Go is ∆ =
s2j

[Λo]jj
.

The condition in equation (2.49) ensures that the first measurement selected is the

first selected when the greedy algorithm runs only on the measurements associated in

Ggreedy. Since the measurements in the two subsets are uncorrelated, the increments

for any of the measurements in Go do not change as measurements from Ggreedy are

selected. None of the measurements in the optimal subset are selected at any stage

of the forward greedy algorithm because they are less than ∆min.

Thus, to give worst-case performance, our construction requires that the condition

(2.49) be satisfied, and that the resulting values of SNR(Ggreedy) and SNR(Go) yield

the approximation ratio α = κ(Λ) ‖so‖2

‖sgreedy‖2 .

Based upon intuition from the bounds, we require that the selected signal vector

sgreedy falls in the subspace spanned by eigenvectors associated with the maximum
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eigenvalue dmax(Λ), and that so falls in the subspace spanned by eigenvectors with

eigenvalue dmin(Λ). It is possible to construct such an instance where these conditions

are established. Consider the covariance matrix

Λwc =


 IK 0

0 Λo


 . (2.50)

With properly chosen signal sT = [sTgreedy s
T
o ], the greedy algorithm will select a subset

that will meet the worst-case bound on the approximation ratio with equality. For

this example, let so = 1√
N/2

[1 1 . . . 1]T and sgreedy = µso, with µ > 1. With the

proper choice of Λo, this example meets the worst case approximation ratio for the

greedy algorithm.

The condition, expressed in equation (2.49), for the greedy algorithm to select

measurements in sgreedy rather than in so reduces to

s2o,i
Λo,ii

< min
j
s2greedy,j. (2.51)

Since µ2s2o,i = s2greedyi
, the condition is satisfied if the diagonal entries of Λo satisfy

Λo,ii > 1
µ2 . The eigen-decompostion of this matrix is Λo = QDQT , so the diagonal

entries have the form Λo,ii =
∑K
j=1(Qij)

2Djj. If we choose Qi1 = so,i =
1√
K

, a lower

bound on the diagonal entry is

Λo,ii ≥ min
j �=1
Djj

(
K − 1

K

)
(2.52)

because
∑
jQ

2
ij = 1, andQi1 is fixed. Thus, if the lower bound on the diagonal entries

exceeds 1
µ2 , then so does each entry. The condition on the entries of D becomes

minj �=1Djj > K
(K−1)µ2 . Thus, we can pick µ such that this condition is satisfied

simultaneously with the upper bound on the eigenvalues.

Additionally, since (2.52) does not restrict D11 for Λo, we can choose this eigen-

value as small as we wish. Since so is the eigenvector for D11, the gap between the

performance of the greedy algorithm and the optimum subset can be arbitrarily large.
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Thus, for a choice of D11 small enough, α = ‖so‖2

‖sgreedy‖2 κ(Λwc). The ratio of the two

signal vector magnitudes is 1
µ2 , so the approximation ratio is directly proportional

to the condition of the covariance matrix, which can be made arbitrarily large by

choosing small values for D11.

2.4.5 Nearly Tight Example of the Backward Greedy Algo-

rithm

An instance of the RMF problem where the backward greedy algorithm achieves

performance proportional to κ(Λ) can be constructed. The strategy for constructing

the Λ and s instances is similar to the strategy for the forward greedy worst case.

A small submatrix that is ill conditioned is inserted into Λ. The vector s and the

remaining entries of Λ are chosen to insure that the backwards greedy algorithm

will discard enough measurements so that the remaining covariance matrix ΛK is no

longer ill-conditioned.

Consider the following instance of the RMF problem. The covariance matrix is

Λ =




1 0 ρ+τ
2

ρ−τ
2

0 1 ρ−τ
2

ρ+τ
2

ρ+τ
2

ρ−τ
2

ξ+1
2ξ

ξ−1
2ξ

ρ+τ
2

ρ−τ
2

ξ−1
2ξ

ξ+1
2ξ




. (2.53)

The variable ξ is a free parameter that will control κ(Λ) and the optimal SNR. This

variable can take on any value satisfying ξ > 1.The parameters ρ and τ are defined

as

ρ =
√
ξ−1
ξ

τ = 1√
2ξ

. (2.54)

The condition of Λ is ξ, and the matrix is positive definite for any value of ξ > 1.

The signal vector in this instance is

sT =
1√
2

[
1

ρ

1

ρ

1

2
− 1

2

]
. (2.55)
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The covariance matrix and signal in equations (2.53-2.55) are chosen precisely so

that the first stage of the greedy algorithm will discard the third measurement, and

the remaining submatrix is well-conditioned regardless of ξ. Recall that the SNR

increments for discarding a measurement can be written as ∆−(G, i) =
(zT

i Λ−1
x̃g

s̃g)2

zT
i Λ−1

x̃g
zi

.

For the instance described, G = I, and the vector Λ−1s is

Λ−1s =




1
ρ
+ 1

1−ρ2 + τo
√
ξ

2(1−τ2o )

1
ρ
+ 1

1−ρ2 − τo
√
ξ

2(1−τ2o )

− 1
(1−ρ2)

+ ξ
2(1−τ2o )

− 1
(1−ρ2)

− ξ
2(1−τ2o )




, (2.56)

where τo = τ√
ξ
. Using the values for ρ and τ from equation (2.54), the third entry

of Λ−1s = 0 for any value of ξ > 1. The backward greedy algorithm always drops

this measurement first, independent of ξ. The remaining entries of the covariance

matrix are well-conditioned for large values of ξ. This example produces an approxi-

mation ratio for the backwards greedy selection algorithm that is proportional to the

condition number of Λ.

2.4.6 Performance Comparison for the Greedy Algorithm

The performance bounds on the greedy algorithm show that it can perform poorly

when the condition of Λ is relatively large. In practice, the algorithms often perform

well even when κ(Λ) is large. As an example, consider the signal shown in Figure

2-4. The signal is a damped sinusoid, and the covariance is a symmetric Toeplitz

matrix generated by the sequence 12 ∗ (.995)i, for i = 0, . . . , 14. The condition for

this covariance matrix is κ(Λ) = 5774.8.

Despite the large condition number in this instance, the forward greedy algorithm

performs well. For K ranging over the entire range of subset sizes, the forward greedy

algorithm selects a subset with SNR close to the optimal selected by exhaustive search.

Figure 2-5 shows the performance of the forward greedy algorithm and the maximum

signal energy selection algorithm. The forward greedy algorithm does almost as well
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Figure 2-4: Target signal for greedy search examples.
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as the exhaustive search, and significantly better than the maximum signal energy

selection rule. The resulting ROCs for the three selection algorithm for subsets of

K = 5 are shown in Figure 2-6.

2.5 Dynamic Programming Solutions for Banded

Matrices

As indicated in the previous section, selection problems involving noise covariance

matrices possessing condition numbers similar to κ(I) yield simplified solutions to

the search for an optimal RMF data set. This principle applies to properties of a ma-

trix beyond the condition number. Another way in which the matrix can resemble an

identity matrix arises from some structural properties of the matrix. In this subsec-

tion, we focus on the class of banded matrices. The non-zero entries of these matrices

cluster near the main diagonal. Since most entries far from the main diagonal are

zero, the structural constraints give the matrix a resemblance to the identity matrix.

Although the locations of non-zero entries resemble I, the structural constraint does

not restrict κ(Λ).

Banded covariance matrices arise when measurements are correlated with a num-

ber of neighbors. These matrices can model a significant set of noise processes. For

example, the background interference experienced by a set of sensors arranged in a

uniform linear array may be plausibly described by a spatial random process with a

banded covariance matrix. It is possible to assume that the background noise mea-

surements at neighboring sensors are correlated, while the noise measurements at two

distantly separated sensors are independent.

The optimization algorithms developed in this section depend upon the size of the

neighborhood of correlated measurements. Assume that a particular indexing of the

data vector x confines all non-zero entries of the correlation matrix to a band 2b + 1

entries wide, centered on the main diagonal. The correlation distance of the matrix

bounds the distance between two correlated measurements. Its precise defintion is

50



Definition 1 For a correlation matrix Λ, the correlation distance is

b = max |i − j| where [Λ]ij �= 0. (2.57)

Note that this condition does not require that all measurements with indices separated

by less than b be correlated.

The banded structure of Λ enables us to decompose SNR(G) into the sum of a

contributions from measurement subset fragments separated by more than b inidices.

The best subset can be determined by a dynamic programming algorithm. The

following sections develop this algorithm for the case b = 1, and then extend it to

larger correlation distances.

2.5.1 Fragment Decomposition of Selected Subsets

When b = 1, the measurement subset in xg can be built from several groups of con-

secutive measurements, which we shall refer to as fragments. For example, consider

the selected subset

xTg =
[

x1 0 x3 x4

]
. (2.58)

In this example, the selected subset consists of {x1, x3, x4}. For this subset, the two

fragments are {x1} and {x3, x4}. The selection matrix G can be written as the sum

of the two selection matrices for the fragments, i.e.

G =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




+




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




. (2.59)
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Finally, the covariance matrix for the selected data is

Λx̃g =




[Λ]11 0 0

0 [Λ]33 [Λ]34

0 [Λ]43 [Λ]44


 . (2.60)

Note that measurements from separate fragments of consecutive measurements are

uncorrelated.

The decomposition can be extended to an arbitrary number of fragments. For an

arbitrary selection matrix G, there will be f fragments. The fragments, expressed

as N -vectors are denoted by x{g,i} for i = 1, . . . , f , and selection matrices identifying

the fragments are expressed as G1,G2, . . . ,Gf . For example, in equation (2.58), the

first fragment is

xT{g,1} =
[

x1 0 0 0
]
. (2.61)

The corresponding selection matrix is

G1 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




. (2.62)

In this notation, any selected vector can be expressed via

xg =

f∑
i=1

x{g,i}, (2.63)

as the sum of all of its fragment vectors. Likewise, the selection matrix for the entire

subset is

G =

f∑
i=1

Gi. (2.64)

In these examples, the fragment order is assigned by sorting the fragments according

to their first measurement index. Thus, the fragment containing the element assigned
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the smallest index is G1 and so forth.

In compact form, each fragment can be expressed as a w-dimensional vector, where

w is the number of consecutive measurements in the fragment. These fragments are

denoted by x̃{g,i}. In this notation, the first fragment in equation (2.58) is

x̃{g,1} =
[

x1

]
. (2.65)

The corresponding selection matrices are denoted by G̃i for i = 1, . . . , f . A formal

definition of subset fragments is

Definition 2 Consider an instance of the RMF where Λ has correlation distance b. A

correlated subset fragment, denoted by x{g,i}, is a set of measurements {xj1, xj2 , . . . , xja}
such that the indices satisfy j1 < j2 < . . . < ja and |ji+1 − ji| ≤ b for every pair of

consecutive indices.

The fragment notation provides a useful tool for expressing the SNR of any subset

G in a convenient form. Two lemmas justify this expression. First, any subset G can

be written as a union of a number of fragments. Second, once the decomposition into

fragments is determined, SNR(G) of the entire subset can be written as the sum of

fragment SNRs. The first lemma is:

Lemma 1 Consider any instance of the RMF where the covariance matrix Λ has

correlation distance b < N . Any K element subset G possesses a unique decomposi-

tion G =
∑f
i=1Gi where each subset Gi represents a correlated fragment. The indices

of G are ordered such that for any pair of measurements xl ∈ Gi, xm ∈ Gi+1, the

measurement indices satisfy l + b < m.

Proof. The subset decomposition can be constructed from a sorted list of the mea-

surement indices denoted by {j1, j2, . . . , jK}. Expressed in ascending order for any

subset G, this list is unique. From the index list, the subset fragments can be con-

structed from the vector of index spacings f = [(j2 − j1), (j3 − j2), . . . , (jK − jK−1)]
T .

The elements of the vector are positive integers. Using f , the desired subset decom-

position can be determined. Initialize the subsets by assigning j1 to the first subset
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fragment G1. To determine the assignment of the selected measurement (i+1), com-

pare fi to b. If fi ≤ b, the measurement belongs to the same subset fragment as xji .

If fi > b, the measurement belongs to the next subset fragment.

The correctness of this algorithm can be proven by induction. It produces the cor-

rect decomposition forK = 1 or K = 2 elements. To carry out the induction proof,

it is sufficient to consider adding the elements of the subset in ascending numerical

order. Any such subset can be built in that order. If an element with index exceeding

any in G is added, it is included in the most recently created fragment if it belongs

there. Otherwise, it is included as a newly created fragment. In both cases, the new

fragment decompostion is correct. �

A correlation distance b = 1 implies that the xi measurements are uncorrelated

unless they have consecutive indices. This property simplifies the calculation of the

SNR for any selected subset of measurements.

Lemma 2 For an RMF instance such that Λ has a correlation distance b < N ,

consider a subset G =
∑f
i=1Gi, where Gi are correlated fragments ordered as in

Lemma 1. The SNR for this subset is

SNR(G) =

f∑
i=1

SNR(Gi) =

f∑
i=1

s̃T{g,i}Λ
−1
x̃{g,i} s̃{g,i}. (2.66)

Proof. As a result of Lemma 1, measurements in distinct subset fragments are sepa-

rated by more than b indices. Thus, the entries of Λx̃g corresponding to measurement

pairs in distinct fragments must be 0. If the entries of the selected covariance matrix

correspond to [x̃g]i in sorted order, the resulting matrix is block-diagonal. The result

in equation 2.66 follows from the block-diagonal structure of Λx̃g . �

Lemmas 1 and 2 provide a technique for expressing SNR in a simplified form. For

an arbitrarily chosen covariance matrix, one that is not banded, the SNR contribution

of an individual measurement depends on the entire subset. This can be seen by
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examining by ∆+(G, i) or ∆−(G, i), defined in equations (2.28) and (2.29). The SNR

cannot be expressed as a linear combination of a metric depending on a single entries

of G. In the case where the covariance matrix is banded, however, the fragment

decomposition shows that the SNR expression can be simplified. The SNR becomes

the sum of fragment SNRs, each one unaffected by the identity of the other fragments

included in G. The fragment decomposition thus retains some of the convenience of

the SNR expression for diagonal matrices.

2.5.2 Example of Dynamic Programming for Two-Measurement

Subsets

The fragment notation provides a tool to express the SNR for RMF instances with

banded covariance matrices in a convenient form. A dynamic programming algorithm

based upon this description can determine the optimal choice of measurements. This

subsection gives an example for the case of K = 2 that illustrates the general ideas

in the optimal algorithm developed in the following sections.

Consider choosing the optimal two-element subset for an RMF instance. In this

case, a brute-force search for the optimal subset requires computation of the SNR for

O(N2) pairs of measurements.

In situations where the correlation distance satisfies b = 1, the structure of the

covariance matrix can be exploited to improve the complexity of finding the optimal

RMF subset. In such situations, a set of measurements with consecutive indices forms

a correlated fragment. Otherwise, the subset is composed of two distinct fragments.

This observation, and the expression for SNR in equation 2.66 combine to simplify

the search.

Consider a two-element subset with the first element fixed at a particular index i.

If the subset elements are not consecutive, the subset SNR can be written

SNR = SNR({i}) + SNR({i + j}), (2.67)

where j > 1. Since the first element of the subset is fixed at i, optimizing over all of
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the subsets composed of two fragments is reduced to choosing the index of the second

element according to

a = arg max
j∈[2,N−i]

SNR({i + j}). (2.68)

For K = 2, the overall best subset constrained to have first index i can be determined

by comparing SNR({i, i + 1}) and SNR({i, a}). Finally, the best RMF subset of two

measurements can be determined by calculating the best subsets with fixed first

element for i = 1 to i = N − 1 and searching the list for the best subset.

Equation 2.68 indicates that the proposed optimization procedure for K = 2

utilizes results for single element subsets. Specifically, a list of the maximum SNR

element with index greater than i, for i = 1, . . . , N − 1 simplifies the optimization in

the equation from a search through a list to a look-up. The computation necessary

to constructed this table is dominated by an O(N log N) sort of the single element

SNRs. In fact, this sort dominates the entire computation of the best two element

subset since computation of all the single element SNRs and optimization of fixed

two element subsets outlined above are O(N) computations.

The re-use of intermediate subsets in this search reduces the computation from

O(N2) for a brute force search to O(N log N) once the structure of the covariance

matrix is used. The bootstrap procedure in this example, computing intermediate

solutions using prior results is characteristic of dynamic programming. It can be

expanded to computing optimal subsets for any value of K. In order to determine

the best RMF subset for K = 3, for example, intermediate results from K = 1 and

K = 2 are necessary.

2.5.3 Fragment Notation for the Dynamic Programming Al-

gorithm

The example for two element subsets can be generalized to subsets of any size. An

alternative to the G notation for subsets that highlights the importance of correlated

fragments aids the algorithm’s description. In the example, the optimization algo-

rithm identified the fragments of a subset by the index of the first element and the
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size of the subset. For b = 1, these numbers completely identify a subset fragment.

As an alternative to the G notation, a subset fragment can be identified as vl,c. The

fragment so denoted has l consecutive elements, beginning with element c. An ex-

ample is v3,5 = {5, 6, 7}. This notation for a subset fragment can identify the initial

subsets used in the first stage of the optimization algorithm. For an RMF instance

of size N , values of l and c must satisfy l + c− 1 ≤ N to guarantee that all indices in

vl,c correspond to real measurements.

The fragment notation can represent any measurement subset via the standard

notation of set theory. Generally, a subset V can be written as V = ∪fi=1vli,ci. Note

that some combinations of {vli,ci} do not produce a valid subset. They may contain

multiple fragments that contain adjacent or duplicate measurements. This defect is

avoided if, for every pair of fragments vl1,c2 and vl2,c2 such that c1 < c2 the indices

satisfy l1 + c1 < c2. If this condition is satisfied, Lemma 2 may be restated:

Lemma 3 Consider an instance of the RMF with correlation distance b = 1. For a

set V = ∪fi=1vli,ci such that for every pair of fragments vl1,c1, vl2,c2 satisfies l1+c1 < l2,

SNR(V ) =

f∑
i=1

SNR(vli,ci). (2.69)

Furthermore, any subset of measurements can be written in this form for an appro-

priate choice of li, ci and f .

Proof. The condition l1 + c1 < c2 guarantees that elements in distinct subsets are

separated by at least one element that is not selected. Thus, the fragments vli,ci are

all independent. The remainder of the proof is identical to the original formulation

of this lemma. �

This notation establishes the first part of the optimization algorithm. A specific

fragment is easily identified by its length and the index of its first measurement.
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2.5.4 Optimization Procedure for the Dynamic Programming

Algorithm

Using the new notation, the search for the optimal RMF subset can be reformulated

in a convenient form. Given an instance of the RMF with correlation distance b = 1,

and the associated measure SNR(vl,c), for every correlated fragment, we seek a subset

of elements V ∗ such that

1. li + ci < lj ∀ (vli,ci, vlj ,cj) ∈ V ∗ where li < lj

2.
∑
vli,ci

∈V ∗ li = K
(2.70)

where V ∗ maximizes ∑
vli,ci

∈Vo

SNR(vli,ci) (2.71)

over all Vo satisfying the constraints.

The remaining stages of the optimization require two sets of state information.

The first state consists of the best subset with the size and first index fixed. The

ith entry of the second state table is the best subset with the first index no less

than i. These definitions are sufficient for useful for defining the actual optimization

procedure used.

Dynamic programming algorithms operate by computing optimal solutions to

small subproblems and combining them. Subsets of measurements with a lower bound

on their minimum element form a fruitful set of subproblems for the optimal RMF

search. Notation for these subsets is established in the following defintion.

Definition 3 Let V K,c be a subset of K measurements satisfying the following two

constraints. First, each measurement xi ∈ V K,c satisfies

i ≥ c. (2.72)

Second, the metric SNR(V K,c) satisfies

SNR(V K,c) ≥ SNR(Vo) (2.73)
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for every K element subset Vo that satisfies the constraint in equation (2.72).

Note that the optimal RMF V ∗ for a K element subset is V K,1.

A second useful set of subproblems are measurement subsets with the first frag-

ment fixed.

Definition 4 Let UK,l,c be a subset of K measurements satisfying the following three

constraints. First, the measurements represented by the fragment vl,c are included in

UK,l,c. Second, for any measurement xi ∈ UK,l,c and xi /∈ vl,c, the index satisfies

i ≥ c + l + 1. Third, the metric SNR(UK,l,c) satisfies

SNR(UK,l,c) ≥ SNR(Vo) (2.74)

for any K element subsets satisfying the first two constraints.

The subset UK,l,c is determined by optimization over all K measurement subsets with

a common first fragment.

The subset UK,l,c satisfies more restrictive conditions than V K,c. It is possible,

however, to relate the two groups of subsets. The following Theorem relates UK,l,c

and V K,c.

Theorem 3 For any instance of the RMF problem with b = 1, consider the subset

UK,l,c where the indices satisfy K ≤ N , l < K, and c ≤ N −K. This subset satisfies

UK,l,c = vl,c ∪ V K−l,c+l+1. (2.75)

If the index l = K, then the subset is UK,K,c = vK,c and

c ≤ N − K + 1. (2.76)

Proof. In the case l = K, the subset UK,l,c consists of a single fragment. The final

index of the fragment is c + K − 1. Since it can be no larger than N , the first index

is restricted to c ≤ N − K + 1.
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When l < K, the subset UK,l,c consists of at least two fragments separated by at

least one unselected measurement. The maximum value of c occurs when UK,l,c is

composed of two fragments separated by only one unselected measurement. The total

length of this arrangement of measurements is K + 1, so the first index is restricted

to c ≤ N − K.

The general form for any subset with the first fragment fixed is Y = vl,c ∪ R,

where the remaining elements in the subset are represented by R. This is a K − l

measurement subset that with its first index satisfying i ≥ c+ l +1. The SNR metric

for the subset is

SNR(Y ) = SNR(vl,c) + SNR(R) (2.77)

since vl,c is independent from all fragments composing R. The upper bound on its

SNR is

SNR(R) ≤ SNR(V K−l,c+l+1).

The maximum SNR is achieved when R = V K−l,c+l+1. �

This theorem simplifies calculation of UK,l,c as long as the values of V K−i,c+j are

available for values of i and j greater than one. The dynamic programming recursion

is completed by the second key Theorem, relating V K,c to UK,l,c.

Theorem 4 For any instance of the RMF problem where b = 1,the subset V K,c

satisfies

V K,c = arg max
j≥c

max
l=1,...,K

SNR(UK,l,j) (2.78)

where c is restricted to the interval 1 ≤ c ≤ N − K + 1.

Proof. Denote the first fragment of the subset V K,c by vl,j. The indices for this

fragment satisfy j ≥ c and 1 ≤ l ≤ K as a consequence of the definition of V K,c.

Since V K,c maximizes SNR for all K element subsets with first measurement bounded

by c, it also maximizes SNR for any subset with initial fragment vl,j as long as j ≥ c.

Thus V K,c = UK,l,j. �
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Figure 2-7: The top decision tree shows the entire set of feasible node choices for an
RMF instance with N = 4, K = 2, and b = 1. The bottom decision tree shows the
simplification achieved by applying the dynamic programming relations in Theorems
(3) and (4).

The combination of Theorems 3 and 4 suggests a technique for calculating V K,c

in the bootstrapped fashion characteristic of dynamic programming. Given V i,c for

1 ≤ i ≤ K, UK+1,l,j can be calculated using Theorem 3. Maximization of the SNR

metric over these subsets for j ≥ c yields V K+1,c. Figures 2-7 and 2-8 display the

decision trees for N = 4, K = 2 and N = 5, K = 3. The large trees show all possible

fragment decompositions, sorted by c and l of each fragment. The small trees show

the simplification in the search for the best subset due to the application of dynamic

programming.

As is usual for dynamic programming, the algorithm determines the best subset

for each value of K and the associated SNR. The final output of the algorithm is

the tradeoff between subset size and SNR, and can be used to balance the costs of

collecting and processing the data with the accuracy of the detector decision.
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Figure 2-8: The top decision tree shows the entire set of feasible node choices for an
RMF instance with N = 5, K = 3, and b = 1. The bottom decision tree shows the
simplification achieved by applying the dynamic programming relations in Theorems
(3) and (4).

2.5.5 Complexity of Dynamic Programming Algorithm

In order to evaluate the compuational and storage complexity of the dynamic pro-

gramming algorithm, it suffices to determine the computation and storage required

to complete a particular stage of the algorithm, and then sum up as K ranges from

1 to N .

For fixed K and c, the computation arises from maximizing UK,l,c over the possible

values of l. These operations correspond to preserving the best leaf nodes from the

second level groupings of the bottom decision trees in Figures (2.5.4) and (2.5.4).

There are N − K + 1 possible starting points for this fragment, and the possible

lengths of these fragments can range from 1 to K. Thus, the computation at stage

K is bounded by (N - K + 1)(K). Summing from K = 1 to N gives an upper bound

on the computation involved in the dynamic programming optimization:

Copt(N) ≤ 1

6
N(N + 1)(N + 2). (2.79)
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For each stage of the dynamic programming algorithm, a sort is required to determine

V K,c. For each stage, this contribues O(N log N) to the complexity. The dynamic

programming computation dominates the computation from N sorts.

In addition to the optimization and sorting, the algorithm requires computation to

calculate each of the SNR values for every correlated fragment. There are N −K +1

fragments of K elements when b = 1. For each fragment, the complexity of calculating

SNR is dominated by the K × K matrix inversion, and is bounded by O(K3). The

total initialization complexity is Cinit(N) = O(N5). The initialization costs exceed

the actual cost of performing the optimization procedure.

The dynamic programming approach produces a polynomial time and space com-

plexity search. This significant simplification over the

0
BBBBB@

N

K

1
CCCCCA

possibilites in the brute-

force approach indicates the usefulness of the banded covariance matrix constraint.

2.5.6 Extension to General Banded Matrices

This section describes the dynamic programming algorithm applied to RMF instances

with correlation distance b > 1. In such situations, the dynamic programming algo-

rithm presented previously can be generalized to find the optimal subset for the RMF,

at the cost of a more complicated indexing scheme for the correlated fragments and a

more expensive initialization procedure. This section describes the changes in the no-

tation and the algorithm required for the generalization, and compares the complexity

of the results with those for the case when b = 1.

The first modification to the algorithm is a more detailed indexing scheme for

subset fragments. For the purposes of the b = 1 algorithm, subset fragments are

identified by two indices, the smallest element index in the fragment, denoted by c,

and the total length of the fragment, denoted by l. If b > 1, however, two fragments

composed of different numbers of measurements can have the same l and c indices.

For example, if b = 2, the fragments {x1, x3} and {x1, x2, x3} have indices l = 3 and

c = 1. In order to identify the fragments for the purposes of the dynamic programming

optimization algorithm, a third index, w, indicating the number of measurements in
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the fragment, is required. Thus, we can identify by vertices vw,l,c the best fragment

of w measurements, with minimum measurement index c, covering length l. In the

new index scheme, {x1, x2, x3} has w = 3 and {x1, x3} has w = 2. Note that the

mapping between the fragments and the three indices is not invertible. There may

be many distinct fragments that can be mapped to each (w, l, c) index set. During

initialization, however, only the best fragment for each valid arrangement of (w, l, c)

needs to be stored.

The restrictions between fragment indices necessary for them to satisfy the linear

SNR decomposition must also be modified to account for general values of b. A pair

of fragments x{g,i} and x{g,j} are not independent if any measurement in fragment

i is correlated with an element in fragment j. Assume that fragment i has indices

(wi, li, ci) and fragment j has indices (wj, lj, cj). Without loss of generality, we can

assume that ci < cj , so that fragment i starts first. Under these conditions, the two

fragments are independent if and only if

ci + li + b < cj . (2.80)

Initializing the dynamic programming algorithm becomes more complex as the

correlation distance increases. The SNR values for each independent fragment must

be calculated although only a fraction of them are used in the subsequent stages of the

algorithm. Of the multiple fragments that are described by the same (w, l, c) triple,

the one that has the maximum SNR is assigned to vw,l,c and used in the remainder

of the algorithm.

After the initialization period, the dynamic programming algorithm can proceed.

As in the case when b = 1, the algorithm generates the best subsets of fixed size w = K

satisfying c ≤ i for i = 1, . . . , N − w + 1. The algorithm leverages past solutions to

compute the best arrangements for the current stage. For a general b > 1, the state

information for the algorithm is not changed, but the add-compare-select operation

must be modified.

The state information needed for the algorithm V w,c is a table of the best w
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measurement subsets with minimum element index i ≥ c. Its definition is unchanged

from the b = 1 case previously described. The definition of the intermediate state

UK,l,c, however, must be modified to account for the modifications in the indexing

scheme for fragments.

The state UK,w,l,c is the optimal K element subset with the first fragment con-

strained to be vw,l,c. The conditions in the definition for UK,w,l,c change to reflect

the requirement that vw,l,c is the first fragment of the subset. Additionally, there

are several constraints on the values of (w, l, c) for this subset. These bounds are

summarized in the following Lemma.

Lemma 4 Consider an RMF optimization problem with a banded covariance matrix

possessing a correlation distance b > 1. For a subset UK,w,l,c satisfying definition 3,

the relationship between the indices (w, l, c) take on two cases.

In the first case, UK,w,l,c = vw,l,c, the indices satisfy

w = K (2.81)

c ≤ cmax = N − K + 1 (2.82)

l ≤ lmax = min{b(K − 1) + 1, N − c + 1}. (2.83)

If UK,w,l,c = vw,l,c ∪ R, where R is a non-empty subset of data, the indices satisfy

w < K (2.84)

c ≤ c′max = N − K + b + 1 (2.85)

l ≤ l′max = min{b(K − 1) + 1, N − (c + b + K) + (w + 1)}. (2.86)

Proof. In both cases, the requirements on c and l guarantee that the largest mea-

surement index in UK,w,l,c satisfies imax ≤ N . This is a necessary condition since N

is the largest index value.

In the first case, the subset U is composed of a single fragment. The minimum

length of the fragment is l ≥ K, achieved when all selected measurements are adjacent.

65



Additionally, for fixed c and l, the index of the final measurement is imax = c + l + 1.

The upper bound on imax yields the necessary condition

c + l − 1 ≤ N. (2.87)

The maximum value of c corresponds to the minimum value of l. Rearranging this

equation and substituting l = K gives the condition (2.82). Additionally, solving

for l gives the bound l ≤ N − c + 1. This bound is not always tight, especially if

N is large and c is small. The bound on maximum correlation distance limits the

difference between consecutive elements to b indices. There are K − 1 such pairs, so

the bound given by the correlation distance is l ≤ b(K − 1) + 1. Combining the two

upper bounds on l yields the condition (2.83).

In the second case, the subset U is composed of multiple fragments. Thus, there is

a gap of at least b unselected measurements between the final element of vw,l,c and the

first element of the remaining subset elements in R. In this situation, the maximum

element is imax = c + l + b + length(R) − 1. Following the techinque from the first

case, isolating c or l on the left hand side of the inequality equivalent to imax ≤ N

and minimizing the right hand side produces these upper bounds on both indices

c ≤ N − (K + b) + 1

l ≤ N − (K + c + b) + (w + 1).
(2.88)

The first inequality follows since l ≥ w and R ≥ K − w. Once again, combining the

bound on l due to correlation distance with the second inequality in (2.88) produces

the necessary condition (2.86). �

Theorems 3 and 4 require changes that reflect the indexing scheme for fragments

with b > 1. The update of Theorem 3 relies on the conditions for a valid decomposition

of UK,w,l,c from Lemma 4. The generalization of the theorem uses similar proof to

Theorem 3

Theorem 5 For any instance of the RMF problem, consider the subset UK,w,l,c with
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indices satisfying the conditions (2.84)-(2.86). This subset satisfies

UK,w,l,c = vw,l,c ∪ V K−l,c+l+b. (2.89)

If the indexes satisfy (2.81)-(2.83), the subset is UK,w,l,c.

Theorem 4 can be changed to account for the three indices that identify subset

fragments. The updated theorem is:

Theorem 6 For any instance of the RMF problem, the subset V K,c satisfies

V K,c = argmax
j≥c

max
1≤w≤K

max
l≥w

UK,w,l,j (2.90)

where the indices in the maximizations satisfy the constraints in Lemma 4.

The complexity of the dynamic programming optimization increases when b > 1.

In the add-compare-select operations specified in equation (2.90), an upper bound

on the number of terms the maximization examines is (N − K + 1)K2 since there

are N − K + 1 values of j to search over, and there are at most K2 (w, l) index

pairs for each value of j. Summation for K = 1, . . . , N shows that the computational

complexity of the optimization algorithm satisfies

Copt = O(N4). (2.91)

This exceeds the complexity for the case when b = 1 by a factor of N .

In order to perform the dynamic programming algorithm, an initialization proce-

dure is necessary. As in the case when b = 1, the initialization computes SNR values

for each independent subset. Unfortunately, the initialization procedure suffers from

the curse of dimensionality that is familiar to dynamic programming in situations

with many states. Since all elements no more than b indices apart are correlated, the

initialization algorithm must examine all potential subsets of an interval of b mea-

surements. Thus, a lower bound on the initialization complexity is Cinit ≥ 2b. If b is

large, the initialization procedure is no longer efficient.
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2.6 Summary

This chapter examines data selection for detecting known signals in colored Gaussian

noise. The traditional detector developed from the likelihood ratio test, the whitened

matched filter, now depends on the subset selected. The performance of a restricted

matched filter, a detector designed using a specific subset of measurements, depends

upon a quadratic form that resembles signal-to-noise ratio. The search for the best

RMF requires optimization of the SNR measurement, a problem considered in feature

selection, data mining, and Artificial Intelligence research.

Two exact algorithms to find the optimal RMF are considered. In situations

where the covariance matrix has a low condition number, the maximum energy subset

leads to the optimal RMF. Additionally, for banded covariance matrices, dynamic

programming produces the optimal subset selection.

Finally, heurisitc algorithms for optimization of SNR are evaluated. The forward

and backward greedy selection algorithms, important for initialization of the local

search and branch-and-bound optimization algorithms, are discussed. The condition

number of the covariance matrix controls the worst-case performance of these algo-

rithms. Worst-case instances of the optimization problem are shown for both greedy

algorithms.
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Chapter 3

Data Selection in Random Signal

Detection

In detector design, the resulting algorithms depend strongly upon the a priori signal

models used to describe data collected under the null and target hypotheses. In

the case Chapter 2 discusses, the assumption of a deterministic target signal in the

presence of additive Gaussian noise leads to the linear matched filter as a result of

the likelihood ratio test. If other assumptions about the target signal are made,

the likelihood ratio test generally produces non-linear mappings prior to the decision

threshold. Furthermore, if the target signal cannot be described exactly in a concise

model, the likelihood ratio test no longer is the optimal detector. Detectors for cases

where the target signal is described by membership in a set of probability distributions

with one or more unknown parameters are called non-parametric or semi-parametric

detectors. When there is a lack of structure in the target signal model, and the

uncertainty in the signal cannot be captured by a collection of unknown parameters,

robust detection theories are often applied. A robust detector maximizes the worst-

case performance of the detector over the uncertainty class of potential target signals.

This chapter discusses the interaction of data selection and detection when the

target signals are specified by probability densities and less-structured uncertainty

classes. We focus on the technique of randomized data selection and its use in non-

parametric and robust detection scenarios. In this situation, we find that the robust
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detectors are generated by the familiar square-law detector for sinusoids with unknown

phase.

3.1 Random Signal Models

3.1.1 General Signal Model

In order to derive useful properties of the likelihood ratio test in the presence of ran-

dom selection, we impose restrictions on the statistical model for the target signature.

To balance the generality of the signal model with its special statistical structure, we

assume that the probability density of the target signal is symmetric about the origin

of the sample space. We shall refer to random vectors that satisfy this condition as

even random vectors or even-symmetric signals. The precise definition of an even

random vector is given in Definition 5.

Definition 5 An N-dimensional random vector s is referred to as even if, for every

so ∈ 
N , its probability density function satisfies ps(so) = ps(−so).

This signal model establishes a useful structure on the probability density of the sig-

nal, enabling us to determine key properties of the likelihood ratio test. Additionally,

the signal model is broad enough to model many interesting target signatures. For

example, a sinusoid with an unknown, uniformly distributed phase satisfies the con-

dition in Definition (5), as does a zero-mean, Gaussian random vector with a known

covariance matrix.

The general binary hypothesis test for signals in additive Gaussian noise obeys

the following statistical model:

H0 : x = n

H1 : x = s+ n.
(3.1)

Here, we assume that n, is an N -dimensional, zero-mean, white Gaussian random

vector with covariance Λ = σ2I. The signal vector s has an even-symmetric probabil-
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ity density. Finally, we assume that s and n are independent random vectors. This

model describes the statistics of the data without randomized selection.

While data selection algorithms accounting for many aspects of the network’s state

can be useful in practice, we choose a generic approach requiring limited a priori

information and communication overhead. Specifically, we consider a randomized

data selection strategy. This approach leads to useful algorithms in distinct fields

such as estimation, hardware failure modeling, low power design [36], and theoretical

computer science [25].

3.1.2 Notation

In our randomized selection rule, the decision to select measurement xi depends

on the outcome of an indicator random variable denoted gi. The random variable

is independent of all other indicator random variables and from other physically

measurable quantities available to the detector. In our model, each measurement in

the current time slot is selected with probability γg, i.e. gi has the probability mass

function

pgi(g) =




γg, g = 1

(1 − γg), g = 0.
(3.2)

This selection rule reduces the expected complexity of the detector implementation

by a factor of γg since expected subset size is E[K] = Nγg. Prior to discussing the

specific detection problems, we examine the signal statistics for xg. For notational

convenience, we will denote the conditional density of xg given G by the expression

pxg|G(x|G). (3.3)

3.2 Likelihood Ratio Test

In the presence of randomized data selection, the detector has access to the indicator

random variables in G and processes the subset of the available data contained in xg.
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The likelihood ratio for detectors with randomized selection can be expressed as

L(xg,G) =
pxg,G|H(xg ,G|H1)

pxg,G|H(xg ,G|H0)

=
pxg |G,H(xg |G,H1)

pxg |G,H(xg |G,H0)

pG|H(G|H1)

pG|H(G|H0)

= L(xg|G).

(3.4)

The simplification in the likelihood occurs since the indicator random variables are

independent of the hypotheses Hi.

Since conditioning upon G does not affect the selected data in xg, the detection

problem based upon xg and G reduces to an unconditional detection problem for the

data associated with the non-zero indicator random variables. For example, if three

pieces of data are available, there are eight possible arrangements of the indicator

random variables. If measurements 1 and 2 are selected in time slot m, the detector

must make a decision Ĥ based upon the joint densities

pxg|G,H(x|1, 2, H0) = px1,x2|H(x1, x2|H0)

pxg|G,H(x|1, 2, H1) = px1,x2|H(x1, x2|H1).
(3.5)

Likewise, if measurements 2 and 3 are selected, the decision Ĥ is determined from

px2,x3|H(x2, x3|H0) and px2,x3|H(x2, x3|H1).

Based upon (3.4), the likelihood ratio test for xg andG reduces to the comparison

of L(xg|G) to a fixed threshold. While the test is optimal under the Neyman-Pearson

detection criteria, it poses some practical problems. First, determining the threshold

can become computationally complex when there is a large amount of data available

for selection. The threshold that achieves a desired false alarm rate P̃F is determined

by inverting the equation

P̃F (η) =
∑
G

pG|H(G|H0)Pr(L(xg) > η|G, H0). (3.6)

If N samples of data are available, there are 2N terms in the summation. Although

it may be possible to approximate this function well by discarding terms with low
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pG|H(G|H0), determining the functional form of such an approximation may be trou-

blesome. The functions of the threshold η given by Pr(L(xg) > η|G, H0) may not be

easily parameterized. Second, since the threshold η is constant while G fluctuates,

the conditional false alarm rate PF (G, η) = Pr(L(xg) > η|G, H0) fluctuates as well.

In a situation where actions taken following a false alarm are costly, however, this

fluctuation may not be desirable since it is induced by the random data selection

rather than an information-bearing signal.

Faced with the practical difficulties of solving equation (3.6) for η, a suboptimal

yet tractable alternative seems desirable. A reasonable approach fixes the conditional

false alarm rate

PF (G, η) = P̃F (3.7)

for each realization of G. Similar procedures have been discussed in [40] in a two-

sensor situation. This constraint eliminates the fluctuations in the conditional false

alarm rate and may simplify the implementation of the resulting detector since the

constraint has a constant rather than exponential number of terms. It does, however,

require the detector to adapt the test threshold to the arrangement of G. In the

remainder of the paper, we will focus on detectors designed with randomized data

selection and the constraint imposed by equation (3.7).

In the remainder of this section, we discuss detector adaptation from several per-

spectives. First, we analyze the example problem of detecting a sinusoidal signal,

a familiar target signature that satisfies the condition in Definition (5). Second, we

demonstrate some properties of the likelihood ratio test for the general detection

problem. Finally, we discuss semi-parametric detection and robust for any signal

with an even-symmetric density.

3.2.1 Example - Detecting a Sinusoidal Signal

We consider detection of a sinusoidal signal in the presence of randomized data selec-

tion. Our analysis illustrates the difficulties associated with detection in the presence

of uncertainty in the target signal and the challenges imposed by the fixed false alarm
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requirement from equation (3.7).

Consider a set of data generated by sampling a signal at several locations, denoted

by vi, i = 1, . . . , N . We shall assume that these locations can be modeled by a set

of independent, identically distributed uniform random variables over an interval

significantly larger than the sinusoid’s wavelength.

Let H0 denote the state in which the sinusoid is absent, and H1 denote the state

when it is present. The i-th measurement under each hypothesis is given by

H0 : xi = ni

H1 : xi = A cos(2π vi
λ

+ φ) + ni.
(3.8)

The random variable ni is a zero-mean Gaussian random variable with variance σ2.

The probability density for xg, conditioned upon G and H0 is white Gaussian. In

order to determine the likelihood ratio and the resulting receiver operating character-

istic, we also need the probability density for xg conditioned upon G and H1. This

conditional density depends, in turn, on the joint density of

wi = 2π
vi
λ

+ φ (3.9)

for the selected data in S. The probability density for the signal is a function of the

joint density of the phase random variables. Since the signal and noise are independent

under H1, the overall conditional density for xg is the convolution of the signal density

and the noise density. The determination of the joint density for the phase random

variables is a key step in this calculation.

Since {vi} are independent and uniform over a large interval, we can approximate

{wi} as independent, identically distributed uniform random variables over the region

[−π, π). Using this model, we can analyze the form of the likelihood ratio test for the

model suggested in equation (3.8). Here, we assume that the base-station knows A

exactly. The signal is c, where c is a K-dimensional random vector. Each entry takes

the form ci = A cos(wi). Based upon our approximation, the probability density for
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c is

pc|K(c|K) =
K∏
i=1

u(A − |ci|)
π
√

A2 − c2
i

, (3.10)

where u(·) denotes the unit step function. This density is non-zero over the K-

dimensional hypercube of side A. For fixed K, we denote1 the randomly selected

data by xK . This random vector lists the selected data contiguously, rather than

with zeros as in xg. For notational convenience, we assume that measurements 1 to

K are selected2, so xK = [x1 x2 . . . xK ]T . The resulting signal model is

H0 : xK = n

H1 : xK = c+ n.
(3.11)

Based on these probability density functions, we can construct the likelihood ratio

test for fixed values of K and A. The conditional density under H0 is Gaussian with

zero mean. Under H1, the conditional density is the convolution of the Gaussian with

the density for c given in (3.10). The conditional density for xK under H1 can be

written in terms of a one-dimensional convolution since both conditional densities are

separable. The conditional density is

pxK |K,H1
(x|K, H1) = pc|K(xK |K) ∗ pn|K(xK |K)

=
∏K
i=1

∫ ∞
−∞

u(A−|ai|)
π
√
A2−a2i

1√
2πσ

e

„
− (xi−ai)

2

2σ2

«
dai

=
∏K
i=1 px|H(xi|H1).

(3.12)

Since xK under H0 is a white, Gaussian random vector with variance σ2, the likelihood

ratio is

L(xK |K) =
∏K
i=1

∫ ∞
−∞

u(A−|ai|)
π
√
A2−a2i

e

„
− (xi−ai)

2

σ2

«
e

„
− a2

i
2σ2

«
dai

=
∏K
i=1 L(xi).

(3.13)

1When applied to a vector, the subscript K indicates its dimension. This does not contradict
our earlier notation, where the subscript of a scalar random variable indicated the identity of the
measurement. The dimension subscript is always attached to a vector, not a scalar.

2This notation does not reduce the applicability of the analysis since our modeling assumptions
make the measurements statistically indistinguishable. Their joint statistics depend only on K and
not on the measurement identifiers.
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Figure 3-1: One dimensional conditional densities for the signal model defined in
equation (3.11). The top plot shows the density for H0 with a solid line. The densities
for H1 with A = 1, 2, 4, and 6 become progressively wider. The second plot shows
the corresponding log-likelihood ratios, L(x|K = 1). In all plots, σ2 = 1.

76



Analysis of the likelihood ratio test derived from equation (3.13) for K = 1 and

K = 2 provides useful intuition about the general properties of the detector. The

one-dimensional conditional densities, px|H(x|H1) and px|H(x|H0), and the associated

log-likelihood ratios are shown in Figure 3-1. When K = 1, L(x) is symmetric and

increasing, so the likelihood ratio test from equation (1.3) simplifies to a threshold

test of the form

|x|
Ĥ=H1

�
Ĥ=H0

t. (3.14)

Since the detector compares the magnitude of the received data with a threshold, the

implementation is simple.

Typically, the performance of a detector is shown by an operating characteristic,

which plots the detection probability PD as a function of the false alarm probability

PF . Both PD and PF can be calculated by integrating, respectively, the conditional

densities pxK |K,H(xK |K, H1) and pxK |K,H(xK |K, H0) over the Ĥ = H1 decision region.

Thus, the operating characteristic is generated as the threshold in equation (3.14)

ranges over 0 ≤ t < ∞. It can be shown that the operating characteristic calculated

from the likelihood ratio test gives the maximum achievable PD for each false alarm

rate 0 ≤ PF ≤ 1.

For K = 1, the detector described by equation (3.14) has an important universality

property over the set of binary hypothesis tests for A > 0. The threshold that achieves

a certain PF can be determined in terms of the Q-function [44] and σ2. Since the

threshold can be determined without knowledge of the wave amplitude A, the test in

equation (3.14) is a uniformly most powerful (UMP) test [31]. For such a test, the

decision regions that maximize PD subject to a constraint on PF are invariant to the

actual value of the parameter A. The actual value of PD, however, does depend on

A.

The contrast between the likelihood ratio test for K = 1 and K = 2 indicates some

implementation challenges in the presence of uncertain signal models and random

data selection. When K > 1, the likelihood ratio test for xK is not a function of

the received data magnitude ||xK ||, as shown in Figure 3-2. Since the likelihood
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ratio is increasing in all directions, the likelihood ratio test will declare Ĥ = H0 in

a simply connected region containing the origin. Outside this region, it will declare

Ĥ = H1. Thus, the two-dimensional test determines a closed curve, expressed in polar

coordinates as r(θ), that gives the boundary between the decision regions for Ĥ = H0

and Ĥ = H1. Since, r(θ) is not constant, the implementation of the likelihood ratio

test is more complicated in two dimensions than in one.

For situations where K > 1, there is not a UMP detector. In order to determine

r(θ) properly, we require pxK |H(x|H0), pxK |H(x|H1), and the desired value of PF . As

shown in Figure 3-2, the detector requires A to determine the decision regions in the

likelihood ratio test.

Finally, the likelihood ratio test’s decision regions depend on the value of K. The

shape of the decision regions varies as K changes, as they did when K increased from

1 to 2. Evidently, larger values of K lead to more complicated decision regions. For

example, the decision regions for K = 2 can be complicated sets in the (x1, x2) plane.

The difficulty in determining the decision regions under uncertainty in A and K

makes the exact likelihood ratio test on xK challenging to implement. First, the

fluctuation in K means that the detector must be able to quickly adapt the decision

regions for each time slot. Second, potential uncertainties in the target signal density

prevent the detector from determining the exact likelihood ratio test. These challenges

in the example detection problem persist for the general even signal model.

3.2.2 General Properties of the Likelihood Ratio for Even

Signals

The sinusoid detection example illustrates several properties of the likelihood ratio in

white, Gaussian noise. This section generalizes these properties to signals with even-

symmetric probability densities. The qualitative behavior of the resulting decision

regions is illustrated, and the prospects for practical implementation are discussed.

Following the derivation of equations (3.12) and (3.13), we can calculate the con-

ditional likelihood ratio for an arbitrary signal with an even-symmetric probability
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density. The binary hypothesis test’s signal model is given by equation (3.1). The

resulting expression for the conditional likelihood ratio is

L(xg|G) =

∫
aK

psg |G(aK |G)e(−
1

2σ2 aT
KaK)e(

1
σ2 xT

g aK)daK . (3.15)

In the integral, the variable aK is a K-dimensional vector, and the density psg|G(aK |G)

denotes the joint density for the selected signal measurements.

The likelihood ratio is easily expressed in Cartesian coordinates. Its qualitative

description, however, is easiest in generalized, K-dimensional spherical coordinates.

When K > 3, the spherical coordinates can be determined via induction. In general,

the transformation between spherical and Cartesian coordinates is expressed as

x1 = r sin(θ)
∏K
j=3 sin(φj)

x2 = r cos(θ)
∏K
j=3 sin(φj)

x3 = r cos(φ3)
∏K
j=4 sin(φj)

...
...

xK−1 = r cos(φK−1) sin(φK)

xK = r cos(φK).

(3.16)

The domain of the radius is r ≥ 0, and the domain of the angular variables is θ ∈
[0, 2π) and φi ∈ [0, π) for i = 3, 4, . . . , K.

Using spherical coordinates, the boundary between the decision regions of the

likelihood ratio test can be described. In the two-dimensional example, the curve

dividing the decision regions is denoted by r(θ). In higher dimensions, we indicate

the boundary surface by r(Θ), where the argument Θ = [θ φ3 . . . φK ]T is a vector

containing all the angular variables.

Without specific knowledge of the signal probability density psg|G(a|G), the in-

tegral in equation (3.15) cannot be evaluated. The properties of even-symmetric

signals, however, enable us to discover qualitative properties of the likelihood ratio.

In spherical coordinates, we denote the likelihood ratio, conditioned upon G = G, by

L(r,Θ|G). In Appendix I, we prove the following theorem, showing that the likeli-
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hood ratio test for an arbitrary even signal produces decision regions similar to those

for the example.

Theorem 7 Consider a detection problem of the class defined in equation (3.1). Let

r = ||xg|| and Θ = [θ φ3 . . . φK ]T . Then, the likelihood ratio L(r,Θ|G) given by

(3.15) increases monotonically without bound for any fixed Θ.

As a consequence of this theorem, we can describe the likelihood ratio test in

terms of r(Θ), a closed surface containing the origin. The interior of the surface is the

decision region Ĥ = H0, and the remainder of the sample space is the decision region

Ĥ = H1. In order to determine r(Θ), consider a fixed threshold η for the likelihood

ratio test. Assuming that the probability densities contain no point masses, the subset

of sample space satisfying the condition L(r,Θ|G) ≤ η composes the decision region

for H0. Likewise, the condition L(r,Θ|G) > η determines the decision region for H1.

For a fixed vector Θo, Theorem 7 implies that the function of r given by L(r,Θo|G)

is strictly monotonically increasing. Thus, there is a unique solution to the equation

L(r,Θo|G) = η if η > L(0,Θo|G). The set of solutions generated as Θo varies defines

r(Θ), the boundary between the decision regions. Since the absolute minimum of the

likelihood ratio occurs at xg = 0, the origin of the sample space is always included

in the decision region for H0, if it is non-empty. Hence, the qualitative description

of the likelihood ratio test for the sinusoidal signal generalizes to any signal with an

even-symmetric probability density.

Unfortunately, the implementation difficulties of the likelihood ratio test for the

sinusoidal signal generalize as well. The detector must cope with fluctuations in

the size of the selected subset and uncertainties in the a priori signal model. To

implement the likelihood ratio test in all cases using randomized data selection, the

detector should be able to determine the decision regions for each realization of G.

Additionally, for a fixed realization of the indicator random variables, determining

these decision regions depends on the exact density pxg|G,H(xg|G, H1) and the desired

false alarm probability P̃F . If, as in the sinusoid detection model, there are unknown

parameters in the signal model, or the signal is difficult to model a priori, the decision
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regions that achieve P̃F and maximize PD are difficult to determine.

3.3 Semi-parametric Detector

Techniques from the theory robust statistics have been applied to detector design

in situations without precise a priori models [31, 30, 39]. Application of two such

techniques can combat the challenges identified in the previous section. One technique

introduced to cope with uncertainty in a signal model is invariance [37]. If a signal

belongs to a class that is closed under some transformation, it is useful to design

the detector so that its performance is also invariant to the transformation. The

second challenge for the detector is the fluctuation in G and the associated task of

rapidly updating the decision regions to satisfy the constraint in equation (3.7). This

constraint enforces a constant false alarm rate (CFAR) condition on the detector:

random fluctuations in the size of the selected data subset do not cause changes in

the false alarm rate.

In this section we propose a low-complexity, semi-parametric detector addressing

the implementation challenges of the exact likelihood ratio test. The detector is

invariant to rotation of the target signal probability density, and maintains the CFAR

property. It does use the noise variance as a known parameter, however.

The intuition behind our semi-parametric detector arises from the sinusoidal signal

example when K = 1. In this case, the one-dimensional sample space simplifies

the decision region and leads to a UMP detector. Even though we cannot find a

UMP detector for K > 1, we can determine a test that has a weaker universality

property over the class of even-symmetric random vectors. In this case, it is possible

to determine a scalar-valued function of xK so that there is a UMP test for the

resulting random variable.

In this section, we use a detector based upon the scalar test statistic r = ||xg||.
Note that this statistic is rotationally invariant. We analyze the properties of the

likelihood ratio for r, and show that this statistic leads to a semi-parametric detector

resembling the detector derived for K = 1 earlier. Based upon knowledge of the
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Gaussian conditional density pr|G,H(r|G, H0), we design a threshold test

r
Ĥ=H1

�
Ĥ=H0

t, (3.17)

where t is chosen to achieve a desired P̃F . We show that this test has the maximum

possible PD for any set of decision regions based on r that achieve the false alarm

rate P̃F . Additionally, we show a method to calculate t that accounts for fluctuations

in the selected subset and maintains the CFAR property.

3.3.1 Properties of the Likelihood Ratio for r

In order for the intuition based on the scalar detector to work, two conditions must

be satisfied. First, the likelihood ratio test for r given G must reduce to a thresh-

old test described in equation (3.17). This condition guarantees that the operating

point of the test maximizes PD over all decision regions that achieve the desired P̃F ,

regardless of the target signal’s density. Second, there ought to be an easy way to

determine the proper threshold based upon a desired false alarm probability P̃F . This

allows the detector to be implemented with the required false alarm rate in real time.

This subsection generates exact results for both these conditions, and the following

subsection describes an approximate technique to calculate the test threshold.

In order to justify the simple threshold detector structure, we first verify that the

likelihood ratio test simplifies to the form shown in equation (3.17). The likelihood

ratio for r given G is

L(r|G) =
pr|G,H(r|G, H1)

pr|G,H(r|G, H0)
. (3.18)

Rather than calculate the ratio by direct computation of the densities pr|G,H(r|G, H0)

and pr|G,H(r|G, H1), we can show the necessary result using the properties of L(xg|G)

established in the proof of Theorem 7. The following theorem, proven in Appendix

II, establishes the validity of the threshold test on r.
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Theorem 8 For the statistical model established in equation (3.8), and a fixed value

of K, let r = ||xg||. If the conditional densities pxg|G,H(xg|G, Hi) for i = 0, 1 are

continuous and positive, the likelihood ratio for r = ||xg|| increases monotonically

without bound.

In order to determine an appropriate CFAR detector, we require a rule for selecting

a threshold t as a function of G and P̃F . For a fixed t, the false alarm probability is

PF = Pr{r > t|G, H0}
=

∫
r>t

pr|H,G(r|G, H0)dr

=
∫
||xg||>t pxg|G,H(xg|G, H0)dxg.

(3.19)

The density pxg|G,H(xg|G, H0) is a multi-variate Gaussian, so the integral (3.19) can

be reduced the complementary distribution function (CDF) of a central χ2 random

variable of degree K [33]. In the case where σ2 = 1, PF is

PF =
1

2K/2−1Γ(K/2)

∫ ∞

t

rK−1e−r
2/2dr. (3.20)

This integral can be expressed using the incomplete gamma function denoted by

Γ(t2/2, K/2). The false alarm rate in this situation is

PF = 1 − Γ(t2/2, K/2)

Γ(0, K/2)
. (3.21)

An exact determination of the test threshold that achieves a desired false alarm rate

P̃F requires inversion of equation (3.21). In situations where the false alarm rate is

always fixed to a single value, a lookup table for t versus K may be appropriate. If

the application scenario requires that P̃f vary over time, the detector must be able

to calculate the threshold numerically. Techniques to perform this calculation are

described in [10].

84



3.3.2 Low-Complexity Algorithm to Calculate the Detector

Threshold

In this subsection, we propose a threshold calculation based on an approximation

of the conditional density for r under H0 as a Gaussian with its parameters chosen

as functions of K and P̃F . The algorithm then uses the Gaussian approximation to

calculate the threshold that would achieve P̃F . This section argues for the plausibility

of this approximation procedure, and evaluates its accuracy in determining t.

The algorithms for inverting equation (3.21) are iterative in nature. They may

be computationally expensive to execute frequently. This section proposes an ap-

proximation appropriate for low false alarm rates that is based on the inverse of the

Q-function. This can be accomplished without iterative algorithms using a rational

approximation [8], and is less expensive to compute.

As shown in equation (3.20), the conditional density for r under H0 is propor-

tional to the term qK(r) = rK−1e−r
2/2. For large values of r, the exponential decay

dominates the behavior of this function. For values of r near zero, however, the rK−1

term dominates. The overall behavior is that of a sharply peaked function cresting

at rmax =
√

K − 1. Figure 3-3 shows the normalized density for several values of

K. Each peak resembles a Gaussian. Examining the logarithm of the function yields

further insight on the resemblance. Taking the logarithm of qK(r) separates the terms

in the function as

log qK(r) = (K − 1) log(r) − 1

2
r2. (3.22)

The function log qK(r) is shown in Figure 3-4. Since the log(r) term grows slowly

for large r, the apparent drop of the function near rmax resembles the quadratic 1
2
r2.

Specifically, the second derivative q′′K(rmax) = 2 for all values of K. Consequently, the

Gaussian with σ = 1
2

approximates the behavior of pr|H(r|H0) well near its peak at
√

K − 1.

In order to estimate the density farther from the peak of qK(r), we extend the

Gaussian approximation. Since the log(r) term in equation (3.22) varies slowly, it

is possible to approximate log qK(r) over several standard deviations by a quadratic
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with properly chosen peak and curvature. Essentially, the approximation of log qK(r)

resembles a Gaussian with its mean and variance adjusted to account for K and

P̃F . Figure 3-4 shows an example of approximating log aK(r) with a parabola given

by log gK(r) = D − (r−µ)2
2σ2

approx
. For properly chosen values of m, D, and σ2

approx, the

approximation can fit log aK(r) closely over a particular interval. Since the conditional

density decays quickly for large values of r, the interval where the approximation is

accurate only needs to be a few standard deviations wide.

There are many possible ways to approximate qK(r) in order to determine an ap-

propriate detector threshold. Our Gaussian approximation is designed to be accurate

for small values of P̃F , less than 10−1. We suspect that this is a reasonable range
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of operation for many detectors, since false alarms will initiate subsequent process-

ing, expending power and communication resources. Detectors designed to operate

efficiently would typically avoid a high false alarm rate.

In order to have a low false alarm rate, the detector threshold should at least be

greater than
√

K − 1, the peak location of log qk(r). Our approximation is based upon

determining a parabola that accurately fits log qK(r) over an interval of r sufficiently

large to suggest that the exact PF is near P̃F .

The Gaussian approximation has three free parameters, the mean m, variance σ2,

and the amplitude D. In our approximate fitting procedure, we assign µ = rmax,

which guarantees that the peak of the approximate density coincides with the peak of

pr|G,H(r|G, H0). Additionally, we will choose σ2
approx and D so that the approximation

intersects the true conditional density in two locations, denoted ra and rb. These fit

points are chosen so that the interval [ra, rb] is likely to contain the value of t that

produces P̃F .

The values ra and rb are determined by making an educated guess of the true

threshold, and centering the fit points around it. The curvature of log qK(r) at its

peak is the same as a Gaussian with standard deviation σinit = 1/2. Thus, we generate

an initial guess for the threshold using a crude Gaussian approximation. The initial

guess is

tinit = µ + σinitQ
−1(P̃F ). (3.23)

Given this guess, the fit points are chosen with

ra = tinit − 0.01

rb = tinit + 0.01.
(3.24)

The choice of ra and rb is ad hoc. In general, however, it provides a close fit between

log qK(r) and the approximation on an interval extending several standard deviations

past the true threshold. Since the true density is dominated by the exp(−r2/2) term

past its peak, the false alarm probability (3.20) is concentrated in the first several

standard deviations past the threshold. The approximation does not fit accurately
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far from tinit, however, this will not have a significant impact on the approximation

accuracy for thresholds near ra or rb.

The parameters of log gk(r) depend on the fit points and K. The fitting error

between log qK(r) and log gK(r) is

E(r) = D − (r − µ)2

2σ2
approx

− (K − 1) log(r) +
r2

2
. (3.25)

The parameters are determined by requiring m =
√

K − 1, E(ra) = 0, and E(rb) = 0.

Solving for A and σ2 yields

σ2
approx = rb+ra−2µ

rb+ra−2 µ2

rb−ra
log( rb

ra
)

D = µ2 log(ra) − r2a
2

+ (ra−µ)2
2σ2

approx
.

(3.26)

The coefficients produce the approximation log gK(r) = D− (r−µ)2
2σ2

approx
. In practice, this

function fits log aK(r) well over a range of r near tinit. Figure 3-4 shows an example

of the curves for K = 5 and PF = 10−4.

The approximation gives a technique for determining the threshold to achieve a

small P̃F for a given K. Adjusting for the constant factors in the integrals (3.20), the

threshold is

t = µ + σapproxQ
−1

(
P̃F

2K/2−1Γ(K/2)

eD

)
. (3.27)

In order to verify the approximation accuracy, we compare the actual PF versus P̃F

over a range of exponentially spaced values from 10−2 to 10−12. Each P̃F is one-tenth

the previous value. Figure 3-5 shows the behavior of the approximation for several

values of K. In general, the approximation appears to produce PF values slightly

smaller than P̃F . The error increases with K. In general, the approximation is

accurate to within a factor of 1.5 for desired false alarm rates between 0.01 and 10−12

and K between 5 and 200. A Matlab implementation of the approximate threshold

calculation is nearly a factor of 13 faster than the exact threshold calculation based

on inversion of the incomplete gamma function.

The actual performance of the threshold detector for the sinusoid detection prob-
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lem described in part B is shown in Figure 3-6. The figure shows the performance

of the detector for several values of K. In all cases the noise variance is σ2 = 1, and

the wave’s amplitude is A = 1. The simulations shown in Figure 3-6 indicate that

the performance of the detection algorithm improves as K or the ratio A/σ increase.

These results are not particularly surprising, since increasing K gives the detector

more raw data, and increasing A/σ improves the signal-to-noise ratio of each individ-

ual measurement. The results are useful primarily as a low-complexity baseline for

the performance of detection schemes based upon more restrictive statistical models

or data selection algorithms based on the details of such models.
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3.3.3 Robustness Properties of the Threshold Detector

For a many sets of potential target signals, especially if they impose little structure

on the signal density, it is unlikely that a single detector will maximize PD at some

fixed value of PF for every potential signal density. Detectors that have this property

are called uniformly most powerful (UMP) [31]. In the absence of a UMP detector,

robustness criteria are used to design detectors that must operate with out precise a

priori knowledge of the conditional probability densities for x. A detector is robust

if, for some set of potential detection algorithms, it maximizes the worst-case PD at

fixed PF for any of the potential signal densities. This section determines a robust

detector for signals with symmetric probability densities in white Gaussian noise with

known variance.

We focus our attention on the even-symmetric signal densities ps(s) that satisfy

the following condition:

Definition 6 A set of probability densities is distinguishable from zero if, for every

density in the set, Pr[||s|| ≥ ε] = 1 for some ε > 0. Here, ε is constant over the entire

signal class, and does not depend on any individual density.

The set of signals satisfying these two constraints is SN . The symmetry constraint

gives the signal density useful structure, and is satisfied for many interesting target

signals such as sinusoids with random phase or zero-mean Gaussians. The distin-

guishablilty constraint ensures that s + n �= n with probability 1. Subject to these

constraints, we allow both discrete and continuous densities for the target signal.

For the detection algorithm under consideration, we constrain the region R =

{x ∈ 
N |Ĥ(x) = H0} to a specific subset of all potential regions in 
N . A decision

region is valid if it satisfies the following requirements.

Definition 7 A decision region R is valid if

1. R = ρ(Ro) where ρ is any rotation in 
N .

2. Ro = Rj ⊗
N−j.
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3. Rj is an origin-symmetric, bounded, convex region in 
j.

The set of detectors satisfying these constraints is RN . Examples of such a region

when N = 2 are the interior of an ellipse or the region |x1| < 2. Without loss of

generality, we will assume that Rj constrains x1, . . . , xj and the remaining variables

in x are not constrained by the decision region.

For a specific signal density ps ∈ SN and a specific decision region R ∈ RN , the

detection and false alarm probabilities are denoted by PD(R, ps) and PF (R). They

can be represented by the integrals

PD(R, ps) = 1 − ∫
R

px|H(u|H1)du

= 1 − ∫
R
(ps ∗ pn)(u)du

PF (R) = 1 − ∫
R

px|H(u|H0)du

= 1 − ∫
R

pn(u)du.

(3.28)

For our purposes, the noise density is pn(u) = N (u; 0; σ2I), i.e. white Gaussian noise.

The following theorem indicates that the threshold detector derived in the previous

section is a robust detector over the class of signal densities and decision regions

defined above.

Theorem 9 Let R′ ∈ 
N be the H0 decision region given by R′ = {x ∈ 
N |xTx ≤ η}.

For any other decision region R ∈ RN that satisfies PF (R) = PF (R
′), the following

condition holds:

min
ps∈SN

PD(R′, ps) ≥ min
ps∈SN

PD(R, ps). (3.29)

Thus, the spherical decision region is the maxmin robust decision region over SN and

RN for any 0 < PF < 1.

In order to prove the theorem, we rely on a generalization of Lemma IV.2 from

the paper by Gay et. al. [28]. They show that for a spherically symmetric, decreasing

noise probability density function, the integral
∫
‖u‖<η pn(u−µa)du is a monotonically

decreasing function of |µ| for any a. Generalization of this result to any region in RN
is a key step towards proving Theorem 9.
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In order to make the argument precise, we define the following notation. For any

region R ∈ RN , let the function fR(a)be

fR(a) =

∫
R

pn(u− a)du. (3.30)

Since R is a convex, simply connected region, it is measureable, and the function

fR(a) is well defined for all a ∈ 
N .

An important step in the proof of Theorem 9 involves showing that fR(a) ≤ fR(0)

for any a. The following lemma, proved in Appendix C, formalizes the result.

Lemma 5 Consider the function fR(a) defined in equation (3.30). If the domain of

integration in the expression satisfies R ∈ RN and the probability density satisfies

pn(u1) ≥ pn(u2) (3.31)

whenever ‖u1‖ ≤ ‖u2‖, u1 = µu2 for some constant µ ≥ 0, then

fR(a1) ≥ fR(a2) (3.32)

‖a1‖ ≤ ‖a2‖, a1 = νa2 for some constant ν ≥ 0.

Armed with this result, we can determine the worst-case signal density for a

specific decision region R. The detection probability can be minimized by placing all

of the probability mass for the target signal at locations xmax = arg max‖a‖=ε fR(a).

The weaker the signal magnitude, the more difficult it is to detect. Because fR(a) is

a decreasing function of ‖a‖, a maximum will occur on the constraint sphere ‖s‖ = ε,

although it may not be unique. Since R is symmetric, the locations that satisfy this

condition are also symmetric. A signal density satisfying our symmetry constraint is

ps(s) =
1

2
(δ(s− xmax) + δ(s+ xmax)) = pB(s). (3.33)

Note that this density takes the familiar form of a binary signal constellation. For any

valid decision region R, it is possible to construct a binary signal constellation that
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gives the worst case performance in terms of PD(R, ps). The constellation depends

upon the particular decision region.

For the spherical decision region Φt = {x|‖x‖ ≤ t}, we can derive a useful invari-

ance property for PD(Φt, ps). Due to the rotational symmetry of the decision region,

the detection probability does not depend upon ps if ‖s‖ = ε with probability one.

Lemma 6 Consider the decision region Φt = {x|‖x‖ ≤ t}. For any signal density

ps ∈ SN satisfying the constraint

Pr(‖s‖ = ε) = 1, (3.34)

the detection probability satisfies

PD(Φt, ps) = PD(Φt, pUε) (3.35)

where pUε is uniformly distributed on the sphere ‖s‖ = ε.

Proof. For the decision region Φt, the function fΦt(a) depends only on ‖a‖. If

‖a‖ = a, we denote the function by the scalar argument fΦt(a).

Using the expression in equation (3.28), the detection probability for a signal

density ps satisfying the constraint in equation (3.34) is given by

PD(Φt, ps) = 1 −
∫

u

∫
v∈Φt

ps(u)pn(v − u)dudv (3.36)

= 1 −
∫

u

ps(u)

(∫
Φt

pn(v− u)dv
)

du (3.37)

= 1 −
∫

u

ps(u)fΦt(ε)du (3.38)

= 1 − fΦt(ε) = PD(Φt, pUε). (3.39)

The expression in equation (3.38) follows because the bracketed integral in the pre-

vious line depends upon u only through its magnitude. For our signal density, this

magnitude is constant with probability one. �
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As a result of this lemma, we can say several interesting things about the prop-

erties of the decision region Φt. First, the performance of Φt for any binary signal

constellation (3.33) depends only on ‖xmax‖. Also, since the spherical decision region

is symmetric and convex, any such signal density is a worst-case density. Addition-

ally, if ps(s) = pUε is uniformly distributed on the surface of a sphere of radius r,

PD(Φ, pUε) = PD(Φ, pB) for any binary constellation at radius r. Finally, in Gaussian

noise, the spherical decision region is the Neyman-Pearson decision region for the

signal density pUε .

We are finally ready to prove the Theorem 9. The proof of the theorem combines

the observations about the spherical decision regions, uniform signal densities on the

surface of a sphere, and the worst-case binary densities for arbitrary decision regions.

Proof. First, fix a decision region R that yields a false alarm rate PF (R). The

worst-case binary signal density for this decision region is denoted p(R,min). Consider

a spherical decision region achieving the same false alarm rate. The following chain

of inequalities result:

PD(Φ, p(R,min)) = PD(Φ, pUε)

≥ PD(R, pUε)

≥ PD(R, p(R,min)).

(3.40)

In equation (3.40), the equality follows from the symmetry properties of the spherical

decision region. The first inequality follows because the spherical decision region is the

Neyman-Pearson decision region for the signal density pUε, and the second inequality

follows because p(R,min) is the worst-case signal density for the decision region R. The

end result is that the worst-case detection probability for a spherical decision region

exceeds the worst-case detection probability for any symmetric, convex decision region

with an equivalent false alarm rate.

Thus far, the analysis has concentrated on the case when R is a bounded set that

constrains x1, . . . , xN . The definition of valid decision regions, however, allows for a

situation where some dimensions are not constrained by R. Such regions have infinite

volume. It is possible to apply the results to infinite, valid regions. In this case, the
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values of the unconstrained variables xj+1, . . . , xN can be fixed arbitrarily. Viewed

as a function of x1, . . . , xj , the density pn is a spherically symmetric function and

retains the smoothness properites necessary to define the gradient in this subset of


N . Thus, for a ∈ 
N , components of the vector along xj+1, . . . , xN do not contribute

to the derivative dfR
da

, and the key results leading to the theorem still hold. In the

case of an infinite valid region, note that it is possible to have signal densities p′B

that with ‖xmax‖ > ε but still satisfy PD(R, p(R,min)) = PD(R, p′B) by translating the

points of the binary constellation along a direction in the unconstrained coordinates

while preserving the symmetry of the density. In this situation, however, PD(Φ, p′B) >

PD(Φ, p(R,min)) since this perturbation will decrease fΦt . Thus, for the target signal

density p′B, the inequality (3.40) still holds. �

3.4 Summary

This chapter considered semi-parametric and robust detection with random data se-

lection. A threshold test on the selected data vector magnitude maximizes the worst-

case detector performance over the set of detectors with symmetric, convex decision

regions. These properties generalize the minmax optimality of the square-law detector

in Bayesian detection [28].

The chapter also presents an approximate algorithm for adapting the detector

threshold to fluctuations in the selected subset size, an important challenge in imple-

memtation of randomized selection algorithms. The approximation, which produces

PF values within a factor of 1.5 of the desired P̃F for a wide range of K and P̃F

parameters, reduces the complexity of threshold calculation by a factor of nearly 13.
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Chapter 4

Conclusions

This thesis has examined data selection algorithms for binary hypothesis testing.

The data selection problem was examined at the two extremes of a priori knowledge

about the target signal. For a fully known target signal, selecting the optimal data

subset for the RMF reduces to a combinatorial optimization problem. At the other

extreme, when the target signal resides in the broad class of stochastic signals with

even symmetric densities, randomized sampling and robust detectors were considered.

This chapter summarizes the contributions in both areas of research, and suggests

further work.

4.1 The Restricted Matched Filter

The results in Chapter 2 define the RMF problem, and analyze a variety of solutions.

In situations where the covariance matrix structure is constrained, efficient solutions

of the problem exist. The low-condition and banded covariance matrices yield poly-

nomial time solutions to the optimal RMF search. In the general problem, other

approaches are necessary.

For unstructured covariance matrices, heuristic optimization rules incorporating

greedy selection can be used to select a subset of measurements for the RMF. We

showed that the worst-case behavior of these approaches depends on the condition

number of the noise covariance matrix. The likelihood of encountering these patho-
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logical cases in practice is not clear.

The combinatorial optimization problem formulated in Chapter 2 leads to a num-

ber of unresolved questions. First, the worst-case complexity of the problem is not

known. It resembles a number of well-known NP-complete problems, such as the

Densest Subgraph problem. A reduction between the RMF search and a well-known

combinatorial optimization problem seems possible but has not yet been found. Sec-

ond, a variety of heuristic search algorithms more complicated than the greedy search

approach could yield better approximation performance for SNR(G). Greedy search

heuristics that change the selected subset size by more than one measurement per

stage, searches for local maxima in SNR(G), and simulated annealing are natural

approaches to the problem. Third, there may be a set of reasonable constraints on

the covariance matrix, in addition to banded structure, that guarantee efficient solu-

tions to the optimization problem. Furthermore, approximation algorithms possessing

good worst-case performance may be found [16, 41]. Such algorithms could be used

confidently in with unstructured covariance matrices. Finally, it may be fruitful to

consider the approximation behavior of these search algorithms using the subset size

necessary to exceed a particular value of SNR(G) as the objective function.

4.2 Randomized Selection and Robust Detection

Chapter 3 considers detection of a stochastic signal with an uncertain probability

density. In this extreme case, little is known about the exact structure of the density,

so randomized data selection is used to control the expected subset size. Robust

detectors for the signal model suggested are determined, and a threshold calculation

approximation that copes with fluctuating subset size is derived.

The results of this chapter may be extendable to cases where the signal probability

density has less uncertainty. In the case where the probabilty density is known exactly,

a non-random sensor censoring approach has been suggested [35]. This algorithm uses

data-dependent selection. In situations with some uncertainty in the signal density,

selection algorithms between deterministic data-dependent and randomized selection
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may work well.

The data selection procedure can be extended in a number of potentially interest-

ing directions. First, there are many detection problems beyond binary hypothesis

testing where data selection may provide implementation advantages. For example,

we have not considered multiple hypothesis testing or many other significant detection

problems.

Additionally, the selection algorithms discussed in this thesis can be combined

with rate-distortion approaches to controlling communications in distributed signal

processing systems. There are preliminary results indicating that selection can be

combined with quantization in detection problems with correlated noise measure-

ments [4].
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Appendix A

Proof of Theorem 7

Theorem 7 Consider a detection problem of the class defined in equation (3.1). Let

r = ||x|| and Θ = [θ φ3 . . . φK ]T . Then, the likelihood ratio L(r,Θ|G) given by

(3.15) increases monotonically without bound.

Proof. Using the spherical coordinate system defined in (3.16), a vector x ∈ 
N can

be written

x = rvΘ, (A.1)

where vΘ is a unit vector defined by the angular variables. In terms of these coordi-

nates, the conditional likelihood ratio is

L(r,Θ|G) =

∫
aK

psg|G(aK |G)e(−
1

2σ2 aT
KaK)e

„
r
vT
ΘaK
σ2

«
daK . (A.2)

Expressed in spherical coordinates, the derivative is

dL

dr
=

∫
vT
ΘaK≥0

psg|G(aK |G)e(−
1

2σ2 aT
KaK)

(
vTΘaK

σ2

) (
2 sinh

(
r
vTΘaK

σ2

))
daK . (A.3)

Each term in the integrand is positive over the region where vTΘaK ≥ 0, thus the

integrand is positive for every value of r ≥ 0, and the likelihood ratio is always

increasing. Similar analysis shows that the second derivative of the likelihood ratio

is always positive.

Since dL
dr

> 0 and d2L
dr2

> 0 for all positive values of r, straightforward calculus
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shows that L(r,vΘ|G) satisfies the inequality

L(r,Θ|G) > L(ro,Θ|G) + L′(ro,Θ|G)(r − ro) (A.4)

for every Θ and every pair r ≥ ro ≥ 0. Thus, there is no upper bound on L(r,Θ|G);

the likelihood ratio diverges along the direction identified by the unit vector vΘ. �
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Appendix B

Proof of Theorem 8

Theorem 8 For the statistical model established in equation (3.8), and a fixed value

of K, let r = ||xg||. If the conditional densities pxg|G,H(xg|G, Hi) for i = 0, 1 are

continuous and positive, the likelihood ratio for r = ||xg|| increases monotonically

without bound.

Proof.

For the random variable r, the likelihood ratio is given by

L(r|G) =
pr|G,H(r|G, H1)

pr|G,H(r|G, H0)
. (B.1)

We shall derive a monotonically increasing lower bound for pr|G,H(r|G, H1) in terms

of the likelihood ratio for xg.

In order to make the argument precise, let

f(r) = min
||xg||=r

L(xg|G). (B.2)

Under the assumption that this is a well-defined function, the conditional densities

for x satisfy

pxg|G,H(xg|G, H1) ≥ pxg|G,H(xg|G, H0)f(r) (B.3)
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whenever ||xg|| = r. Thus, the density pr|G,H(r|G, H1) satisfies

pr|G,H(r|G, H1) ≥ BKrK−1 exp(−r2/2σ2)f(r). (B.4)

This inequality shows that the likelihood ratio for the random variable r is bounded

below by f(r), i.e. L(r|G) ≥ BKf(r). In the remainder of this section, we will prove

the existence and continuity of f(r) and demonstrate that f(r) increases monotoni-

cally without bound.

Consider the minimization from equation (B.2) in spherical coordinates. The

domain for the angular variables is a compact set; each φi lies in the interval 0 ≤
φi < π, and θ lines in the interval 0 ≤ θ < 2π. With fixed r, L(r,Θ|G) is a positive,

bounded function over a compact set, so the minimum exists [2].

The results of Theorem 7 show that f(r) is an increasing function. For any r ≥ 0

and ε ≥ 0, consider the value of

f(r + ε) = min
||xg||=r+ε

L(xg|G). (B.5)

Theorem 7 guarantees that L((r + ε),Θ) > L(r,Θ) for any fixed Θ. Additionally,

the likelihood ratio satisfies L(r,Θ) ≥ f(r) as a consequence of the definition of f .

Combining these inequalities yields

L ((r + ε),Θ|G) > f(r) for all Θ, if ε > 0. (B.6)

Since there is a strict inequality between L((r + ε),Θ) and f(r), f(r+ ε) must satisfy

f(r + ε) > f(r) for all ε > 0. (B.7)

Thus, as a consequence of theorem 7, the bound function f(r) is strictly monotonically

increasing.

To prove that f(r) is continuous, we must verify that for every ε > 0, we can find
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δ > 0 such that

|f(r + δ) − f(r)| < ε. (B.8)

The likelihood bound satisfies f(r) = L(r,Θ|G) for some unit vector Θ due to its

definition as a minimization. Thus, using the fact that L(r,Θ|G) is an increasing

function of r, we can determine the inequality

f(r + δ) = min
||xg||=r+δ

L(xg|G) < L((r + δ),Θo|G) (B.9)

for any fixed r > 0 and δ > 0. Using this inequality produces the following property

of f(r)

|f(r + δ) − f(r)| < |L((r + δ),Θo|G) − L(r,Θo|G)|. (B.10)

Since L(r,Θo|G) is the ratio of two positive, continuous functions of r, it is also a

continuous function. Thus, for any value of ε > 0, we can find a value of δ such that

|L((r + δ),Θo|G)−L(r,Θo|G)| < ε. This property, along with the inequality (B.10)

establish that f(r) is a continuous function of r.

Finally, we can establish that f(r) has a lower bound similar to equation (A.4).

In the proof of theorem 7, we showed that, with fixed Θ, dL
dr

> 0 for any r > 0 and

any Θ. Thus, we can guarantee that

g(r) = min
||xg||=r

dL

dr
(B.11)

is a well-defined function because we are minimizing a function bounded from below

over a compact set. Thus, for every Θ and every pair r ≥ ro > 0, the inequality

L(r,Θ|G) ≥ L(ro,Θ|G) + g(ro)(r − ro) (B.12)

holds. Minimizing both sides of the expression guarantees that f(r) satisfies

f(r) ≥ f(ro) + g(ro)(r − ro). (B.13)
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The function f(r) increases at least linearly, so it is not bounded. Since L(r|G) ≥
BKf(r), the theorem is proven. �
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Appendix C

Proof of Lemma 5

Lemma 5 Consider the function fR(a) defined in equation (3.30). If the domain of

integration in the expression satisfies R ∈ RN and the probability density satisfies

pn(u1) ≥ pn(u2)

whenever ‖u1‖ ≤ ‖u2‖, u1 = µu2 for some constant µ ≥ 0, then

fR(a1) ≥ fR(a2)

‖a1‖ ≤ ‖a2‖, a1 = νa2 for some constant ν ≥ 0.

C.1 Proof for Smooth Decision Regions

In order to prove the lemma for regions of arbitrary shape, we examine the direc-

tional derivative of the function fR. Given a unit vector v indicating the direction of

displacement, the directional derivative of fR along v is

dfR
dv

= 〈∇fR,v〉, (C.1)
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where ∇ denotes the gradient operator and 〈, 〉 indicates an inner product of two

vectors. In terms of the integral expression for fR(a), the derivative is

dfR
dv

=

∫
R

〈∇pn(u− a),v〉du. (C.2)

Using the divergence theorem from vector calculus, the volume integral in equation

(C.2) can be expressed as an equivalent surface integral. The resulting expression is

dfR
dv

= −
∫
S(R)

pn(u− a)〈h(u),v〉dS. (C.3)

In this equation, the notation S(R) denotes the surface of region R, h(u) is the

outward-facing normal vector for the surface at the point u, and dS is the surface

area increment. The use of the divergence theorem requires auxiliary smoothness

conditions on S(R) and pn to guarantee that the gradient vector and the surface

normal vectors are well defined.

The properties we have assumed for R and pn(u) enable us to show that the

directional derivative of fR(a) is negative or zero for the direction specified by a.

In other words, along any straight line emanating from the origin of sample space,

fR(µa) is a non-increasing function of µ over the domain 0 ≤ µ < ∞.

To make the argument precise, we define the following notation. Let S+
a (R) be

the subset of S(R) satisfying 〈h(x), a〉 > 0 for all x ∈ S+
a (R). Similarly, we can define

S−
a (R) as the subset of S(R) satisfying 〈h(x), a〉 < 0. Due to the convexity of R,

any point x ∈ S+
a (R) has 〈h(x), a〉 > 0. For points in S−

a (R), the sign on the inner

product is reversed.

Using this notation, we can write equation (C.3) as

dfR
da

= −
∫
S+
a (R)

pn(u− a)〈h(u), a〉du−
∫
S−
a (R)

pn(u− a)〈h(u), a〉du. (C.4)

For every point u ∈ S+
a (R), −u belongs to S−

a (R) and satisfies 〈h(u), a〉 = −〈h(−u), a〉.
Additionally, for u ∈ S+

a (R), ‖u − a‖ < ‖ − u − a‖. This implies that pn(u − a) >

pn(−u−a) since pn(x) is a decreasing function of ‖x‖. Thus, the directional derivative
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can be written

dfR
da

= −
∫
S+
a (R)

(pn(u− a) − pn(−u− a)) 〈h(u), a〉du. (C.5)

The term (pn(u− a) − pn(−u− a)) is positive for any a, so the directional derivative

dfR(a)
da

is either negative or zero. This result applies for arbitrarily shaped origin-

symmetric, convex regions and for spherically-symmetric, unimodal noise probability

densities.

C.2 Alternative Proof for Gaussian Noise Densi-

ties

The use of the divergence theorem in the previous section’s proof of the theorem im-

poses smoothness constraints on the decision region R. Its surface must be sufficiently

smooth so that it posses a well-defined normal vector. In this section, we prove that

fR(α1u) > fR(α2u) whenever α2 > α1 > 0 without making smoothness assumptions

about S(R). The proof, however, relies on properties of white Gaussian probability

densities.

Rather than analyze the derivative directly, as in our previous proof, we will

examine the function

∆(x, α1, α2) = pn(x− α1u) − pn(x− α2u). (C.6)

The definition allows us to express changes in the function fR(αu) as

fR(α1u) − fR(α2u) =

∫
R

∆(x, α1, α2)dx. (C.7)

The results in this section show that for every point x1 ∈ R such that ∆(x1) <

0, we can define a 1-1 function A(x1) with the properties that ∆(A(x1), α1, α2) +

∆(x1, α1, α2) ≥ 0 and A(x1) ∈ R. These properties of ∆(x, α1, α2) guarantee that
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Case 1: x2 ∈ [w−, w+]
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A(xa)

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A(xb)

Case 2: ‖x2‖ > w+

Figure C-1: Illustration of A(x). In Case 1, the transformation produces A(x) by
translation parallel to the x1 axis. In situations where such a translation does not
intersect J−(c), A(x) is symmetric with x about the x2 value in the midpoint of the
region common to J−(c) and J+(c).

fR(αu) is a decreasing function of α. We shall first prove the result concerning ∆ in


2 and then generalize to 
N .

For the case of N = 2, we can set the coordinate system so that u is a unit

vector pointing in the x1 direction. In this case, because we have assumed that the

probability density is p(x) = N (x; 0; σ2I), the function ∆(x, α1, α2) is zero the line

x1,m = (α1+α2)/2, negative to its right, positive to its left. We will define our mapping

A(x) by creating a correspondence between points on the line x1 = x1,m − c and the

line x1 = x1,m + c. The figure shows examples of the appropriate transformation.

An algebraic expression of the transformation requires a notation to distinguish

the two cases. The transformation maps points from one slice of R to another by

translation parallel to the x1 axis if possible. If not, the points are reflected about a

specific point between the slices. In order to describe A(), we define notion of slice,
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reflection, and translation. By slices, we mean the sets

J−(c) = {x|x ∈ R, x1 = x1,m − c}
J+(c) = {x|x ∈ R, x1 = x1,m + c}.

(C.8)

Note that due to the convexity and boundedness of R, the slices will be finite-length

line segments parallel to the x2 coordinate axis.

Whether any points are reflected, as in case 2 from Figure C.2, depends on the

relative arrangements of the endpoints of these line segments. Let xmax
2,+ and xmin

2,+ be

the maximum and minimum x2 coordinate values for points in J+(c). Likewise, let

xmax
2,− and xmin

2,− be the corresponding values for J−(c). Case 2 of A() occurs when the

interval [xmin
2,+ , xmax

2,+ ] is not contained in the interval [xmin
2,− , xmax

2,− ].

In order to define the case 2 in the figure properly, we need the x2 coordinate of

the reflection center. Let β < γ < φ < χ be a sorted list of xmax
2,+ , xmin

2,+ xmax
2,− , and xmin

2,− .

Then, let x2,m = 1
2
(γ +φ). This is the x2 coordinate of the reflection center. In vector

notation, the reflection center is

xm =


 x1,m

x2,m


 . (C.9)

Finally, a number of later results refer to the boundary values of the intersection

between [xmin
2,+ , xmax

2,+ ] and [xmin
2,− , xmax

2,− ] when case 2 occurs. We will identify the values

γ and φ with either J+(c) or J−(c) as follows:

w+ =




γ xmin
2,+ = β

φ xmin
2,− = β

w− =




φ xmin
2,+ = β

γ xmin
2,− = β.

(C.10)

Using the definitions in (C.8) and (C.10), we can specify the mapping A(x) in 
2.
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The mapping is

A(x) =





 x1 − 2c

x2


 x2 ∈ [γ, φ]

x+ 2(xm − x) = 2xm − x x2 /∈ [γ, φ].

(C.11)

The mapping translates parallel to the x1 axis to get a direct map when possible.

Otherwise, it matches the points in J+(c) with |x2| values that exceed |w+| with

points in J−(c) with |x2| that exceeds w−.

In order to prove the overall result of this note, we need to show that the mapping

is well-defined, and that N (A(x);α1u; σ
2I) > N (x;α2u; σ

2I). We show that A(x) is

well defined before proving the inequality.

In order for the mapping defined in equation (C.11) to be well-defined, the length

of the line segment J−(c) must exceed the length of J+(c). If not, a 1-1 mapping

between the two sets is impossible. The following lemma guarantees this result.

Lemma 7 Let �+ be the length of the line segment J+(c) and �− be the length of the

line segment J−(c). If the set R ∈ 
2 is symmetric and convex, then �− ≥ �+.

Proof. As a consequence symmetry and convexity, R must contain the parallelo-

grams formed by both J+(c), J−(c), and their reflections about the origin. If �+ > �−,

then there must be a a point on the line x1 = x1,m − c that is in the parallelogram

formed by J+(c) and its reflection, but is not in the parallelogram formed by J−(c)

and its reflection. Figure 2 shows this situation. The parallelograms are always nested

as shown since |x1,m + c| > |x1,m − c|. This contradicts the convexity of R. �

In order to show prove that

pn(A(x) − α1u) ≥ pn(x− α2u) (C.12)

for all x ∈ J+(c), we need to analyze the x2 coordinates of the points x and A(x).

Their relative displacement from α1u and α2u along the x1 axis is identical due to
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✲

✻

✛

❄

x1

x2

J+(c)

J−(c)

x′

Figure C-2: Situation if �+ > �−. The pont x′ belongs to the parallelogram formed
by J−(c) but does not belong to the parallelogram formed by J+(c).

the definition of the sets J+(c) and J−(c). Since the probability density is white

and Gaussian, it depends only on the norm of the argument. Thus, in a situation

where the x1 cooridnate is fixed, the density is greatest when ‖x2‖ is smallest. As a

consequence of the symmetry and convexity of R, we can prove the following lemma,

which is sufficient to guarantee the inequality in equation (C.12) is true.

Lemma 8 For the mapping defined in equation (C.11), the x2 coordinate value sat-

isfies |x2| ≥ |(A(x))2|.

Proof. We proceed with a proof by contradiction.

Without loss of generality, we can assume that w− > w+. This condition can be

guaranteed by a proper choice of coordinate system. Every point x ∈ J−(c) that is

reflected by A() satisfies x2 < w+. Additionally, every y ∈ J−(c) satisfies y2 > w+,

regardless of the behavior of A().

Assume that |x2| < |A(x)2| for some x ∈ J+(c). This assumption implies that

|w+| < |w−| (C.13)

since A() maps points satisfying x2 < w+ to points satisfying y2 > w−.

Let ξ = argminJ+(c) |x2|, ψ = arg maxJ+(c) |x2|, and ψ′ = −Iψ. We will show that
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✲

✻

✛

❄

x1

x2

J+(c)w+

J−(c)

w−

x′ ξ

ψ

ψ′

Figure C-3: Case 1 of Lemma 2 proof. In this situation A(x) can increase the x2

component of the point. As a consequence, the point x′ on the parallelogram formed
by J+(c) is not in the parallelogram defined by J−(c). This contradicts the convexity
of R.

the line between ξ and ψ′ does not intersect J−(c), contradicting the convexity of R.

Two cases will be considered separately. If there are points x ∈ J+(c) that satisfy

x2 ∈ [w+, w−], then ξ2 = minJ−(c) |x2| < w+ and maxJ+(c) |x2| = w−. In this case,

ψ′
2 = −w− < w+ as a consequence of equation (C.13), which followed from our initial

assumption that |x2| < |A(x)2|. Thus, the x2 < w+ for any point on a line segment

joining ξ and ψ′. This implies that the line segment does not intersect J−(c) since

x2 > w+ for all x ∈ J−(c). Thus, we arrive at a contradiction of the convexity of R.

In the case that there are no points x ∈ J+(c) that satisfy x2 ∈ [w+, w−], we have

maxJ+(c) |x2| = w+ and minJ−(c) |x2| = w−. Thus, ψ′
2 = −w+. From the definition

of our coordinate system, w− > w+. Only if w− > 0 can this inequality hold as well

as (C.13). If this inequality, a consequence of the assumption |x2| < |A(x)2|, is true,

then we have w− > |w+|, implying that the line segment joining ξ and ψ′ does not

intersect J−(c). Once again, this contradicts the convexity of R.

Thus, if the assumption |x2| < |A(x)2| holds, R cannot be a symmetric, convex

set. �

Using the inequality (C.12), we can show that ∆(A(x), α1, α2)+∆(x, α1, α2) ≥ 0,
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✲

✻

✛

❄

x1

x2

J+(c)

w+

ξ

ψ

ψ′

J−(c)

w−

x′

Figure C-4: Case 2 of the proof of Lemma 2. The point x′ contradicts the convexity
of R.

which proves that fR(αu) is a non-increasing function of α. Since we have assumed

that the noise density is white and Gaussian, the ratio

L(x) =
pn(x− α1u)

pn(x− α2u)
(C.14)

depends only on the x1 coordinate of x. Consequently, for a fixed value of c, L(x) =

1/L(y) for x ∈ J+(c) and y ∈ J−(c). The mapping from J+(c) to J−(c) exchanges

the relative distances from α1u and α2u along the x1 axis. This result allows us to

re-write ∆ as

∆(x, α1, α2) =




(1 − 1/L(x))pn(x− α1u) x ∈ J−(c)

(L(x) − 1)pn(x− α2u) x ∈ J+(c).
(C.15)

Based on the equality (C.15), we can write

∆(A(x), α1, α2)−∆(x, α1, α2) = (1−L(x))(pn(A(x)−α1u)− pn(x−α2u)). (C.16)

For any x ∈ J+(c), the likelihood ratio satisfies L(x) < 1. Thus, combined with

the inequality (C.12) with equation (C.16), we get the result ∆(A(x), α1, α2) −
∆(x, α1, α2) > 0. This proves that fR(αu) is a non-increasing function of α for
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the case R ∈ 
2.

Since every point in the the region R belongs to either J+(c) or J−(c) for only

one value of c, the lemmas show that there is a the main theorem holds in 2-D. We

can extend to 
N by noting that any point x ∈ 
N can be represented uniquely as

a sum of vectors parallel to u and perpindicular to u. Formally, the vector space


N = span{u} ⊕ span{u}⊥ is a direct sum of the span of u and its orthogonal

complement. For a particular vector in span{u}⊥, we can reduce to a two-dimensional

problem and apply the appropriate A(x) to all points that apply. Since the direct

sum decompositon is unique, the transformation is one-one over R in 
N , and the

inequality

pn(A(x) − α1u) > pn(x− α2u) (C.17)

for every x ∈ R such that 〈x,u〉 > 1
2
(α1+α2). Note that although the points along the

u axis are included in the two dimensional problem for every vector in span{u}⊥, for

these points, the mapping A() is invariant to the choice of the vector in the orthogonal

complement.
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