Fifth International Symposium on Theory and Applications of Satisfiability Testing, May 6-9, 2000, Cincinnati, Ohio

PBS: A Backtrack-Search Pseudo-Boolean Solver and Optimizer

Fadi A. Aloul, Arathi Ramani, Igor L. Markov, Karem A. Sakallah

Department of Electrical Engineering and Computer Science

University of Michigan

{faloul, ramania, imarkov, karem} @eecs.umich.edu

Abstract

Optimized solvers for the Boolean Satisfiability (SAT)
problem [5, 14,15, 17, 19, 23, 24] found many applications
in areas such as hardware and software verification, FPGA
routing, planning in Al, etc. Further uses are complicated by
the need to express ‘“counting constraints” in conjunctive
normal form (CNF). Expressing such constraints by pure
CNF leads to more complex SAT instances. Alternatively,
those constraints can be handled by Integer Linear Pro-
gramming (ILP), but off-the-shelf ILP solvers tend to ignore
the Boolean nature of 0-1 variables.

This work attempts to generalize recent highly successful
SAT techniques to new applications. First, we extend the
basic Davis-Putnam framework to handle counting con-
straints and apply it to solve routing problems. Our imple-
mentation outperforms previously reported solvers for the
satisfiability with “pseudo-Boolean” constraints and shows
significant speed-up over best SAT solvers when such con-
straints are translated into CNF,.

Additionally, we solve instances of the Max-ONEs opti-
mization problem which seeks to maximize the number of
“true” values over all satisfying assignments. This, and the
related Min-ONEs problem are important due to reductions
from Max-Clique and Min Vertex Cover. Our experimental
results for various benchmarks are superior to all
approaches reported earlier.

1 Introduction

Boolean Satisfiability has been the topic of intensive re-
search over the past few decades. It has become a promising
new technology for a number of applications in the field of
electronic design automation (EDA) and has been successful-
ly applied to various problems arising in formal verification
[6, 21], timing analysis [18], routing of field-programmable
gate arrays [16], automatic test pattern generation (ATPG)
[12,20], etc. As aresult, several powerful SAT solvers [5, 14,
15, 19, 23, 24] have been proposed, many of which use one
or another variation of the Davis-Logemann-Loveland (DLL)
[8] approach. A recently developed solver, Chaff [15], pro-
posed significant enhancements in both algorithm and imple-
mentation level to backtrack search algorithms, which has
lead to dramatic performance gains on many SAT instances.

SAT solvers typically input Boolean formulas in conjunc-
tive normal form (CNF), and an arbitrary Boolean formula
without quantifiers can be quickly converted into a CNF.
However, some applications contain counting constraints
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which impose an upper or a lower bound on the number of
certain objects. More generally, given a collection of predi-
cates, one may want to limit the number of predicates which
evaluate to true. VLSI routing is a source of such examples -
only a certain number of wires can be routed through a given
channel (no more than the channel capacity), but the particu-
lar choice of wires is often not important. Expressing such a
constraint in pure CNF may lead to a serious increase in the
number of clauses and variables, or in the addition of a fairly
complicated set of clauses derived from adder and compara-
tor circuits. This problem was addressed in a recent work [23]
by an algorithm that handles non-CNF constraints such as
cube lists and pseudo-Boolean (PB) constraints [3] of the
form:

Zcixl.ﬁn cpneZx; €{0,1}

The term pseudo-Boolean constraints refers to arbitrary lin-
ear inequalities 0-1 in terms of variables, however many
applications require only integer coefficients. The SATIRE
solver [23] was successfully applied to functional delay fault
testing. It showed that PB encodings can be solved much
more efficiently (by both runtime and memory usage) than
pure CNF encodings. Note that decision problems with
pseudo-Boolean constraints are a special case of Integer Lin-
ear Programming (ILP). However, as has been pointed out in
[3], common ILP algorithms fail to take 0-1 variables into
account and are outperformed by specialized algorithms.

Our first contribution is a solver architecture that com-
bines data structures used in SATIRE with those used in the
currently best pure CNF solver Chaff [15]. Our new SAT
solver, PBS, handles CNF constraints and PB inequalities.
Unlike previously proposed stochastic local search solvers
[22], this solver is complete and is based on a backtrack
search algorithm. We believe that our proposed algorithms to
handle PB constraints can be added to any backtrack SAT
solver.

To demonstrate the effectiveness of PBS, we compare it
to (i) the currently best CNF-SAT solver Chaff [15], (ii) the
earlier PB-SAT solver SATIRE [23] based on GRASP [14],
and (iii) one of the best linear programming solvers OPBDP
[4] based on branch-and-bound. Our experimental results
show at least an order-of-magnitude speed-up on instances
with more than 300 variables and also on many smaller in-
stances.

From the application standpoint, the availability of PB
constraints helps to address a broader range of problems, es-
pecially those which cannot be efficiently encoded with pure
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CNF constraints. In this work, we study two classes of such
applications: (i) decision problems in global routing, and (ii)
Boolean optimization problems. We propose a new formula-
tion of global routing that leverages PB constraints and show
that it leads to dramatic speed-ups and lower memory re-
quirements.

The second class of applications is Boolean optimization
problems such as Max-SAT, Max-ONEs and Min-ONEs.
These problems have 0-1 variables only, but the goal is to
minimize or maximize a particular objective while satisfying
a number of constraints. For example, in Max-SAT, one tries
to maximize the number of satisfied clauses (unconstrained
optimization). The Max-ONEs problem seeks a satisfying
assignment that maximizes the number of “true” values.
Min-ONEs seeks a satisfying assignment that minimizes that
number.

The importance of these SAT-like optimization problems
can be explained by analogy with the fundamental role of the
CNF-SAT problem in NP-complete constraint satisfaction
problems. As shown in [7], a number of NP-hard combinato-
rial optimization problems, such as Max-Cut, Max-Clique,
and Min Vertex Cover have linear-time reductions to Max-
SAT, Max-ONEs and Min-ONEs. Many of those problems
are vital to Electronic Design Automation, for example, Ver-
tex Cover has applications in two-level logic minimization.

We observe that heuristic solvers based on local search,
such as WalkSAT [17], can be used in the context of the
Max-SAT problem. However, the Max-ONEs and Min-
ONEs problems, while similar to each other, have not been
addressed by efficient solvers (to the best of our knowledge).

To fill this void, we propose algorithms to optimally
solve Boolean optimization problems with the help of PB
constraints. In our experiments for the Max-ONEs problem
on standard CNF benchmarks, these algorithms outperform
all previously published approaches.

The remaining part of the paper is organized as follows.
Section 2 briefly reviews the latest enhancements in back-
track search solvers. PB constraints and PBS are described in
Section 3. Section 4 discusses applications of the new PBS.
In Section 5, we present our experimental results. Finally, the
conclusions are presented Section 6.

2 The State of the Art in CNF-SAT Search

Recent improvements to the DLL procedure [8] have fo-
cused on the internal data structures and various heuristics
that guide complete search. This section describes the most
effective enhancements, and our new solver PBS includes
them.

The DLL procedure performs a depth-first search in the
decision tree over of the problem variables and can be
viewed as consisting of three main engines: decision, deduc-
tion, and diagnosis. The decision engine makes an elective
assignment based on a heuristic. The deduction engine
makes a forced assignment based on the problem constraints
and current partial assignments to other variables. The main
idea is based on the unit clause rule which forces the assign-
ment of the only unassigned variable in a clause whose other
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literals are all 0. Boolean Constraint Propagation (BCP) is
achieved by the repeated application of the unit clause rule
over a given clause database, and is known to identify all
possible implications of the decisions made thus far. Finally,
the diagnosis engine handles the occurrence of conflicts (i.e.,
assignments that cause the formula to become unsatisfiable)
and backtracks appropriately.

2.1 Decision Strategy

Decision heuristics have played an important role in en-
hancing the performance of SAT solvers. Several studies
have proposed various decision heuristics that can be classi-
fied as static [1] or dynamic [14, 15, 24]. For example, the
GRASP SAT solver [14] is typically used with the dynamic
decision heuristic DLIS which selects the literal that appears
in the maximum number of unresolved clauses. One heuristic
that has been found to be particularly effective in a variety of
problems is VSIDS [15]. It was implemented in the Chaff
SAT solver. The heuristic maintains two counters for every
variable. They are incremented if a positive or negative liter-
al is identified in a new conflict-induced clause, respectively.
The variable with highest counter is selected for the next de-
cision. In order to emphasize the variables identified in re-
cent conflicts, the counters are periodically divided by a
constant.

2.2 Improved BCP

Enhancements to the implementation of BCP were
shown to yield significant performance improvements [15,
26]. Noting that a sizable fraction of a SAT solver’s runtime
is spent in the BCP procedure, these enhancements can be
viewed as a form of “lazy” evaluation that avoids unneces-
sary traversals of the clause database. In conventional BCP
procedures, whenever a variable v is assigned, all clauses
containing literals of this variable are traversed to check
whether they have become unit or are in conflict. In other
words, an implication step requires time bounded by the
number of existing literals of the assigned variable. Recently,
Moskewicz et al. [15], presented a very efficient implemen-
tation of an amortized linear time BCP algorithm. The basic
idea is to keep track of any two unresolved literals in each
clause. A unit clause can, then, be easily detected when the
two pointers concur. Furthermore, this approach incurs no
penalty when a variable is unassigned.

Empirically, such BCP improvements show great im-
provements over conventional BCP implementations, espe-
cially for problems containing large number of large clauses;
for example, a problem consisting of n k-literal clauses
needs 2n pointers instead of kn pointers.

2.3 Contflict Diagnosis and Clause Deletion

One of the most powerful techniques to expedite the
search process is known as conflict diagnosis [14]. Whenev-
er a conflict is detected, the conflict is analyzed and a con-
flict-induced clause is added to the clause database to ensure
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that the undiagnosed variable assignment doesn’t occur in
future. Using the learned clause, it is possible to backtrack
non-chronologically. This technique is implemented in al-
most all backtrack search SAT solvers and has shown to be
very effective in pruning the search space. Since then, sever-
al clause learning schemes have been proposed [14, 15],
some of which learn multiple clauses at each conflict. Re-
cently, however, Zhang et al. [25] proved empirically that the
1UIP learning scheme, in which a single clause is learned at
each conflict, showed the best performance among a variety
of schemes on several hard instances.

Nevertheless, conflict-induced clauses tend to consist of
hundreds of literals. Recording all conflict-induced clauses
during a search process can be impractical as its possible for
the clause database to grow exponentially. Several methods
have been proposed to handle this efficiently. One solution is
to keep any conflict-induced clause of size smaller than a
user-specified threshold & and discard all others as soon as
they are generated.

2.4 Random Restarts and Backtracking

Besides learning new clauses, recent studies have shown
that using randomization and random restarts can be very ef-
fective in solving hard SAT instances [2, 10, 15]. A SAT
solver may often get stuck in a local non-useful search space.
The restart process periodically unassigns all previous deci-
sions and implications and randomly selects a new sequence
of decisions. This process ensures that different sub-trees are
searched every time the search process restarts. Clauses
learned between various restarts are kept for future use.

Recently, Lynce et al. [13] proposed and empirically
evaluated combining randomization with backtracks. Period-
ically, the diagnosis engine backtracks non-chronologically
to a decision level involving any literal in the conflict-in-
duced clause. This process has been shown to be effective on
various instances. The completeness of the search is pre-
served by keeping all conflict-induced clauses during the
search process.

3 Processing of Pseudo-Boolean Constraints

In this section we define the PB constraints and describe
the details of how PBS can be implemented to process both
CNF and PB constraints efficiently. In particular, we explain
how to adapt backtrack search SAT solvers to handle both
CNF and PB constraints. A PB constraint is a linear inequal-
ity in terms of 0-1 variables:

cpxpt..tex, <n

In this work we assume that coefficients ¢; and n are in-
tegers because that is sufficient for most applications and en-
ables minor implementation efficiencies. x; are literals of
Boolean variables. In principle, none of our algorithms rely
on the integrality of coefficients and can be implemented for
floating-point coefficients.
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Figure 1. Example representing “at most 2 out of

Vs Vs V3, Vg, Vs CAN be true” using
(a) pure CNF (b) PB form

3.1 Motivating Example

Consider a problem in which the objective is to limit the
number of true assignments to a set of £ variables out of a
total of n variables in the problem. A straightforward CNF

. . n
CIlCOdlIlg requires: (
k+

1) clauses of size (k+ 1) each,
which does not scale well and requires more than 150 million
clauses for n=30 variables. On the other hand, such a “count-
ing” constraint can be handled literally by a PB solver, as a
single PB constraint. Figure 1 illustrates the difference be-
tween a problem encoded in pure CNF and PB form. PB con-
straints are well suited for modeling cost functions and are
likely to be useful when applying SAT to optimization prob-
lems throughout the EDA domain. Note that even when each
counting constraint involves only 5-10 literals, the advantage
of PB formulation can be significant if the number of count-
ing constraints is large.

3.2 Algorithms for PB-SAT Search

Besides the conventional “problem-in/solution-out”
mode of operation, our solver supports incremental changes
to PB constraints after an instance is solved or if it times out.
Therefore, it can be used (i) to prove the consistency of the
formula by identifying a satisfiable assignment, or (ii) to op-
timize the upper/lower bounds for selected PB constraints.

Our algorithms maintain two separate data structures -
for CNF constraints, we use the “watched literal” data struc-
ture from Chaff [15] and for PB constraints we use data
structures somewhat related to those in SATIRE [23]. For
further details of CNF data structures, the reader is referred
to [15]. Our data structures for PB constraints are described
below.

Every PB constraint is represented internally by a record.
Each such record contains these fields:

* The objective goal n, the constraint type ( > ,< or
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=), and a list of coefficients with respective literals

C.X..
Ul

e The initLHS field stores the sum of all coefficients in
the PB constraint.

* The LHS field stores the value of the left-hand-side of
the PB constraint computed based on the currently
assigned variables.

e The maxLHS field represents the maximum possible
value of the left-hand-side.

For efficiency, the list of ¢ x; is sorted in each record, in
the order of increasing c; values. Another improvement is to
convert each PB constraint to the form where all coefficients
are positive. This is achieved using negated variables, as il-
lustrated by the following example:

CiX]—CypXySn
c1x;—oy(1 —x_2) <n
cyxt 02x_2 Snte,

For each variable x ,we maintain its value as well as lists
PosPBLits and NegPBLits of PB constraints that include a
positive or a negative literal in x.

After assigning true to variable v, we traverse the PB
pointers in the PosPBLits and NegPBLits of variable v . The
LHS of every PB constraint pointed to by the PosPBLits is
incremented by the coefficient associated with v in the given
PB constraint. On the other hand, the maxLHS of every PB
constraint pointed to by the NegPBLits is decremented by the
coefficient associated with v in the given PB constraint. Un-
doing an assignment of true to a variable v, entails a similar
traversal, except that the LHS and maxLHS values for ev-
ery affected PB constraint are decremented and incremented,
respectively. When assigning or un-assigning false, we per-
form similar traversals as well.

In the process of updating the PB constraint fields, we
watch for new implications and conflicts. Each PB constraint
type is associated with a set of rules for detecting implica-
tions and conflicts. Given a PB constraint of type “ < ”, any
literal x; whose coefficient is ¢;>n—LHS is implied to
false. The implying literals consist of the set of literals as-
signed to true in the PB constraint. In terms of a PB con-
straint of type “>”, a literal x; is implied to frue if its
coefficient is ¢;>maxLHS —n . The implying literals con-
sist of the set of literals assigned to false in the PB constraint.
The time needed to identify the implications is ameliorated
by maintaining a pointer in each PB constraint to the unas-
signed literal with the highest coefficient.

When a conflict is detected in a PB constraint of type
“<” (i.e., for LHS > n), the conflicting clause consists of
literals assigned to frue. If the LHS is significantly large, it
may be possible to simplify the conflicting clause. In order to
minimize the number of literals in the conflicting clause, re-
call that all coefficients are positive. Thus we can select only
a subset of literals, whose coefficients add up to > n . Simi-
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larly, when a conflict is detected in a PB constraint of type
“>” (i.e., maxLHS < n), the conflicting clause consists of
literals assigned to false. The conflicting clause size can be
reduced by selecting a subset of literals with false values
whose coefficients total is greater than or equal to
initLHS —n. While finding a smallest possible conflict
clause is as difficult as solving the NP-complete problem
KNAPSACK, we use a classic heuristic that packs starting
from the greatest coefficient towards the smallest.

Each PB constraint of type “ = ” is handled by following
rules for inequalities of types > and < that have the same
left-hand and right-hand sides. Moreover, only one PB
record is used.

The described algorithm is complete for the same reasons
that the DLL algorithm is complete, and can be readily inte-
grated into practically any existing backtrack SAT solver.

4 Applications

Two classes of applications that can be expressed in PB/
CNF form are described in this section. First, we show how
adding a single PB constraint with a sliding lower/upper
bound to a CNF formula can model standard Boolean opti-
mization problems. Second, we discuss the benefits of using
multiple PB constraints with fixed bounds in global routing.

4.1 Max-ONEs

The Max-ONEs problem seeks an assignment that satis-
fies all constraints in the problem and maximizes the number
of variables assigned to true. Several problems can be repre-
sented as a Max-ONEs problem, such as the “Max-Clique”
problem [7]. Similarly, Vertex Cover can be reduced to Min-
ONEs, which is essentially the same problem from the com-
putational stand-point. The book [7] also defines weighted
versions of those optimization problems, and the same reduc-
tions hold as in the un-weighted case.

To model Max-ONEs as an extension of CNF-SAT, we
add a single PB constraint of type “>” that includes each
variable with coefficient 1. “Weighted Max-ONEs” [7] prob-
lems, in which variables are assigned different coefficients,
can be handled similarly. Min-ONEs can be modeled as an
extension to CNF-SAT by adding a single PB constraint of
type <, that includes each variable with coefficient 1.

In order to find an assignment with the maximal number
of true values, we iteratively increase the lower bound in the
single PB constraint until the instance becomes unsatisfiable.
The solver retains learned conflict clauses and therefore runs
much faster than it would during independent starts with
modified lower bounds.

In the same spirit, one can use PBS to optimally solve the
Max-SAT problem [7], which has applications to Max-CUT
and other discrete optimization problems. Again, this can
also be trivially expressed using a single PB constraint with
sliding lower bound. In this work, we perform experiments
for the Max-ONEs problem only, since the Max-SAT prob-
lem can be addressed, to some extent, by existing local
search solvers such as WalkSAT [17].
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Figure 2. SAT formulations for global routing.

4.2 Global Routing

Earlier works on SAT-based routing focused on detailed
routing for FPGAs, primarily because problems in that do-
main tend to be very constrained. With recent improvements
in SAT solvers, it is reasonable to broaden SAT routing ap-
proaches to also address global routing formulations. How-
ever, such attempts were hindered so far by the presence of
counting constraints that are intrinsic to global routing. In
this section we demonstrate how PB constraints address this
problem and lead to new PB-SAT formulations for global
routing.

We use a grid model for our global routing instances. A
two-dimensional grid consists of grid cells arranged in rows
and columns. We refer to cell boundaries as edges, i.e. if
there are two adjacent cells in a route then the route passes
through the edge between the two cells. Horizontal edges ex-
ist between adjacent cells in the same row, and vertical edges
exist between adjacent cells in the same column. The goal is
to route a number of two-pin connections in the grid with
edge capacity constraints. Edge capacities are introduced to
express the constraint that there is an upper bound on the
number of routes that can pass through an edge to reduce
coupling. A capacity C is associated with each edge, indicat-
ing that no more than C routes can pass through that edge.
To ensure that the instances are satisfiable but difficult to
solve, we propose construction by randomized flooding.
Namely, we create a routing configuration by adding shortest
possible routes while unused routing resources (edge capac-
ities) remain. Shortest routes are created by breadth-first-
search between two randomly chosen grid cells or, if that
fails, by finding a maximal shortest route starting at a given
grid cell with unused routing resources. After a routing con-
figuration is created, routes are erased and their end points
are used to formulate a SAT instance.

4.2.1 CNF-SAT Formulations

Routes are specified in terms of edges across cell bound-
aries in a grid. A connection is routed across edges through
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route tracks. In the SAT formulation, each track is treated as
a variable. In a grid with H rows and V' columns, there are
(¥ —1)H horizontal tracks and (H — 1)V vertical tracks per
connection. Therefore, if there are n connections, a total of
N = n((H-1)V+ (V—1)H) variables are required to ex-
press connectivity constraints. Figure 2(a) illustrates how
variables are labeled in a 3 x 3 grid. Horizontal tracks for net
i are labeled (4, i) v where » and ¢ are the row and col-
umn indices of the cell whose boundary the track crosses.
Vertical tracks are labeled (v, i) e

Our method of expressing routing instances as SAT prob-
lems has two components. One deals with route definition
and captures possible ways to route each connection. The
other addresses capacity constraints, which restrict the num-
ber of nets that can be routed across a grid cell boundary. The
route definition component is similar to the connectivity (or
“liveness”) constraint defined in [16] for SAT-based FPGA
routing, and the capacity constraints are similar to the exclu-
sivity constraints. The definitions of CNF constraints are
available in the Appendix.

4.2.2 Pseudo-Boolean Constraints in SAT Formulations

The SAT instances outlined above are satisfiable, yet
must be at least as hard as the routing instances. Moreover,
the conversion to CNF is likely to make them more difficult.
Incomplete SAT solvers, e.g., WalkSAT [17], are typically
not able to solve such SAT instances even for modest-sized
grids. Chaff [15], too, spends considerable time solving
them, partly because of their sheer size.

One can see that these SAT formulations owe their size
to the CNF encoding of capacity constraints. Connectivity
constraints are encoded compactly as only one variable per
track per connection is needed. For capacity constraints, one
needs C variables per track per connection, and a number of
clauses relate those variables. In fact, if 7 is the numberzof
connections, and C 1is the capacity, we add (nC+ C")
clauses per track per connection. The same constraints could
be expressed much more efficiently as counting constraints
in PB form. Namely, no more than C such connections
should be routed through a given edge, in other words the
sum of indicator variables for a given edges is upper-bound-
edby C.

For a PB-SAT solver, all capacity constraints could be
encoded in just ((H—1)V+(V—1)H) clauses (one con-
straint per edge). In our experiments we compared such
smaller PB-SAT instances (solved with PBS) to the original
CNF instances (solved with Chaff).

S Experimental Results

In this section, we empirically validate the algorithms de-
scribed in Section 2 and Section 3 as well as PB-SAT formu-
lations described in Section 4.

All experiments are conducted on a Pentium-II 333Mhz
workstation running Linux and equipped with 512 Mbytes of
RAM. Our algorithms are implemented in C++. The runtime
limit is set to 5,000 seconds for all experiments. Our solver
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TABLE I: Global Routing Runtime Results (in seconds)

Instance CNF + pseudo-Boolean pure CNF PBS Speedup
\% C |#PB||PBS | SATIRE | OPBDP || V C Chaff || SATIRE | OPBDP | Chaff
grout3.3-1 216 572 12[[ 1.72 0.41 4.51]] 864| 7592] 40.43 0.24 2.62 24
grout3.3-2 264 700| 12{| 0.33 0.96 4.65|| 1056| 10864 11.3 2.9 14.1 34
grout3.3-3 240 636| 12|| 0.09 1.1 6.65|| 960| 9156 37.21 12 74 413
grout3.3-4 228| 604 12| 1.29 0.2 4.73|| 912| 8356| 103.13 0.16 3.67 80
grout3.3-5 240 634 12| 0.84 0.35 6.88|| 960| 9154 71.21 0.42 8.19 85
grout4.3-1 672| 2004| 24|| 3.46 109.7 5000(| 2688 | 33924| 1361.6 32 >1445 394
grout4.3-2 648 | 1928| 24| 1.92 32.13 5000]| 2592| 31736 5000 17 >2604| >2604
grout4.3-3 648 | 1930| 24| 5.52 319.47 5000]| 2592| 31738 5000 58 >906| >906
grout4.3-4 696| 2072 24| 16.3 3772 5000(| 2784 | 36176 2523 231 >307 155
grout4.3-5 720| 2144| 24| 2.06 567.12 5000(| 2880 | 38504 3915 275 >2427| >1900
grout4.3-6 624| 1860 24|| 134 5000 5000(| 2496 | 29628 5000 >37 >37 37
grout4.3-7 672| 2006 24|| 55 5000 5000(| 2688 | 33926| 772.6 >91 >91 14
grout4.3-8 432] 1280| 24|| 2.9 177.8 5000]| 1728 | 15320 125 61 >1724 43
grout4.3-9 840| 2502 24| 376 5000 5000]| 3360| 51222 3203 >13 >13 8.52
grout4.3-10 840| 2504| 24|| 7.4 5000 5000(| 3360| 51224 3465 >676 >676 468

PBS is compared against the SAT solvers Chaff [15] and
SATIRE [23], as well as to the ILP solver OPBDP [4] whose
algorithm is specialized to 0-1 problems.

We used the default settings for Chaff and OPBDP. The
setting (+d DLCS) was used with SATIRE. We configured
our solver to use the following:

VSIDS decision heuristic [15],
Optimized BCP approach with watched literals [15],

Random restarts [10],

Single-clause conflict analysis as suggested by the
authors of Chaff [15, 25].

Clause deletion and random backtracking are disabled.

Table I lists the runtimes for the global routing instances
described in Section 4.2. Each routing instance was encoded
in two ways: (i) using CNF and PB constraints where neces-
sary, (ii) using CNF only. Table I also lists the number of
variables (V), clauses (C), and PB constraints in each prob-
lem. Chaff was tested on the pure CNF formulation whereas
all other solvers were tested using the general formulation
which includes CNF and PB constraints. Clearly, the size of
the problems, in terms of both the variables and clauses, sig-
nificantly increases using the pure CNF formulation. Such
instances are likely to run out of memory. Moreover, the
overall runtime performance of PBS is significantly better
than Chaff, SATIRE, or OPBDP. For example, PBS was able
to solve the grout4.3-2 instance in less than 2 seconds while
OPBDP and Chaff time out after 5000 seconds. PBS solved
all 15 instances, whereas SATIRE, OPBDP, and Chaff were
only able to solve 11, 5, and 12 instances, respectively.

The results of the Max-ONEs experiment are listed in
Table II. Several satisfiable instances from various bench-
marks including the DIMACs [9], Bejing [11], quasi-group
[24], and sat-planning [11] were tested. The table of results
include the number of variables in each problem (V), the
maximum possible number of variables assigned to true in a
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satisfying assignment (MaxONEs), the runtimes for PBS,
SATIRE, and OBP, and the corresponding speedup of PBS
against the other two solvers. The table clearly shows the
performance improvement obtained by PBS.

6 Conclusions

In this work we have studied discrete optimization and
constraint satisfaction problems related to Boolean satisfi-
ability. We have shown that, in applications such as routing,
encodings that utilize CNF and pseudo-Boolean constraints
can be much more compact than pure CNF encodings. We
developed a solver for this extension of the Boolean satisfi-
ability problem, and demonstrated speed-ups (on larger
benchmarks) of an order of magnitude or more against three
previously published approaches, including an earlier pseu-
do-Boolean solver and currently-best solver for pure CNF.

Additionally, we applied our new solver to the Max-
ONE:s problem (a trivial modification for Min-ONEs was not
explored), whose significance is due to a reduction from the
Max-Clique problem (the Min Vertex Cover problem reduc-
es to Min-ONEs). On most of the Max-ONEs benchmarks,
the new solver demonstrated very impressive speed-ups over
two alternative approaches constructed using previously
published solvers.

By significantly improving the efficiency of SAT-based
applications, particularly routing, our work opens a new av-
enue in this area. Our on-going work in this direction in-
cludes embedding SAT-based routers into realistic
algorithmic flows and benchmarking them against best
known geometric algorithms.

Our progress on the Max-ONEs problem - a fundamental,
but unfortunately overlooked formulation, - also opens new
applications of Davis-Putnam solvers. Our future work will
study applications to Max-Clique, Max Independent Set and
Min Vertex Cover - fairly popular problems in logic synthe-
sis and other areas of design automation.
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TABLE II: Max-ONEs Experiment Results (in seconds)

Benchmark Satisfiable V |MaxONEs| PBS | SATIRE | OPBDP || LoD Speedup
Instance SATIRE | OPBDP
DIMACS aim-50-1_6-yes1-1 50 29 0.01 0.01 0.02 1 2
aim-100-1_6-yes1-1 100 43 0.01 0.02 7.19 2 719
aim-200-2_0-yes1 1 200 96 0.01 0.06 5000 6 >500K
ii8b1 336 275 4.69 3180 56.2 678 12
jnhl 100 55 0.32 2.2 0.12 6.88 0.38
jnh204 100 58 0.28 1.63 0.14 5.82 0.50
par8-1 350 79 0.01 0.06 0.05 6 5
par8-2-c 68 20 0.01 0.02 0.01 2 1
Bejing 3blocks 283 63 4.83 49.53 4494 10.3 930
QG qg7-09 729 81 0.1 5.41 9.8 54.1 98
qg6-09 729 81 0.21 5.56 45 26.5 214
Satplan-sat |bw_a 459 73 0.03 0.43 0.21 14.3 7
bw_b 1087 136 0.58 6.39 17.86 11 31
bw_c 3016 272 24.37 315.5 5000 13 >205
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Appendix

Route Definition (Connectivity constraint)

In Figure 2(a), let the points marked S and E be the ter-
minals of some two-terminal connection i . The SAT formu-
lation proceeds as follows. Consider the terminal marked S'.

A route for this net must pass through (4, i); | or (v,i); .
Therefore, we add the clause ((%,i); |+ (v,i); ;). Clear-

ly, both these tracks cannot be selected at the same time so
we add the mutual exclusion constraint

(@@ 0y + ).

We now push the cells reachable from the possible tracks
into a queue. The queue contains cells reachable from those
already visited. A list of visited cells is also maintained so
that a cell is not pushed on the queue twice. While the queue
is not empty, cells are popped off it and new clauses are in-
troduced for the route tracks across the cell boundaries. In

our example, assume that the cell to the right of S is popped
off the queue. Since this cell is not an endpoint of the connec-
tion, exactly two of its boundaries must be selected. The cell
boundaries in this case are (4, i)l, 5, (B, i)l, | and

(v,i)y ,.  We therefore introduce the clauses

(D) 1+ i)y ) (i) + (i) ),

((h, 1)y 5+ (v,i); ,).However, again it is not possible for

and

more than two tracks to be selected. Therefore, we add claus-
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es of the form: ((, 1), | A (h,i); ,) = (v,i); 5. Thispro-

cedure is repeated for every cell popped off the queue until
the queue is empty.

Capacity Constraints

Each grid cell boundary (edge) has a capacity associated
with it, to restrict the number of nets that can be routed
through it. The capacity limits are intended to prevent con-
gestion. To encode capacity constraints in the SAT formula-

tion, if C is the capacity limit for a route track, then we
include C extra variables per route track for each connec-
tion. This essentially says that each connection can be routed
through one of C tracks across a cell boundary. This is illus-
trated in Figure 2(b).

Consider two connections i and j. Consider horizontal

route tracks for each connection, (4, i) and (4,j), . for

r,c >
some row 7 and column c. Let

s D(r, 00, 1y B Dy 0, 2 P Dy 0, 0)
and

B D(r, o0, 1y B, 0,2 = PP, 0, ©)

be the C extra variables introduced in the SAT formulation
for the horizontal track in question. Then clearly, for any

(h, i)((r o), ky 1<k<C, the following implications
hold: T

(h, l‘)((,,’ o), k) = (h, l.),,’ ¢

and
(i), =

(D00 1y B Do), 2) - F D), )

Clauses of this form are added to the SAT instance.
Another restriction is that a route cannot pass through

two tracks for the same edge, i.e. if for some &, 1 <k<c, if

(h, i)((r o), k) is true, then for all

LISISCI#k (D) oy 1= (D 0. 1)
These clauses are also added. Finally, two connections can-
not be routed through the same track, i.e. for all
k1<k<C, (h, i)((r’c)’k):m for all j#i,
where j represents another connection. By combining the

aforementioned techniques, we are able to express routing
instances as SAT problems.
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