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Fixed Points of Generalized Approximate Message
Passing with Arbitrary Matrices

Sundeep Rangan, Philip Schniter, Erwin Riegler, Alyson Fletcher, Volkan Cevher

Abstract—The estimation of a random vector with independent
components passed through a linear transform followed by a
componentwise (possibly nonlinear) output map arises in a range
of applications. Approximate message passing (AMP) methods,
based on Gaussian approximations of loopy belief propagation,
have recently attracted considerable attention for such prob-
lems. For large random transforms, these methods exhibit fast
convergence and admit precise analytic characterizationswith
testable conditions for optimality, even for certain non-convex
problem instances. However, the behavior of AMP under general
transforms is not fully understood. In this paper, we consider
the generalized AMP (GAMP) algorithm and relate the method
to more common optimization techniques. This analysis enables
a precise characterization of the GAMP algorithm fixed-points
that applies to arbitrary transforms. In particular, we sho w that
the fixed points of the so-called max-sum GAMP algorithm for
MAP estimation are critical points of a constrained maximization
of the posterior density. The fixed-points of the sum-product
GAMP algorithm for estimation of the posterior marginals can
be interpreted as critical points of a certain mean-field variational
optimization.

Index Terms—Belief propagation, ADMM, variational opti-
mization, message passing.

I. I NTRODUCTION

Consider the constrained optimization problem

(x̂, ẑ) := argmin
x,z

F (x, z) s.t. z = Ax, (1)

wherex ∈ R
n, z ∈ R

m, A ∈ R
m×n and the objective function

admits a decomposition of the form

F (x, z) := fx(x) + fz(z)

fx(x) =
n∑

j=1

fxj
(xj), fz(z) =

m∑

i=1

fzi(zi), (2)

for scalar functionsfxj
(·) andfzi(·). One example where this

optimization arises is the estimation problem in Fig. 1. Here, a
random vectorx has independent components with densities
pxj

(xj), and passes through a linear transform to yield an
output z = Ax. The problem is to estimatex and z from
measurementsy generated by a componentwise conditional
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Fig. 1. System model: The GAMP method considered here can be used for
approximate MAP and MMSE estimation ofx from y.

densitypyi|zi(yi|zi). Under this observation model, the vectors
x andz will have a posterior joint density given by

px,z|y(x, z|y) = [Z(y)]−1e−F (x,z)
1{z=Ax}, (3)

whereF (x, z) is given by (2) when the scalar functions are
set to the negative log density and likelihood:

fxj
(xj) = − log pxj

(xj), fzi(zi) = − log pyi|zi(yi|zi).

Note that in (3),F (x, z) is implicitly a function ofy, Z(y) is a
normalization constant and the point mass1{z=Ax} imposes
the linear constraint thatz = Ax. The optimization (1) in
this case produces themaximum a posteriori(MAP) estimate
of x and z. In statistics, the system in Fig. 1 is sometimes
referred to as a generalized linear model [1], [2] and is
used in a range of applications including regression, inverse
problems, and filtering. Bayesian forms of compressed sensing
can also be considered in this framework by imposing a sparse
prior for the componentsxj [3]. In all these applications,
one may instead be interested in estimating the posterior
marginalsp(xj |y) andp(zi|y). We relate this objective to an
optimization of the form (1)–(2) in the sequel.

Most current numerical methods for solving the constrained
optimization problem (1) attempt to exploit the separable
structure of the objective function (2) either through gener-
alizations of the iterative shrinkage and thresholding (ISTA)
algorithms [4]–[10] or alternating direction method of mul-
tipliers (ADMM) approach [11]–[20]. There are now a large
number of these methods and we provide a brief review in
Section II.

However, in recent years, there has been considerable
interest in so-called approximate message passing (AMP)
methods based on Gaussian and quadratic approximations of
loopy belief propagation in graphical models [21]–[26]. The
main appealing feature of the AMP algorithms is that for
certain large random matricesA, the asymptotic behavior of
the algorithm can be rigorously and exactly predicted with
testable conditions for optimality, even for many non-convex
instances. Moreover, in the case of these large, random matri-
ces, simulations appear to show very fast convergence of AMP

http://arxiv.org/abs/1301.6295v2


2

methods when compared against state-of-the-art conventional
optimization techniques.

However, despite recent extensions to larger classes of
random matrices [27], [28], the behavior of AMP methods
under generalA is not fully understood. The broad purpose
of this paper is to show that certain forms of AMP algorithms
can be seen as variants of more conventional optimization
methods. This analysis will enable a precise characterization of
the fixed points of the AMP methods that applies to arbitrary
A.

Our study focuses on a generalized AMP (GAMP) method
proposed in [26] and rigorously analyzed in [29]. We consider
this algorithm since many other variants of AMP are special
cases of this general procedure. The GAMP method has two
common versions: max-sum GAMP for the MAP estimation of
the vectorsx andz for the problem in Fig. 1; and sum-product
GAMP for approximate inference of the posterior marginals.

For both versions of GAMP, the algorithms produce esti-
matesx andz along with certain “quadratic” terms. Our first
main result (Theorem 1) shows that the fixed points(x̂, ẑ)
of the max-sum GAMP are critical points of the optimization
(1). In addition, the quadratic terms can be considered as di-
agonal approximations of the inverse Hessian of the objective
function. For sum-product GAMP, we provide a variational
interpretation of the algorithm’s fixed points. Specifically, we
show (Theorem 2) that the algorithm’s fixed points can be
interpreted as means and variances of a certain Gaussian mean-
field approximation of the posterior distribution. The results
are compared against the well-known characterization of fixed
points of standard loopy BP [30]–[33].

II. REVIEW OF GAMP AND RELATED METHODS

A. Generalized Approximate Message Passing

Graphical-model methods [34] are a natural approach to
the optimization problem (1) given the separable structure
of the objective function (2). However, traditional graphical
model techniques such as loopy belief propagation (loopy
BP) generally require that the constraint matrixA is sparse.
Approximate message passing (AMP) refers to a class of
Gaussian and quadratic approximations of loopy BP that can
be applied to denseA. AMP approximations of loopy BP
originated in CDMA multiuser detection problems [35]–[37]
and have received considerable recent attention in the context
of compressed sensing [21]–[26], [38]. The Gaussian approx-
imations used in AMP are also closely related to expectation
propagation techniques [39], [40].

In this work, we study the so-called generalized AMP
(GAMP) algorithm [26] rigorously analyzed in [29]. The
procedure, shown in Algorithm 1, produces a sequence
of estimates (xt, zt) along with the quadratic terms
τ t
x, τ

t
z , τ

t
p, τ

t
r , τ

t
s . Note that all vector-vector multiplications

in Algorithm 1 (e.g.,st−1τ t
p) are to be taken componentwise.

We focus on two variants of the GAMP algorithm:max-
sum GAMPandsum-product GAMP. In the max-sum version
of the algorithm, the outputs(xt, zt) represent estimates of
the solution to the optimization problem (1), or equivalently
the MAP estimates for the posterior (3). Since the objective

Algorithm 1 Generalized Approximate Message Passing
(GAMP)
Require: Matrix A, functions fx(x), fz(z). and algorithm

choice MaxSum or SumProduct.
1: t← 0
2: Initialize xt, τ t

x

3: st−1 ← 0
4: S← |A|2 (componentwise magnitude squared)
5: repeat
6: {Output node update}
7: τ t

p ← Sτ t
x

8: pt ← Axt − st−1τ t
p

9: if MaxSumthen
10: zt ← prox

τ
t
pfz

(pt)

11: τ t
z ← τ t

p prox
′
τ

t
pfz

(pt)

12: else if SumProductthen
13: zt ← E(z|pt, τ t

p)
14: τ t

z ← var(z|pt, τ t
p)

15: end if
16: st ← (zt − pt)/τ t

p

17: τ t
s ← 1/τ t

p − τ t
z/(τ

t
p)

2

18:

19: {Input node update}
20: τ t

r ← 1/(STτ t
s )

21: rt ← xt + τ t
rA

T st

22: if MaxSumthen
23: xt+1 ← prox

τ
t
rfx

(rt)

24: τ t+1
x ← τ t

r prox
′
τ

t
rfx

(rt)
25: else if SumProductthen
26: xt+1 ← E(x|rt, τ t

r)
27: τ t+1

x ← var(x|rt, τ t
r )

28: end if
29: until Terminated

function has the separable form (2), each iteration of the algo-
rithm involves four componentwise update steps: the proximal
updates shown in lines 10 and 23, where

proxf (v) := argmin
u∈R

f(u) +
1

2
|u− v|2, (4)

and lines 11 and 24, involving the derivative of the proximal
operator from (4). In particular, lines 10 and 11 are to be
interpreted as

zti = proxτ t
pi

fzi
(pti) i = 1, . . . ,m, (5)

τ tzi = τ tpi
prox′τ t

pi
fzi

(pti) i = 1, . . . ,m, (6)

= τ tpi

(
1 + τ tpi

∂2fzi(z
t
i)

∂z2i

)−1

i = 1, . . . ,m, (7)

with similar interpretations for lines 23 and 24. Thus, max-
sum GAMP reduces the vector-valued optimization (1) to a
sequence of scalar optimizations.

For the sum-product GAMP algorithm, the outputs(xt, zt)
represent the posterior means for the density (3), or equiva-
lently, the minimum mean-squared error (MMSE) estimates
of (x, z) given y. As discussed in [26], the algorithm also
provides estimates of the posterior marginals. The expectations
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and variances in lines 13, 14, 26 and 27 of the algorithm are
taken with respect to the probability density functions:

p(x|r, τr) ∝ exp

[
−fx(x) +

1

2
‖x− r‖2

τr

]
(8a)

p(z|p, τp) ∝ exp

[
−fz(z) +

1

2
‖z− p‖2

τp

]
, (8b)

where, for any vectorsv ∈ R
r andτ ∈ R

r with τ > 0,

‖v‖2
τ
:=

r∑

i=1

|vi|
2

τi
.

Under separability assumption (2), these densities factoras

p(x|r, τr) ∝

n∏

j=1

exp

[
−fxj

(xj)−
|xj − rj |

2

2τrj

]
(9a)

p(z|p, τp) ∝

m∏

i=1

exp

[
−fzi(zi)−

|zi − pi|
2

2τpi

]
, (9b)

allowing the expectation and variance computations to be com-
puted componentwise, and reducing the sum-product GAMP
algorithm to a sequence of scalar estimation optimizations.

B. Iterative Shrinkage and Thresholding Algorithm

The goal in the paper is to relate the GAMP method
to more conventional optimization techniques. One of the
more common of such approaches is a generalization of the
Iterative Shrinkage and Thresholding Algorithm (ISTA) shown
in Algorithm 2 [4]–[8].

Algorithm 2 Iterative Shrinkage and Thresholding Algorithm
(ISTA)
Require: Matrix A, scalarc, functionsfx(·), fz(·).

1: t← 0
2: Initialize xt.
3: repeat
4: zt ← Axt

5: qt ← ∂fz(z
t)/∂z

6: xt+1 ← argminx fx(x)+ (qt)TAx+(c/2)‖x−xt‖2

7: until Terminated

The algorithm is built on the idea that, at each iterationt,
the second cost term in the minimizationargminx fx(x) +
fz(Ax) specified by (1) is replaced by a quadratic majorizing
costgz(x) ≥ fz(Ax) that coincides at the pointx = xt (i.e.,
gz(x

t) = fz(Axt)), where majorization can be achieved via
appropriate choice ofc > 0. This approach is motivated by the
fact that, iffx(x) andfz(z) are both separable, as in (2), then
both the gradient in line 5 and minimization in line 6 can be
performed componentwise. Moreover, whenfx(x) = λ‖x‖1,
as in the LASSO problem [41], the minimization in line 6
can be computed directly via a shrinkage and thresholding
operation – hence the name of the algorithm. The convergence
of the ISTA method tends to be slow, but a number of enhanced
methods have been successful and widely-used [7]–[10].

C. Alternating Direction Method of Multipliers

A second common class of methods is built around the
Alternating Direction Method of Multipliers (ADMM) [11]
approach shown in Algorithm 3. The Lagrangian for the
optimization problem (1) is given by

L(x, z, s) := F (x, z) + sT (z−Ax), (10)

wheres are the dual parameters. ADMM attempts to produce
a sequence of estimates(xt, zt, st) that converge to a saddle
point of the Lagrangian (10). The parameters of the algorithm
are a step-sizeα > 0 and the penalty termsQz(·) andQx(·),
which classical ADMM would choose as

Qx(x,x
t, zt, α) =

α

2
‖zt −Ax‖2 (11a)

Qz(z, z
t,xt+1, α) =

α

2
‖z−Axt+1‖2. (11b)

Algorithm 3 Alternating Direction Method of Multipliers
(ADMM)
Require: A, α, functionsfx(·), fz(·), Qx(·), Qz(·)

1: t← 0
2: Initialize xt, zt, st

3: repeat
4: xt+1 ← argminx L(x, z

t, st) +Qx(x,x
t, zt, α)

5: zt+1 ← argminz L(x
t+1, z, st) +Qz(z, z

t,xt+1, α)
6: st+1 ← st + α(zt+1 −Axt+1)
7: until Terminated

When the objective function admits a separable form (2)
and one uses the auxiliary functionQz(·) in (11b), thez-
minimization in line 5 separates intom scalar optimizations.
However, due to the quadratic term‖Ax‖2 in (11a), thex-
minimization in line 4 does not separate for generalA. To
circumvent this problem, one might consider a separable in-
exactx-minimization, since many inexact variants of ADMM
are known to converge [12]. For example,Qx(·) might be
chosen to yield separability while majorizing the originalcost
in line 4, as was done for ISTA’s line 6, i.e.,

Qx(x,x
t, zt, α) (12)

=
α

2
‖zt −Ax‖2 +

1

2
(x− xt)T (cI− αATA)(x − xt)

with appropriatec, after which ADMM’s line 4 would become

argmin
x

fx(x) +
c

2

∥∥∥x− xt +
α

c
AT

(
Axt − zt −

1

α
st
)∥∥∥

2

.

(13)

Many other choices of penaltyQx(·) have also been consid-
ered in the literature (see, e.g., the overview in [18]), yielding
connections to Douglas Rachford splitting [12], split Bregman
[13], split inexact Uzawa [14], proximal forward-backward
splitting [15], and various primal-dual algorithms [16]–[20].

Other variants of ADMM are also possible [11]. For ex-
ample, the step-sizeα might vary with the iterationt, or the
penalty terms might have the form(z−Ax)TP(z−Ax) for
positive semidefiniteP. As we will see, these generalizations
provide a connection to GAMP.
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III. F IXED-POINTS OFMAX -SUM GAMP

Our first result connects the max-sum GAMP algorithm to
inexact ADMM. Given points(x, z), define the matrices

Qx :=
(
diag(dx) +AT diag(dz)A

)−1

(14a)

Qz :=
(
diag(dz)

−1 +A diag(dx)
−1AT

)−1

(14b)

wheredx anddz are the componentwise second derivatives

dx :=
∂2fx(x)

∂x2
, dz :=

∂2fz(z)

∂z2
. (15)

Note that whenfx(x) and fz(z) are strictly convex, the
vectorsdx anddz are positive. Observe that the matrixQx in
(14) is the inverse Hessian of the objective functionF (x, z)
constrained toz = Ax. That is,

Qx =

[
∂2

∂x2
F (x,Ax)

]−1

.

Theorem 1:The outputs of the max-sum GAMP version of
Algorithm 1 satisfy the recursions

xt+1 = argmin
x

[
L(x, zt, st) +

1

2
‖x− xt‖2

τ
t
r

]
(16a)

zt+1 = argmin
z

[
L(xt+1, z, st) +

1

2
‖z−Axt+1‖2

τ
t+1
p

]
(16b)

st+1 = st +
1

τ t+1
p

(zt+1 −Axt+1) (16c)

whereL(x, z, s) is the Lagrangian defined in (10).
Now suppose that(x̂, ẑ, s, τx, τs) is a fixed point of the

algorithm (where the “hats” on̂x andẑ are used to distinguish
them from free variables). Then, this fixed point is a critical
point of the constrained optimization (1) in thatẑ = Ax̂ and

∂

∂x
L(x̂, ẑ, s) = 0,

∂

∂z
L(x̂, ẑ, s) = 0. (17)

Moreover, the quadratic termsτx, τs are the approximate
diagonals(as defined in Appendix A) of the inverse Hessian
Qx and the matrixQz in (14) at (x, z) = (x̂, ẑ).

Proof: See Appendix B.
The first part of the Theorem, equation (16), shows that

max-sum GAMP can be interpreted as the ADMM Algo-
rithm 3 with adaptive vector-valued step-sizesτ t

r andτ t
p and a

particular choice of penaltyQx(·). To more precisely connect
GAMP and existing algorithms, it helps to express GAMP’s
x-update (16a) as theθ=0 case of

argmin
x

fx(x) +
1

2

∥∥x− xt + τ t
rA

T
(
θ(st−1 − st)− st

)∥∥2
τ

t
r

,

(18)

and recognize that the ISTA-inspired inexact ADMMx-update
(13) coincides with theθ=1 case under step-sizesα = 1/τ t

p

andc = 1/τ t
r . The convergence of this algorithm for particular

θ ∈ [0, 1] was studied in [18]–[20] under convex functions
fx(·) and fz(·) and non-adaptive step-sizes. Unfortunately,
these convergence results do not directly apply to the adaptive
vector-valued step-sizes of GAMP. However, the second part
of the Theorem shows at least that, if the algorithm converges,
its fixed points will be critical points of the constrained

optimization (1). In addition, the quadratic termτx can be
interpreted as an approximate diagonal to the inverse Hessian.

Finally, it is useful to compare the fixed-points of GAMP
with those of standard BP. A classic result of [30] shows that
any fixed point for standard max-sum loopy BP is locally
optimal in the sense that one cannot improve the objective
function by perturbing the solution on any set of components
whose variables belong to a subgraph that contains at most
one cycle. In particular, if the overall graph is acyclic, any
fixed-point of standard max-sum loopy BP is globally optimal.
Also, for any graph, the objective function cannot be reduced
by changing any individual component. The local optimality
for GAMP provided by Theorem 1 is weaker in that the
fixed-points only satisfy first-order conditions for saddlepoints
of the Lagrangian. This implies that, even an individual
component may only be locally optimal.

IV. F IXED-POINTS OFSUM-PRODUCT GAMP

A. Variational Formulation

The characterization of the fixed points of the sum-product
GAMP algorithm is somewhat more complicated to describe,
and requires a certainvariational interpretation – a common
framework for understanding sum-product loopy BP [32], [34].
For any fixed observationy, the density functionpx,z|y(·, ·|y)
in (3) must minimize

px,z|y = argmin
b

D(b||px,z|y), (19)

where the minimization is over all density functionsb(x, z)
with support restricted toz = Ax and D(b||px,z|y) is the
Kullback-Leibler (KL) divergence. Now, letpx|y(x|y) and
pz|y(z|y) be the marginal densities for the posteriorpx,z|y.
Using the relationshipb(x, z) = bx(x)1{z=Ax} and the
separable nature ofF (x, z) in (2), it can be verified that the
minimization (19) implies that the marginal densities overx

andz are solutions to the optimization

(px|y, pz|y) = argmin
bx,bz

JKL(bx, bz) s.t. bz = TAbx, (20)

where the minimization is over density functionsbx(x) and
bz(z) andJKL(bx, bz) is the functional

JKL(bx, bz) := D(bx||e
−fx) +D(bz ||e

−fz) +H(bz). (21)

In (20), we have used the notationbz = TAbx to indicate
that bz(z) is the density for a random vectorz = Ax with
x ∼ bx(x). Thus,pz|y = TApx|y. Note that we are treating
A as deterministic.

Our next main result, Theorem 2 below, will show that
the fixed points of the sum-product GAMP algorithm can be
interpreted as critical points of the optimization (20), but with
three key approximations: First, similar to what is known asa
mean-fieldapproximation, the optimization is performed only
over factorizable density functions of the form

bx(x) =

n∏

j=1

bxj
(xj), bz(z) =

m∏

i=1

bzi(zi). (22)
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Secondly, the objective functionJKL from (21) is replaced by

JSP(bx, bz, τ p) := D(bx||e
−fx) +D(bz||e

−fz)

+Hgauss(bz, τ p) (23)

where τ p is a positive vector andHgauss(bz, τ p) is the
following Gaussian upper bound on the entropyH(bz):

Hgauss(bz, τ p) :=

m∑

i=1

[
1

2τpi

var(zi|bzi) +
1

2
log(2πτpi

)

]
.

(24)
The third and final approximation is that the constraintbz =
TAbx is replaced by the weakermoment matchingconstraint
pair E(z|bz) = AE(x|bx) andτ p = Svar(x|bx), whereS is
given in line 4 of Algorithm 1. The resulting optimization is

(̂bx, b̂z, τp) = argmin
bx,bz,τp

JSP(bx, bz, τ p) (25a)

s.t. E(z|bz) = AE(x|bx), τ p = Svar(x|bx). (25b)

Note that in (25b), the variance var(x|bx) denotes the vector
with components var(xj |bxj

), not a covariance matrix. The
next lemma provides a certain Gaussian interpretation to the
approximate optimization (25).

Lemma 1:For any positive vectorτ p and any density
functionsbx andbz, JSP(bx, bz, τ p) is an upper bound:

JSP(bx, bz, τ p) ≥ JKL(bx, bz), (26)

with equality in the case thatbz is separable and Gaussian and
τ p = var(z|bz).

Proof: See Appendix C.
Thus, the optimization (25) can be interpreted as an approx-

imation where the distributions are factorizable and the output
distributionbz is assumed to be Gaussian. We will thus refer to
the optimization (25) as theGaussian approximate optimiza-
tion. This Gaussian approximate optimization is consistent
with the manner in which the sum-product GAMP algorithm
is derived: In standard loopy belief propagation, the sum-
product updates assume independent, and thus factorizable,
distributions at the input and output nodes. Moreover, the
GAMP variant of algorithm additionally applies a Central
Limit Theorem approximation to justify that the output dis-
tributions are approximately Gaussian.

It is important to realize that the minimum of the optimiza-
tion (25) is neither necessarily an upper nor lower bound to
the minimum of (20): Although the objective function in (25a)
upper bounds the one in (20), the constraints in (25b) are
weaker than those in (20).

B. Equivalent Optimization

Corresponding to the approximate optimization (25), define

FSP(x, z, τx, τ p) = F x
SP(x, τ x) + F z

SP(z, τ p). (27)

where the terms on the right-hand side are the constrained
optima

F x
SP(x, τx) := min

bx
D(bx||e

−fx)

s.t.E(x|bx) = x, var(x|bx) = τ x (28a)

F z
SP(z, τ p) := min

bz
D(bz||e

−fz) +Hgauss(bz, τ p)

s.t.E(z|bz) = z. (28b)

Lemma 2:Suppose that(x̂, ẑ, τx, τp) is a solution to the
optimization

(x̂, ẑ, τx, τp) = argmin
x,z,τx,τp

FSP(x, z, τx, τ p) (29a)

s.t. z = Ax, τ p = Sτ x. (29b)

Then thisτp, along with the densities(̂bx, b̂z) that optimize
(28), are the minima of the variational optimization (25).

Conversely, given any solution(̂bx, b̂z, τp) to the approxi-
mate optimization (25), the vectors

x̂ = E(x|̂bx), τx = var(x|̂bx), (30a)

ẑ = E(z|̂bz), τp = Sτx, (30b)

together are a solution to the optimization (29).
Proof: See Appendix D.

The lemma shows that the optimization (25) over densities is
equivalent to the optimization (29) over vectors. So, it suffices
to consider the vector-valued optimization (25) in the sequel.
Corresponding to (29), define the Lagrangian

LSP(x, z, τ x, τ p, s) = FSP(x, z, τ x, τ p)+sT (z−Ax), (31)

wheres represents a vector of dual parameters. We can now
state the main result.

Theorem 2:Consider the outputs of the sum-product
GAMP version of Algorithm 1. Then, the updates forxt and
τ t
x are equivalent to

(xt+1, τ t+1
x ) = argmin

x,τx

[
LSP(x, z

t, τx, τ
t
p, s

t)

+
1

2
(τ t

s )
TSτ x +

1

2
‖x− xt‖2

τ
t
r

]
. (32)

where LSP(x, z, s) is the Lagrangian in (10). In addition,
the updates preceding (32) that yieldτ t

p, zt, st, and τ t
s are

equivalent to

τ t
p = Sτ t

x (33a)

zt = argmin
z

[
LSP(x

t, z, τ t
x, τ

t
p, s

t−1) +
1

2
‖z−Axt‖2

τ
t
p

]

(33b)

st = st−1 +
1

τ t
p

(zt −Axt) (33c)

τ t
s = 2

∂

∂τp
LSP(x

t, zt, τ t
x, τ

t
p, s

t). (33d)

Moreover, any fixed point of the sum-product GAMP algo-
rithm is a critical point of the Lagrangian (31). In addition,
the density functions for the minimization in (28) are given
by

b̂x(x) = p(x|r, τr), b̂z(z) = p(z|p, τp), (34)

wherep(x|r, τr) andp(z|p, τp) are given by (8).
Proof: See Appendix E.

Theorem 2 shows a relation between sum-product GAMP
and both the ISTA and ADMM methods described earlier.
Specifically, define the variables

u := (x, τ x), v := (z, τ p).
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Due to the separable structure of the objective function (28),
the optimization (29) can be regarded as minimizing a sepa-
rable functionF x

SP(u) +F z
SP(v) with linear constraints (29b)

betweenu andv. In this context, thex andz minimizations in
(32) and (33b) follow the format of the ADMM minimizations
in Algorithm 3 for certain choices of the auxiliary functions.
On the other hand, the optimization overτx and τp com-
ponents follow the gradient-based method in the generalized
ISTA method in Algorithm 2. So, the sum-product GAMP
algorithm can be seen as a hybrid of the ISTA and ADMM
methods for the optimization (29), which is equivalent to the
variational optimization (25).

Unfortunately, this hybrid ISTA-ADMM method is non-
standard and there is no existing convergence theory on
the algorithm. However, Theorem 2 at least shows that if
the sum-product GAMP algorithm converges, its fixed points
correspond to critical points of optimization (29).

It is useful to briefly compare Theorem 2 with the varia-
tional interpretation of standard loopy BP. It is well-known
[32] that the fixed points of standard loopy BP can be
interpreted as distributions on the factor and variable nodes
that minimize the so-called Bethe free energy subject to certain
local consistency constraints. In comparison, GAMP appears
to minimize a Gaussian approximation of the KL divergence
subject to weaker moment matching constraints between the
distributions on the variable nodes. In this manner, the fixed-
points of GAMP appears closer in form of those of expectation
propagation (EP) methods that can also be interpreted as
saddle points of a certain free energy subject to moment
matching [33]. However, the exact relation between EP and
sum-product GAMP fixed points requires further study.

CONCLUSIONS

Although AMP methods admit precise analyses in the
context of large random transform matricesA, their behavior
for general matrices is less well-understood. This limitation
is unfortunate since many transforms arising in practical
problems such as imaging and regression are not well-modeled
as realizations of large random matrices. To help overcome
these limitations, this paper draws connections between AMP
and certain variants of standard optimization methods that
employ adaptive vector-valued step-sizes. These connections
enable a precise characterization of the fixed-points of both
max-sum and sum-product GAMP for the case of arbitrary
transform matricesA. The convergence of AMP methods for
generalA is, however, still not fully understood. Simulations
(not shown here) have indicated, for example, that under
general choices ofA, AMP may diverge. We hope that the
connections between AMP and standard optimization methods
provided here help to better understand, and even improve,
AMP convergence with general matrices.
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APPENDIX A
APPROXIMATE DIAGONALS

Given a matrixA ∈ R
m×n and positive vectorsdx ∈ R

n

anddz, consider the positive matrices (14). We analyze these
asymptotic behavior of these matrices under the following
assumptions:

Assumption 1:Consider a sequence of matricesQx andQz

of the form (14), indexed by the dimensionn satisfying:
(a) The dimensionm is a deterministic function ofn with

limn→∞ m/n = β for someβ > 0,
(b) The positive vectorsdx anddz are deterministic vectors

with

lim sup
n→∞

‖dx‖∞ <∞, lim sup
n→∞

‖dz‖∞ <∞.

(c) The components ofA are independent, zero-mean with
var(Aij) = Sij for some deterministic matrixS such that

lim sup
n

max
i,j

nSij <∞.

Theorem 3 ( [42]): Consider a sequence of matricesQx

and Qz in Assumption 1. Then, for eachn, there exists
positive vectorsξx andξz satisfying the nonlinear equations

1

ξz
=

1

dz

+ Sξx,
1

ξx
= dx + ST ξz, (35)

where the vector inverses are componentwise. Moreover, the
vectorsξz andξx are asymptotic diagonals ofQx andQz in
the following sense: For any deterministic sequence of positive
vectorsux ∈ R

n anduz ∈ R
m, such that

lim sup
n→∞

‖ux‖∞ <∞, lim sup
n→∞

‖uz‖∞ <∞,

the following limits hold almost surely

lim
n→∞

1

n

n∑

j=1

[uxj((Qx)jj − ξxj)] = 0

lim
n→∞

1

m

m∑

i=1

[uzi((Qz)ii − ξzi)] = 0.

Proof: This result is a special case of the results in [42].

The results says that, for certain large random matricesA,
ξx andξz are approximate diagonals of the matricesQx and
Qz, respectively. This motivates the following definition for
deterministicA.

Definition 1: Consider matricesQx and Qz of the form
(14) for somedeterministic(i.e. non-random)A, dx anddz.
Let S = |A|2 be the componentwise magnitude squared ofA.
Then, the unique positive solutionsξz andξx to (35) will be
called theapproximate diagonalsof Qz andQx, respectively.

APPENDIX B
PROOF OFTHEOREM 1

To prove (16b), observe that

argmin
z

[
L(xt, z, st−1) +

1

2
‖z−Axt‖2

τ
t
p

]

(a)
= argmin

z

[
fz(z) + (st−1)T z+

1

2
‖z−Axt‖2

τ
t
p

]

(b)
= argmin

z

[
fz(z) +

1

2
‖z− pt‖2

τ
t
p

]
(c)
= zt,
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where (a) follows from substituting (2) and (10) into (16b)
and eliminating the terms that do not depend onz; (b) follows
from the definition ofpt in line 8; and (c) follows from the
definition ofzt in line 10. This proves (16b). The update (16a)
can be proven similarly. To prove (16c), observe that

st
(a)
=

1

τ t
p

(zt − pt)
(b)
= st−1 +

1

τ t
p

(zt −Axt)

where (a) follows from the update ofst in line 16 in Algorithm
1 (recall that the division is componentwise); and (b) follows
from the update forpt in line 8. We have thus proven
the equivalence of the max-sum GAMP algorithm with the
Lagrangian updates (16).

Now consider any fixed point(ẑ, x̂, s) of the max-sum
GAMP algorithm. A fixed point of (16c), requires that

ẑ = Ax̂ (36)

so the fixed point satisfies the constraint of the optimization
(1). Now, using (36) and the fact thatẑ is the minima of (16b),
we have that

∂

∂z
L(x̂, ẑ, s) = 0.

Similarly, sincex is the minima of (16a), we have that

∂

∂x
L(x̂, ẑ, s) = 0.

Thus, the fixed point(x̂, ẑ, s) is a critical point of the La-
grangian (10).

Finally, consider the quadratic terms(τx, τr, τs) at the fixed
point. From the updates ofτx andτr in Algorithm 1 [see also
(7)] and the definition ofdx in (15), we obtain

1

τx
= dx +

1

τr
= dx + STτs. (37)

Similarly, the updates ofτs andτp show that

1

τs
=

1

dz

+ τp =
1

dz

+ Sτx. (38)

Then, according to Definition 1,τx andτs are the approx-
imate diagonals ofQx andQz in (14), respectively.

APPENDIX C
PROOF OFLEMMA 1

For any positive vectorτ p and density functionbz (even if
it is not separable), we have the bound

H(bz)
(a)

≤

m∑

i=1

H(bzi)

(b)

≤
1

2

m∑

i=1

log(2πe var(zi|bzi))

(c)

≤
1

2

m∑

i=1

[
var(zi|bzi)

τpi

+ log(2πτpi
)

]

(d)
= Hgauss(bz, τ p) (39)

where (a) follows frombzi being the marginal distribution on
the componentzi of z; (b) is the Gaussian upper-bound on the
entropy of each marginal distribution; (c) uses the fact that

log(2πev) ≤
v

τ
+ log(2πτ),

for all τ with equality whenτ = v; and (d) is the definition
of Hgauss in (24). Whenbz is separable and Gaussian, all
the inequalities are equalities in (39). The inequality (26) then
follows from comparing (21) and (23).

APPENDIX D
PROOF OFLEMMA 2

It is useful here and in subsequent proofs to introduce the
following notation. Partition the objective function (23)as

JSP(bx, bz, τ p) = Jx
SP(bx) + Jz

SP(bz, τ p), (40)

where

Jx
SP(bx) := D(bx||e

−fx) (41a)

Jz
SP(bz, τ p) := D(bz||e

−fz ) +Hgauss(bz, τ p). (41b)

Then, we can rewrite (28) as

F x
SP(x, τ x) := min

bx
Jx
SP(bx)

s.t.E(x|bx) = x, var(x|bx) = τx (42a)

F z
SP(z, τ p) := min

bz
Jz
SP(bz, τ p)

s.t.E(z|bz) = z. (42b)

Now, fix a positive vectorτ p and consider the minimization
(25) with the additional constraints that

x = E(x|̂bx), τx = var(x|̂bx), (43a)

z = E(z|̂bz) (43b)

for some vectorsx, z, τx and τ p. Then, using the partition
(40), the minima of (25) under the constraints (43) is precisely
the functionFSP(x, z, τ x, τ p) in (27). Thus, the minimization
(25) can be achieved by minimizingFSP(x, z, τx, τ p) under
the constraints thatz = Ax andτ p = Sτ x. This minimization
is precisely the optimization (29) and this fact establishes the
equivalence between the two optimizations.

APPENDIX E
PROOF OFTHEOREM 2

Our proof will now follow three parts: First, we will provide
an explicit characterization for optimization problems ofthe
form (28). Next, we will use this characterization to prove that
the sum-product GAMP updates are equivalent to the ADMM-
ISTA iterations in (32) and (33). Finally, we will show that
the fixed points of the iterations correspond to critical points
of the Lagrangian (31).

A. KL Minimization with Moment Constraints

We begin with a standard result on the minimization of the
KL divergence subject to moment constraints.

Lemma 3:Let f(u) be any real-valued measurable function
on a real variableu. Given a mean valueu and varianceτu >
0, the following are equivalent statements about a probability
density function̂b(u):
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(a) The probability density function̂b is the solution to the
constrained optimization:

b̂ = argmin
b

D(b||e−f )

s.t.E(u|b) = u, var(u|b) = τu. (44)

(b) There existsq andτq > 0 such that the density function
b̂ is the solution to the unconstrained optimization

b̂ = argmin
b

[
D(b||e−f ) +

1

2τq
E((u − q)2|b)

]
, (45)

andE(u|̂b) = u, var(u|̂b) = τu.
(c) There existsq andτq > 0 such that the density function

b̂ is of the form

b̂ ∝ exp

[
−f(u)−

1

2τq
(u− q)2

]
, (46)

andE(u|̂b) = u, var(u|̂b) = τu.
Proof: This result is standard—similar calculations are in

[34]. The equivalence between (a) and (b) can be shown via a
Lagrangian argument and the equivalence between (b) and (c)
can be found by taking the derivatives of the unconstrained
objective (45) with respect tob(u) for eachu.

B. Equivalence of GAMP and ADMM-ISTA Iterations

We now use Lemma 3 to that the sum-product GAMP
iterations are equivalent to the ADMM-ISTA iterations in
Theorem 2. We begin by proving (33b). Letz̃t equal the right-
hand side of (33b). We want to show thatz̃t = zt, wherezt

is the output of line 13 of the sum-product GAMP algorithm.
To show this, we first observe that

z̃t
(a)
= argmin

z

[
F z
SP(z, τ

t
p) + (st−1)T z+

1

2
‖z−Axt‖2

τ
t
p

]

(b)
= argmin

z

[
F z
SP(z, τ

t
p) +

1

2
‖z− pt‖2

τ
t
p

]
, (47)

where (a) follows from substituting (31) and (27) into (33b)
and eliminating the terms that do not depend onz, and (b)
follows from substituting in the definition ofpt from line (8)
and eliminating terms. Now, using the definition ofF z

SP in
(42b), it follows from (47) that

z̃t = E(z|̂bz), (48)

whereb̂z is the density function onz that minimizes

b̂z = argmin
bz

[
Jz
SP(bz, τ

t
p) +

1

2

∥∥E(z|bz)− pt
∥∥2
τ

t
p

]
. (49)

Now, this minimization can be simplified as

b̂z
(a)
= argmin

bz

[
D(bz||e

−fz ) +

m∑

i=1

var(zi|bzi)
2τ tpi

+
1

2

∥∥E(z|bz)− pt
∥∥2
τ

t
p

]

= argmin
bz

m∑

i=1

[
D(bzi ||e

−fzi ) +
E
(
|zi − pti|

2
∣∣ bzi

)

2τ tpi

]
(50)

where (a) follows from substituting (41b) and (24) into (49)
and removing terms that do not depend onbz; and (b) follows

from the separability assumption (22) and the fact that, for
any density functionbzi ,

var(zi|bzi) +
∣∣E(zi|bzi)− pti

∣∣2 = E
(
|zi − pti|

2
∣∣ bzi

)
.

The minimization (50) is then separable, with solution

b̂z(z) =
m∏

i=1

b̂zi(zi) (51)

whose components are the solutions

b̂zi(zi) = argmin
bzi

[
D(bzi ||e

−fzi ) +
1

2τ tpi

E
(
|zi − pti|

2
∣∣bzi

)]
.

(52)
From Lemma 3, the solution to (52) can be restated as

b̂zi(zi) ∝ exp

[
−fzi(zi)−

|zi − pti|
2

2τ tpi

]
. (53)

Comparing (51) and (53) to (9) we see that

b̂z(z) = p(z|pt, τ t
p), (54)

which when substituted into (48) yields

z̃t = E(z|pt, τ t
p).

Finally, using the definition ofzt in line 13 of Algorithm 1,
we see thatzt = z̃t and thus we have proven (33b).

The proof of (32) is similar and also shows thatx̂t+1 and
τ t+1
x are the mean and variance of

b̂x(x) = p(x|rt, τ t
r ). (55)

Meanwhile, the proof of (33c) is identical to the proof of (16c).
Finally to prove (33d), we take the derivatives

∂

∂τp
LSP(x̂

t, zt, τ t
x, τ

t
p, s

t)
(a)
=

∂

∂τp
F z
SP(z

t, τ t
p)

(b)
=

∂

∂τp
Jz
SP(̂bz, τ

t
p)

(c)
=

∂

∂τp
Hgauss(̂bz, τ

t
p)

(d)
=

1

2

[ 1

τ t
p

−
τ t
z

(τ t
p)

2

]
(e)
=

1

2
τ t
s ,

where (a) follows from substituting in (27) and (31) and
removing the terms that do not depend onτp; (b) follows from
the definition ofF z

SP in (42b); (c) follows from the definition
of Jz

SP in (41b); (d) can be verified by simply taking the
derivative ofHgauss with respect to each componentτpi

, and
(e) follows from the definition ofτ t

s in line 17 of Algorithm
1. This proves (33d), and we have established that the sum-
product GAMP updates are equivalent to (32) and (33).

C. Characterization of the Fixed Points

We conclude by showing that the fixed points of the sum-
product GAMP algorithm are critical points of the Lagrangian
(31). To account for the constraint thatτ p = Sτx, define the
modified Lagrangian,

LSP−mod(x, z, τx, s) = LSP(x, z, τ x,Sτ x, s), (56)

which is the LagrangianLSP(x, z, τx, τ p, s), with τ p = Sτx.
Now consider any fixed point(x̂, ẑ, τx, τp, s) of the sum-

product GAMP algorithm. To show that this fixed point is a
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critical point of the optimization (29), we will show that itis
a critical point of the modified LagrangianLSP−mod and that
it satisfies the constraint̂z = Ax̂.

First, the vector components of the sum-product GAMP
fixed-point must be fixed-points of the Lagrangian updates (32)
and (33). Thus, from (33a), we have that

τp = Sτx, (57)

while from (33c) we have that

ẑ = Ax̂, (58)

and so the fixed point satisfies both constraints in the opti-
mization (29).

Now, using (58) and the fact thatẑ is the minima of (33b),
we have that

∂

∂z
LSP(x̂, ẑ, τx, τp, s) = 0. (59)

Due to (57), equation (59) implies that

∂

∂z
LSP−mod(x̂, ẑ, τx, s) = 0. (60)

Similarly, sincex̂ is the minima of (32), we have that

∂

∂x
LSP−mod(x̂, ẑ, τx, s) = 0. (61)

The minimization (32) also implies that

∂

∂τx

LSP(x̂, ẑ, τx, τp, s) = −
1

2
STτs. (62)

Therefore,

∂

∂τx

LSP−mod(x̂, ẑ, τx, s)

(a)
=

∂

∂τx

LSP(x̂, ẑ, τx, τp, s) + ST ∂

∂τ p

LSP(x̂, ẑ, τx, τp, s)

(b)
= −

1

2
STτs ++

1

2
STτs = 0, (63)

where (a) follows from the definition ofLSP−mod in (56)
and from (57), while (b) follows from (62) and (33d). The
derivatives (61), (60) and (63), along with the constraints(57)
and (58), show that the vectorŝx, ẑ, τx and τp are critical
points of the optimization (29). Finally, using Lemma 3 and
arguments similar to those used in derivation of (54) and (55),
it follows that the density functionŝbx and b̂z that minimize
(28) are those given in (34).
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