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Fixed Points of Generalized Approximate Message
Passing with Arbitrary Matrices

Sundeep Rangan, Philip Schniter, Erwin Riegler, Alysoridiler, Volkan Cevher

Abstract—The estimation of a random vector with independent
components passed through a linear transform followed by a
componentwise (possibly nonlinear) output map arises in aange
of applications. Approximate message passing (AMP) methaxl
based on Gaussian approximations of loopy belief propagain,
have recently attracted considerable attention for such pob-
lems. For large random transforms, these methods exhibit fst
convergence and admit precise analytic characterizationsvith
testable conditions for optimality, even for certain non-@nvex
problem instances. However, the behavior of AMP under genex
transforms is not fully understood. In this paper, we consiar
the generalized AMP (GAMP) algorithm and relate the method
to more common optimization techniques. This analysis endés
a precise characterization of the GAMP algorithm fixed-poirts
that applies to arbitrary transforms. In particular, we show that
the fixed points of the so-called max-sum GAMP algorithm for
MAP estimation are critical points of a constrained maximization
of the posterior density. The fixed-points of the sum-produt
GAMP algorithm for estimation of the posterior marginals can
be interpreted as critical points of a certain mean-field varational
optimization.

Index Terms—Belief propagation, ADMM, variational opti-
mization, message passing.

. INTRODUCTION
Consider the constrained optimization problem

s.t.z = Ax,

1)

(X,Zz) := argmin F(x, z)

X,z

wherex € R",z € R™, A € R™*" and the objective function
admits a decomposition of the form

F(x,2) = fo(x) + f.(2)
fo)z_foj(xj), fAz)szzi(zi), )

Z
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Fig. 1. System model: The GAMP method considered here carsée for
approximate MAP and MMSE estimation &f from y.

densityp,,|., (yi|z:). Under this observation model, the vectors
x andz will have a posterior joint density given by

px,z|y(XaZ|Y) = [Z(Y)]ileiF(xj)]]-{z:Ax}v (3)

where F(x, z) is given by [2) when the scalar functions are

set to the negative log density and likelihood:

ij (Ij) = - 1ngl'j (Ij)v fzi (ZZ) = logpm\z? (yl|zl)

Note that in[(B),F'(x, z) is implicitly a function ofy, Z(y) is a
normalization constant and the point mdss_ ) imposes
the linear constraint that = Ax. The optimization[{il) in
this case produces thmaximum a posterioffMAP) estimate
of x andz. In statistics, the system in Figl 1 is sometimes
referred to as a generalized linear model [1]} [2] and is
used in a range of applications including regression, swer
problems, and filtering. Bayesian forms of compressed sgnsi
can also be considered in this framework by imposing a sparse
prior for the components:;; [3]. In all these applications,
one may instead be interested in estimating the posterior
marginalsp(x;|y) andp(z;|y). We relate this objective to an
optimization of the form[{1)£{2) in the sequel.

Most current numerical methods for solving the constrained
optimization problem [{1) attempt to exploit the separable
structure of the objective functiol]l(2) either through gene

for scalar functiong/,;; (-) and f., (-). One example where this alizations of the iterative shrinkage and thresholdingTiB

optimization arises is the estimation problem in Eig. 1.¢Jjer

algorithms [4]-[10] or alternating direction method of mul

random vectorx has independent_ components with de_nsitiqqgners (ADMM) approach [[111]4[20]. There are now a large
pz; (), and passes through a linear transform to yield aumber of these methods and we provide a brief review in

outputz = Ax. The problem is to estimate and z from

Section]].

measurementy generated by a componentwise conditional However, in recent years, there has been considerable
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interest in so-called approximate message passing (AMP)
methods based on Gaussian and quadratic approximations of
loopy belief propagation in graphical models [21]5[26].€Th
main appealing feature of the AMP algorithms is that for
certain large random matrice, the asymptotic behavior of
the algorithm can be rigorously and exactly predicted with
testable conditions for optimality, even for many non-aaav
instances. Moreover, in the case of these large, randoni-matr
ces, simulations appear to show very fast convergence of AMP
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methods when compared against state-of-the-art conveattioAlgorithm 1 Generalized Approximate Message Passing
optimization techniques. (GAMP)

However, despite recent extensions to larger classes Rgquire: Matrix A, functions f.(x), f.(z). and algorithm
random matrices[[27],[28], the behavior of AMP methods choice MaxSum or SumProduct.
under general is not fully understood. The broad purpose 1: ¢ < 0
of this paper is to show that certain forms of AMP algorithmsz2: Initialize x*, 7
can be seen as variants of more conventional optimizatios: s «+ 0
methods. This analysis will enable a precise charactévizaf ~ 4: S < |A|? (componentwise magnitude squared)
the fixed points of the AMP methods that applies to arbitrarys: repeat
A 6:  {Output node update

Our study focuses on a generalized AMP (GAMP) method’:
proposed in[[26] and rigorously analyzed|in[29]. We conside 8:
this algorithm since many other variants of AMP are speciap:
cases of this general procedure. The GAMP method has twé
common versions: max-sum GAMP for the MAP estimation of1:
the vectorsx andz for the problem in Fig 11; and sum-producti2:
GAMP for approximate inference of the posterior marginals; 3:

T; + S7!
p! + Ax! — St_l’T;
if MaxSumthen

zt ProX .. (p?)

T! T} prox;_g . (P
else if SumProducthen

z' < E(z[p', 1)

For both versions of GAMP, the algorithms produce estit4:
matesx andz along with certain “quadratic” terms. Our first 15:
main result (Theoreri]1) shows that the fixed poi(®sz) 16:
of the max-sum GAMP are critical points of the optimization7:
@@. In addition, the quadratic terms can be considered as da:
agonal approximations of the inverse Hessian of the obectiig:
function. For sum-product GAMP, we provide a variationapo:
interpretation of the algorithm’s fixed points. Specifigalve  21:
show (Theoreni]2) that the algorithm’s fixed points can bgp:
interpreted as means and variances of a certain Gaussian mea:
field approximation of the posterior distribution. The ésu 24
are compared against the well-known characterization efifix 2s.

Tl Var(z|pt,7';)
end if
st « (zt — pt)/’T;
Tl 1/7'1’75 — 7'2/(7';)2

{Input node update

7t 1/(ST7Y)

rt « xt + 7tATs!

if MaxSumthen
x4 prox, . (r')
T« 7l prox’, i (rt)

else if SumProducthen

points of standard loopy BRP_[30]-[33]. 26: xtH « E(x|rt, 7t)
27: Tgﬁ"'l + varx|rt, 7})
II. REVIEW OF GAMP AND RELATED METHODS 28:  end if

29: until Terminated

A. Generalized Approximate Message Passing

Graphical-model methods [B4] are a natural approach to

the optimization problemL{1) given the separable Structufgnction has the separable forf (2), each iteration of tge-al
of the objective functionl{2). However, traditional gradii jthm inyolves four componentwise update steps: the prakim

model techniques such as loopy belief propagation (loom‘)dates shown in linds 110 ahd] 23, where
BP) generally require that the constraint matAxis sparse.

Approximate message passing (AMP) refers to a class of
Gaussian and quadratic approximations of loopy BP that can
be applied to densé\. AMP approximations of loopy BP and lined Il anfl 24, involving the derivative of the proximal
originated in CDMA multiuser detection problems [35]][37bperator from [(4). In particular, linds 10 ahd]l11 are to be
and have received considerable recent attention in theexbntinterpreted as

of compressed sensing [21]-[2€], [38]. The Gaussian approx . o
imations used in AMP are also closely related to expectation 7 = proxy ¢ (pi) t=1,...,m, ®)
propagation techniques [39], [40]. Lo =71 proxe ;. (pi) i=1,...,m, (6)

In this work, we study the so-called generalized AMP " ézf (1)) -1

(GAMP) algorithm [26] rigorously analyzed in_[29]. The =1, (1+r;i277‘i) i=1,....,m, (7)
procedure, shown in Algorithni] 1, produces a sequence

. 1
prox(v) := arger]gln flu)+ §|u —vl?, (4)

2
0z;

of estimates (x!,z!) along with the quadratic terms with similar interpretations for lines 23 ahdl24. Thus, max-

Tt 7ttt 7t Note that all vector-vector multiplicationssum GAMP reduces the vector-valued optimizatibh (1) to a

in Algorﬁhm@ (e.g.s'"'7}) are to be taken componentwisesequence of scalar optimizations.

We focus on two variants of the GAMP algorithmax- For the sum-product GAMP algorithm, the outp(s, z*)
sum GAMPandsum-product GAMPIn the max-sum version represent the posterior means for the dengity (3), or equiva
of the algorithm, the outputéx?, z!) represent estimates oflently, the minimum mean-squared error (MMSE) estimates
the solution to the optimization problernl (1), or equivalgnt of (x,z) giveny. As discussed in[[26], the algorithm also

the MAP estimates for the posteridd (3). Since the objectiygovides estimates of the posterior marginals. The expenta



and variances in linds 1B, 114,126 dnd 27 of the algorithm a@ Alternating Direction Method of Multipliers

taken with respect to the probability density functions: A second common class of methods is built around the
1 Alternating Direction Method of Multipliers (ADMM) [[11]
p(x|r,7) < exp [—fz(X)JriIIX—rlli] (8a) approach shown in Algorithni]3. The Lagrangian for the
optimization problem[{1) is given by

1
plalp. ) o oxp | ~£.(2) + glaplZ, | (@D Litns) = Pen) 4 ¥ Ax), (10
where, for any vectors € R” and+ € R” with 7 > 0, wheres are the dual parameters. ADMM attempts to produce
a sequence of estimatés?’, z', s) that converge to a saddle
V]2 = ZT: lv;|? point of the Lagrangiari (10). The parameters of the algarith
Vil = —~ ’ are a step-size > 0 and the penalty term&.(-) andQ.(-),
= which classical ADMM would choose as
Under separability assumptiol] (2), these densities fator
P 4 P @ Q.(x,x", 2", a) = %Hzt —Ax||2 (11a)
- |z —ril? t ot @ 12
pxfr, ) o [[exp |~ fa, (@) - =5—-| (%) Q:(z,2',x™ a) = Sz - Ax™%. (11b)

J=1

p(zp, ) o< [Jexp |:—fzi(zi) - M} ., (9b) Algorithm 3 Alternating Direction Method of Multipliers
palet 27p, (ADMM)

allowing the expectation and variance computations to becoR?qUire: A, a, functions f, (), f(), Qu("), Q=()
puted componentwise, and reducing the sum-product GAMP T 0

. . . . . . - iti i t t t
algorithm to a sequence of scalar estimation optimizations 2 Inltlalltze x,Z,8
: repea

4:  x" ¢« argmin, L(x,z!,s') + Q.(x,x!, 2!, a)
B. lterative Shrinkage and Thresholding Algorithm 5 2"« argmin, L(x"",2,5") + Q. (z,2",x", a)
o st st 4 a2t — AxH)
The goal in the paper is: tol relate the GAMP method,. ntil Terminated
to more conventional optimization techniques. One of the
more common of such approaches is a generalization of the o ) )
lterative Shrinkage and Thresholding Algorithm (ISTA)smo ~ When the objective function admits a separable fofin (2)
in Algorithm[2 [4]-[8]. and one uses the auxiliary functia.(-) in (I1B), thez-
minimization in line[$ separates inte. scalar optimizations.
X 5
Algorithm 2 Tterative Shrinkage and Thresholding Algorithrf OWeVer, due to the quadratic terfiAx||” in (113), thex-
(ISTA) minimization in line[4 does not separate for genefal To
circumvent this problem, one might consider a separable in-
exactx-minimization, since many inexact variants of ADMM

t

Require: Matrix A, scalare, functionsf,(-), f.(-).

L “ﬁ O. : are known to converge [12]. For exampl@,.(-) might be
2: Initialize x". . - . L h

3 repeat chosen to yield separability while majorizing the origicakt
' pt . in line[4, as was done for ISTAs lirig 6, i.e.,

4 7'+ Ax

5. q' «+ 0f.(z")/0z Qu(x,x",2',a) (12)

6. x « argmin, fo(x) +(q) " Ax + (c/2)|Jx —x*||? a 1

7: until Terminated = §Hzt — Ax|* + Jx— x")T(cl — aATA)(x — x")

with appropriate:, after which ADMM's line[4 would become
The algorithm is built on the idea that, at each iteratipn

the second cost term in the minimizatiang min, f,(x) +  argmin f,(x) + EHx ~xt 4+ ZAT (Axt . — lst) H2
f-(Ax) specified by[{ll) is replaced by a quadratic majorizing  * 2 ¢ @ (13)
costg.(x) > f.(Ax) that coincides at the point = x* (i.e.,
g:(x") = f.(Ax")), where majorization can be achieved viaMany other choices of penalt.(-) have also been consid-
appropriate choice af > 0. This approach is motivated by theered in the literature (see, e.g., the overview_in [18])|diiey
fact that, if f,(x) and f.(z) are both separable, as [d (2), therwonnections to Douglas Rachford splitting[12], split Bren
both the gradient in ling]5 and minimization in lihé 6 can bfL3], split inexact Uzawal[14], proximal forward-backward
performed componentwise. Moreover, whgnx) = A||x||;1, splitting [15], and various primal-dual algorithris [1624].

as in the LASSO probleni[41], the minimization in lihé 6 Other variants of ADMM are also possible [11]. For ex-
can be computed directly via a shrinkage and thresholdiagiple, the step-size might vary with the iteratiort, or the
operation — hence the name of the algorithm. The convergepemalty terms might have the for(a — Ax)"P(z — Ax) for

of the ISTA method tends to be slow, but a number of enhancedsitive semidefinitd. As we will see, these generalizations
methods have been successful and widely-used[[7]-[10]. provide a connection to GAMP.



[1l. FIXED-POINTS OFMAX-Sum GAMP optimization [[1). In addition, the quadratic term can be
Our first result connects the max-sum GAMP algorithm ttérpreted as an approximate diagonal to the inverse &fessi

inexact ADMM. Given pointsx, z), define the matrices Finally, it is useful to compare the fixed-points of GAMP
B with those of standard BP. A classic result [of|[[30] shows that
Q. = (diag(dm) + AT diag(dz)A) (14a) any fixed point for standard max-sum loopy BP is locally

. optimal in the sense that one cannot improve the objective
Q. = (diag(dz)*1 + Adiag(dm)*lAT) (14b) function by perturbing the solution on any set of components
) ~ whose variables belong to a subgraph that contains at most
whered, andd. are the componentwise second derivativene cycle. In particular, if the overall graph is acyclicyan
92 fo(x) 9%f.(z) fixed-point of standard max-sum loopy BP is globally optimal
d; = ox2 d.:= 0z2 (15)  Also, for any graph, the objective function cannot be reduce
by changing any individual component. The local optimality
for GAMP provided by Theorem]1 is weaker in that the
fixed-points only satisfy first-order conditions for sadgtents
of the Lagrangian. This implies that, even an individual
component may only be locally optimal.

Note that whenf,(x) and f.(z) are strictly convex, the
vectorsd, andd, are positive. Observe that the matfi, in
(I4) is the inverse Hessian of the objective functiBfx, z)
constrained t& = Ax. That is,

2

) -1
Theorem 1:The outputs of the max-sum GAMP version ok

Algorithm [ satisfy the recursions

IV. FIXED-POINTS OF SUM-PRODUCT GAMP
. Variational Formulation
1 The characterization of the fixed points of the sum-product
x™ = argmin [L(x, z',st) + 5||x - XtHi;} (16a) GAMP algorithm is somewhat more complicated to describe,
x 1 and requires a certaiariational interpretation — a common
z"! = argmin {L(Xtﬁ-l’zvst) + EHZ _ Axt+1||it+1] (16b) framework for understanding sum-product loopy BP [32]][34

z For any fixed observatiog, the density functiomy ,, (-, -|y)
g gty %(zm _ AxM) (16c) in @) must minimize
Tp
where L(x, z, s) is the Lagrangian defined ifi{{10). Pxaly = arggan(prx’zly)’ (19)

Now suppose thatx,z,s, 7., 7s) is a fixed point of the L . )
algorithm (where the *hats” ot andz are used to distinguish where the m|n|m|;at|on is over all density functloh@, z)
them from free variables). Then, this fixed point is a criticdVith support restricted ta: = Ax and D(b||px 4ly) is the

point of the constrained optimizatiofl (1) in that= A% and Kullback-Leibler (KL) divergence. Now, lepyy(x|y) and
P2y (zly) be the marginal densities for the posterjgy,,, .
0 0 '

—L(X%s) =0, —L(XZs)=0. (17) Using the relationshiph(x,z) = b,(x)1,—ax} and the
ox Oz separable nature df (x,z) in (@), it can be verified that the
Moreover, the quadratic terms,, T, are the approximate minimization [19) implies that the marginal densities oxer
diagonals(as defined in AppendixJA) of the inverse Hessiaandz are solutions to the optimization
Q. and the matrixQ,, in (I14) at(x,z) = (X,2).
Proof: See AppendiXB. n (Pxly: Paly) = argmin Jxr,(by, b2) S.t.b. = Taby,  (20)
The first part of the Theorem, equatidn}(16), shows that bebe
max-sum GAMP can be interpreted as the ADMM Algowhere the minimization is over density functiohs(x) and
rithm[3 with adaptive vector-valued step-sizeisandr; and a b.(z) and Jkw(bs, b.) is the functional
particular choice of penalt§,.(-). To more precisely connect
GAMP and existing algorithms, it helps to express GAMP's JKL(bz,bz) := D(bz|le™/) + D(b.|le™*) + H(b.). (21)

- 5 — . -
x-update[18a) as thé=0 case of In (20), we have used the notatidn = Tab, to indicate

arg min f, (x) + EHX —xt T AT (st — ) — St)HQt’ thatb,(z) is the density for a random vectar= Ax with

x 2 Tr X ~ by (x). Thus,p,y = Tapx)y. Note that we are treating

(18) A as deterministic.

and recognize that the ISTA-inspired inexact ADMiupdate ~ Our next main result, Theorefd 2 below, will show that
(I3) coincides with th&/=1 case under step-sizes= 1/7-; the fixed points of the sum-product GAMP algorithm can be
andc = 1/7. The convergence of this algorithm for particulainterpreted as critical points of the optimizatign|(20)t tith
6 € [0,1] was studied in[[18]=[20] under convex functionghree key approximations: First, similar to what is knowraas
f=(-) and f.(-) and non-adaptive step-sizes. Unfortunatelynean-fieldapproximation, the optimization is performed only
these convergence results do not directly apply to the agaptover factorizable density functions of the form
vector-valued step-sizes of GAMP. However, the second part n m
pf th_e Theorgm shqws at Ieg_st that, ?f the algorithm congrge be(x) = H by, (z), b.(z) = H b, (2). (22)
its fixed points will be critical points of the constrained =1 i1



Secondly, the objective functiofky, from (21) is replaced by

Jop (b boTy) = D@ulle—*) + Db |e=) L_en_1ma_\ 2:Suppose thatx,z, ,, 7,) is a solution to the
_ optimization
+ Hgauss (bza Tp) (23)
where 7, is a positive vector andHy.us(b.,7,) is the (X2, 70, 7p) = argmin Fsp(X,2,70,7p)  (299)
following Gaussian upper bound on the entrdgyb.): StZ=AX, T, = S7,. (29b)
N 1 PN
Hgouss (b2, Tp) 1= Z {2? var(z;|b.,) + 3 log(277p,)| - Then thisT,, along with the densitie¢b,,b.) that optimize
i=1 L

(28), are the minima of the variational optimizati¢n](25).
Conversely, given any solutiofb,,b., T,) to the approxi-
mate optimization[(25), the vectors

(24)
The third and final approximation is that the constraint=
Tab, is replaced by the weakenoment matchingonstraint

pair E(z|b.) = AE(x|b;) and7, = Svar(x|b,), whereS is % = E(x[by), 7o = varx|b,), (30a)
given in line[4 of Algorithnl. The resulting optimization is % — E(zfb.), T, = S7, (30b)

E)\I,EZ,T = argmin Jsp(bz, b, T 25a . o
( v) fz,ﬂ, se( v) (253) together are a solution to the optimizati¢n](29).

st. E(z|b.) = AE(x|b,), T, = Svar(x|b;). (25b) Proof: See AppendixD. -
Note that in [25b), the variance Vatb,) denotes the vector The lemma shows_thgt the optimizatigni(25) over d?nS't'eS IS
. . . equivalent to the optimizatioh (29) over vectors. So, ifises
with components véd;|b,.), not a covariance matrix. The . AR .
. il L : o consider the vector-valued optimizatidn](25) in the stqu
next lemma provides a certain Gaussian interpretation ¢o orresponding to[29), define the Lagrangian
approximate optimizatiori_(25). P 9 ' grang

Lemma 1:For any positive vectorr, and any density Lsp(X.Z, 74, 7p,5) = Fsp(X, 2,74, Tp)+5' (Z—AX), (31)

functionsb, andb., Jsp(bs, b-,7,) is an upper bound: wheres represents a vector of dual parameters. We can now

Jsp(bzy bz, Tp) > JxL(be, bs), (26) state the main result.
with equality in the case that is separable and Gaussian and 1€orem 2:Consider the outputs of the sum-product
7, = var(z|b.). GAMP version of Algorithn{IL. Then, the updates fot and
Proof: See AppendiX L. m 7. are equivalent to

Thus, the optimizatiori (25) can be interpreted as an approx-
imation where the distributions are factorizable and thipoiu
distributionb, is assumed to be Gaussian. We will thus refer to 1 1
the optimization[{25) as th&aussian approximate optimiza- + §(T§)Tsﬂ +5lx - Xt”iﬁ] (32)
tion. This Gaussian approximate optimization is consistent ) . .
with the manner in which the sum-product GAMP algorithnif/nere Lse(x,z,s) is the Lagrangian 'n[t:ag)' In a?dmon,
is derived: In standard loopy belief propagation, the sunfl® Updates preceding {32) that yietd), 2", s', and  are
product updates assume independent, and thus factorjizaBfiivalent to
distribution; at the inpl_Jt and og?put nodes..Moreover, theT; - s7! (33a)
GAMP variant of algorithm additionally applies a Central 1
Limit Theorem approximation to justify that the output dis- z' = argmin |:LSP(Xt z, 75,1l s + 5”2_ Axt||_2,_£

(xt+1,7'£+1) = argmin [Lsp(i, ' 7, 1!, s")

P
X, T

tributions are approximately Gaussian. z ' (33b)
It is important to realize that the minimum of the optimiza- 1

tion (29) is neither necessarily an upper nor lower bound tos' = s+ —t(zt - Ax") (33c)

the minimum of [(2D): Although the objective function [n_(35a p

upper bounds the one i _(20), the constraints[in (25b) are-t — 2iLsp(Xt,Zt,T£,Tt,St). (33d)

weaker than those ifi_(20). oty P

B. Equivalent Optimizati Moreover, any fixed point of the sum-product GAMP algo-
- Equivaient Dptimization o _rithm is a critical point of the Lagrangiaf (81). In addition
Corresponding to the approximate optimizatibnl (25), defiRge density functions for the minimization iR {28) are given

Fsp(X, 2,70, Tp) = F&p (X, T0) + F&p (7, 7). (27) by

where the terms on the right-hand side are the constrained b*(x) = pxlr, 7). b*(2) = p(zlp, 7), (34)
optima wherep(x|r, 7.) andp(z|p, 7,,) are given byl[(B).
F&(%,7,) = minD(by|le /") Proof: See AppendikE. [
ba Theoren{®2 shows a relation between sum-product GAMP

st.E(x|b,) =%, var(x|b;) =T, (28a) and both the ISTA and ADMM methods described earlier.
Fép(2,7p) = min D(b||e™"*) + Hyauss (b2, 7)) Specifically, define the variables

s.t.E(zb.) =Z. (28b) u=(X,7.), Vvi=(2,7)).



Due to the separable structure of the objective funcfiap), (28 APPENDIXA
the optimization[(20) can be regarded as minimizing a sepa- APPROXIMATE DIAGONALS

rable functionfgp () + Fgp(v) with linear constraint€ (29b)  Gjven a matrixA € R™*™ and positive vectorsl, € R"

betweenu andv. In this context, thec andz minimizations in - andd., consider the positive matricds {14). We analyze these

(32) and[(33b) follow the format of the ADMM minimizations asymptotic behavior of these matrices under the following

in Algorithm[3 for certain choices of the auxiliary functi®n assumptions:

On the other hand, the optimization over and 7, com-  Assumption 1:Consider a sequence of matrid@®s andQ.

ponents follow the gradient-based method in the generhlizgf the form [I4), indexed by the dimensiensatisfying:

ISTA method in Algorithm[2. So, the sum-product GAMP (3) The dimensionn is a deterministic function of, with

algorithm can be seen as a hybrid of the ISTA and ADMM "~ yi, /5 = B for some > 0,

methods for the optimizatiofh (P9), which is equivalent te th ) The positive vectorsl, andd, are deterministic vectors

variational optimization[(25). with
Unfortunately, this hybrid ISTA-ADMM method is non-

standard and there is no existing convergence theory on

the algorithm. However, Theorefd 2 at least shows that i(fc) The components oA are independent, zero-mean with

the sum-product_(_SAMP _algorithm converges, its fixed points var(A;;) = S;; for some deterministic matri$ such that

correspond to critical points of optimization {29). .
It is useful to briefly compare Theorel 2 with the varia- hm:uP max nSij < 0.

tional interpretation of standard loopy BP. It is well-know

[32] that the fixed points of standard loopy BP can bg

interpreted as distributions on the factor and variableesod

that minimize the so-called Bethe free energy subject taer 1 1 1

local consistency constraints. In comparison, GAMP appear — = _— +8¢, —=d,+S%¢., (35)

to minimize a Gaussian approximation of the KL divergence £ d &

subject to weaker moment matching constraints between #fere the vector inverses are componentwise. Moreover, the

distributions on the variable nodes. In this manner, thedfixevectors§. and{, are asymptotic diagonals @, andQ. in

points of GAMP appears closer in form of those of expectatidfe following sense: For any deterministic sequence oftpesi

propagation (EP) methods that can also be interpreted \@§torsu, € R™ andu, € R™, such that

saddle points of a certain free energy subject to moment lim sup ||ug|lso < 00, limsup |[us]/e < o0,

matching [33]. However, the exact relation between EP and n—o0 n—00

sum-product GAMP fixed points requires further study. the following limits hold almost surely

limsup [|dz |l < 00, limsup|/d;|e < o0.
n—oo n—0o0

Theorem 3 ([[42]): Consider a sequence of matric€p,
nd Q. in Assumption[dl. Then, for each, there exists
positive vectorst, and¢, satisfying the nonlinear equations

n

Jim 3 (i (Qu)ys — )] = 0

CONCLUSIONS i—1

m

Although AMP methods admit precise analyses in the lim lz[u Q)i — )] = 0
. . . z zZ ) z - .
context of large random transform matric&s their behavior n—oo m
for general matrices is less well-understood. This lirotat Proof: This result is a special case of the results(in [42].
is unfortunate since many transforms arising in practical -

problems such as imaging and regression are not well-madele 1 results says that, for certain large random matrites

as realizations of large random matrices. To help overco € and¢, are approximate diagonals of the matri®s and
. . . . . xT z
these limitations, this paper draws connections betweerPA@ , respectively. This motivates the following definition for
and certain variants of standard optimization methods trlff’tfterministicA.
employ adaptive vector-valued step-sizes. These commecti  pefinition 1: Consider matricefQ, and Q. of the form

enable a precise characterization of the fixed-points oh b%ﬂ) for somedeterministic(i.e. non-random@, d, andd..
max-sum and sum-product GAMP for the case of arbitrajy,; g — |A|2 be the componentwise magnitude squared.of
transform matriceA. The convergence of AMP methods forThen, the unique positive solutiogs andé¢, to (38) will be

generalA is, however, still not fully understood. Simulations.gjjeq theapproximate diagonalef Q, andQ,, respectively.
(not shown here) have indicated, for example, that under

general choices oA, AMP may diverge. We hope that the APPENDIXB

connections between AMP and standard optimization methods PROOF OFTHEOREMI[]]

provided here help to better understand, and even improveTo prove [I6b), observe that

AMP convergence with general matrices. 1
arg min {L(xt, z,s7) + §||z — Axt||f_t}

a 1
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where (a) follows from substitutind(2) anf_{10) info_(16bjor all = with equality whenr = v; and (d) is the definition
and eliminating the terms that do not dependzoib) follows of Hgauss in (24). Whenb, is separable and Gaussian, all
from the definition ofpt in line [§; and (c) follows from the the inequalities are equalities in {39). The inequalify) (@&n
definition ofz’ in line[IQ. This proved (16b). The updafie (f16afollows from comparing[(21) and(23).

can be proven similarly. To prove_(16c), observe that

st (@) it(zt -ph) ® st it(zt — Ax) APPENDIXD
Tp Tp PROOF OFLEMMA 2
where (a) follows from the update sf in line[18 in Algorithm | js useful here and in subsequent proofs to introduce the

[l (recall that the division is componentwise); and (b) falo fo|lowing notation. Partition the objective function {28%
from the update forp! in line 8. We have thus proven

the equivalence of the max-sum GAMP algorithm with the Jsp(bg, by, Tp) = JSp(bz) + Jép (b2, Tp), (40)
Lagrangian update§ (116).
Now consider any fixed poin{z,%,s) of the max-sum Where

GAMP algorithm. A fixed point of[(18c), requires that Jio(bs) = D(balle ) (41a)

Z=AX (36) Jgp (b, 7) 1= D(b:lle™) + Hyauss(b:, 7). (41b)
so the fixed point satisfies the constraint of the optimizati

(@). Now, using[(3b) and the fact thatis the minima of[(16b), Ql'hen, we can rewrite (26) as

we have that a Fio (X, Ty) = Hgin T (ba)
—L(X,z,s) = 0. -
0z st E(x|b,) =X, var(x|b,) =T, (42a)
Similarly, sincex is thae minima of [16a), we have that F&p(2,7,) = H;m Tep (ba,T)
8—XL(§,E, s)=0. s.t.E(z|b,) = Z. (42b)
Thus, the fixed poin(x,z,s) is a critical point of the La- Now, fix a positive vectofr, and consider the minimization
grangian [IID)-. . . (28) with the additional constraints that
Finally, consider the quadratic terris,, 7., 75) at the fixed R R
point. From the updates af, and ., in Algorithm[1 [see also x = E(x|b,), T, =varx|b,), (43a)
(@] and the definition ofd, in (15), we obtain z = E(z[b?) (43b)
1 1 .
— d; + o d; +8° 7. (37)  for some vectorst, z, 7, and,. Then, using the partition
Similarly, the updates of,; and 7, show that (@0), the _mlnlma_ong]_S) “_”d‘?r the constra|(42_3)_|s_pﬂd_§z|s
the functionFsp (X, Z, 7», 7p) in (27). Thus, the minimization
1 _ 1 t, = 1 +S7,. (38) (29) can be_ achieved by minimizingsp (X, z, FI,_?P)_unc_zler
T, d, d. the constraints tha = Ax and7T, = ST,. This minimization
Then, according to Definitionl X, and T, are the approx- is precisely the optimizatio (29) and this fact estabkstiee
imate diagonals o€), and Q. in (14), respectively. equivalence between the two optimizations.
APPENDIXC
PROOF OFLEMMA[T] 5 APPE_’l\_‘D'X E
For any positive vecto¥, and density functiom, (even if ROOF OF THEOREM
it is not separable), we have the bound Our proof will now follow three parts: First, we will provide
(@ m an explicit characterization for optimization problemstbé
H(b,) < Z H(b.,) form (28). Next, we will use this characterization to prokatt
i=1 the sum-product GAMP updates are equivalent to the ADMM-
® 1" ISTA iterations in [(3R) and[(33). Finally, we will show that
< B Zlog(%@ var(z;[b,)) the fixed points of the iterations correspond to criticaln®i
=1 of the Lagrangian{31).
(©) 1 <= [var(z]b.
< 52 [V r(_z b-,) + log(277,,)
To:
i=1 pi A. KL Minimization with Moment Constraints
@ g b T 39 L L
= Hgauss (b2, Tp) (39) We begin with a standard result on the minimization of the

where (a) follows fromb., being the marginal distribution on KL divergence subject to moment constraints. _
the component; of z; (b) is the Gaussian upper-bound on the Lemma 3:Let f(u) be any real-valued measurable function

entropy of each marginal distribution; (c) uses the fact tha On a real variable.. Given a mean value and variance, >
v 0, the following are equivalent statements about a prokigbili
log(2mev) < — + log(277), density functionb(u):



(a) The probability density functioh is the solution to the from the separability assumption_{22) and the fact that, for

constrained optimization: any density functiorb,,,
b= argmin D(b|[e~7) var(z;|b.,) + ’E(Z1|bzl) — pﬂz =E(|z —pt? ’ bz,).
b
s.t. E(ulb) =@, var(u|b) = 7. (44) The minimization[(5D) is then separable, with solution
(b) There exists; andr, > 0 such that the density function ~ _ o~ ‘
b is the solution to the unconstrained optimization b:(2) = 1:[1 bz (2:) (51)

b= arg min {D(b||e*f) + %E((u — q)2|b)}, (45) Whose components are the solutions
b Tq

~ . 1
b, (21) = argmin| D(b, le~ 1) + ——E(|2; - pt[p.,) .
TZH

and E(ulb) =, var(ulb) = 7. 7 2
(c) There existgy and7, > 0 such that the density function (52)
b is of the form From Lemmd B, the solution t&_(62) can be restated as
b o €xp [—f(u) - i(u - Q)Q} ) (46) azv(zi) x exp |—fz(zi) — M . (53)
274 g g 27t
and E(u(b) =, var(ulb) = 7. Comparing[(5lL) and (33) t¢1(9) we see that
Proof: This result is standard—similar calculations are in >
bz(z) :p(z|pt77-;§)7 (54)

[34]. The equivalence between (a) and (b) can be shown via a

Lagrangian argument and the equivalence between (b) andwtlich when substituted int@_(#8) yields
can be found by taking the derivatives of the unconstrained 5t E(glot
objective [45) with respect ta(u) for eachu. [ | z =E(zlp’, 7).

Finally, using the definition of! in line [I3 of Algorithm[1,
B. Equivalence of GAMP and ADMM-ISTA lIterations we see tha’ = z* and thus we have proven (33b).

. . . A 1
We now use Lemm&l3 to that the sum-product GAMP The proof of [32) is similar and also shows th&t! and

tH1 i
iterations are equivalent to the ADMM-ISTA iterations in"e are the mean and variance of

Theoreni 2. We begin by proving(33b). L#tequal the right- by (x) = p(x|rt, 7). (55)
hand side of[(33b). We want to show thgt= z!, wherez’

is the output of lind T3 of the sum-product GAMP algorithmi€anwhile, the proof 0f(33c) is identical to the proofiof §.6
To show this, we first observe that Finally to prove [[(33d), we take the derivatives

a 1 0 o~ (i) z
Zt (:) argzmin |:FSZP(Z, T;) =+ (stfl)TZ—i- 5”2 — AXtHz_;:| 8_7_pLSP(Xta Zt,T;,T;, St) - a—_rpFSP(Zta T;)
®) N P 1. ® 9 ..oz
e argzmln [FSP(Z,T;) + 5||z — pt”f_;}’ (47) = a—‘ersp(bz7Tp)
where (a) follows from substituting (B1) and {27) infa (B3b) (© 9 gauSS(EZ’Tt) @ l{i B 7! } (e 17_;7
and eliminating the terms that do not dependzrand (b) oy Pro2le) (7))? 2

and eliminating terms. Now, using the definition 8f. in  removing the terms that do not dependmen (b) follows from

(@25), it follows from [4Y) that the definition of i, in (@2B); (c) follows from the definition
st — ]E(z|3z), (48) of J& in (@1B); (d) can be verified by simply taking the

R derivative of Hy..s With respect to each componeny, and

whereb, is the density function om that minimizes (e) follows from the definition ofr! in line 17 of Algorithm

~ T | 2 [@. This proves[(33d), and we have established that the sum-
b, = argbmm [JSP(vaTp) T3 |E(2]b2) — p ||T;] (49) product GAMP updates are equivalent fo](32) dnd (33).

z

Now, this minimization can be simplified as L . .
P C. Characterization of the Fixed Points

5. W arg min {D(bz||e*f2) 4 Xm: var(zib-,) We conclude by showing that the fixed points of the sum-
b. Py 27k, product GAMP algorithm are critical points of the Lagrangia
N 1 HE(z|b - PtHz } @)._ To account for the constraint thap, = ST, define the
9 = t modified Lagrangian
=gy [D(b21||efj.21) L Ell= —2p§|2 \ bzi)] (50) Lsp—mod(X, Z, 72, 5) = Lsp(X, 2,74, S74,5),  (56)
- im1 Tpi which is the Lagrangiatisp (X,Z, 7, Tp, S), With 7, = ST,.

where (a) follows from substituting (4lLb) arid(24) into](49) Now consider any fixed poinx, z, 7, 7, s) of the sum-
and removing terms that do not dependbgnand (b) follows product GAMP algorithm. To show that this fixed point is a



critical point of the optimization[{29), we will show thatii
a critical point of the modified Lagrangialilsp 09 and that
it satisfies the constraint = AX. 7]

First, the vector components of the sum-product GAMP
fixed-point must be fixed-points of the Lagrangian updaig (3
and [33). Thus, fron[(33a), we have that

(6]

Tp = STI, (57) [9]

while from (33¢) we have that [10]
z = AX, (58)

(11]

and so the fixed point satisfies both constraints in the opti-

mization [29).
Now, using [[(58) and the fact thatis the minima of[(33b),
we have that

[12]

[13]
0 (59)

Lsp(X,2, 7y, Tp,s) = 0.

oz [14]
Due to [57), equatior ($9) implies that
o [15]
%LSmeod(ﬁv/Z\v Tz, S) =0. (60)
16
Similarly, sincex is the minima of[(3R), we have that el
0
—- Xz = [17]
8§LSP—mOd(X7Z7Twa S) 0. (61)
The minimization[(3R) also implies that 18]
9 <= T
8—ﬂLSp(x,z,ng,Tp,s) = —§S . (62) [19]
Therefore,
o [20]

—LSP mod(xa /Z\v Tz S)

a_
(g) %LSP (X7 /Z\v Tz, Tp, S)

[21]

0 o
+ STﬁLSp(X,Z,Tm,Tp,S)
p

22
@ ——ST7-S++EST7-S=0, 122

(63)

[23]
where (a) follows from the definition ofL.sp_n0q in (58)
and from [5Y), while (b) follows from[{82) and (33d). The?4
derivatives[(6l1),[{d0) and (63), along with the constra{bid)
and [58), show that the vectos z, 7, and 7, are critical [25]
points of the optimization (29). Finally, using Lemrh 3 and
arguments similar to those used in derivation[of (54) and, (5%¢]

it follows that the density functions, andb, that minimize

(28) are those given in_(84).

[27]

REFERENCES
[28]
[1] J. A. Nelder and R. W. M. Wedderburn, “Generalized linezzdels,”J.
Royal Stat. Soc. Series Rol. 135, pp. 370-385, 1972.
[2] P. McCullagh and J. A. NelderGeneralized linear models2nd ed. [29]

Chapman & Hall, 1989.
[3] Y. C. Eldar and G. KutyniokCompressed Sensing: Theory and Appli-
cations New York: Cambridge Univ. Press, 2012. [
[4] A. Chambolle, R. A. DeVore, N. Y. Lee, and B. J. Lucier, “Nmear
wavelet image processing: Variational problems, comjasand noise
removal through wavelet shrinkagéZEE Trans. Image Processol. 7,
no. 3, pp. 319-335, Mar. 1998.
I. Daubechies, M. Defrise, and C. D. Mol, “An iterativeréisholding al-
gorithm for linear inverse problems with a sparsity coriattaCommun.
Pure Appl. Math. vol. 57, no. 11, pp. 1413-1457, Nov. 2004.

[31]

(5]
[32]

C. Vonesch and M. Unser, “Fast iterative thresholdingoathm for

wavelet-regularized deconvolution,” iRroc. SPIE: Wavelet X]ISan

Diego, CA, 2012.

S. J. Wright, R. D. Nowak, and M. Figueiredo, “Sparse restauction by
separable approximationlEEE Trans. Signal Processvol. 57, no. 7,
pp. 2479-2493, Jul. 2009.

A. Beck and M. Teboulle, “A fast iterative shrinkage-¢isholding

algorithm for linear inverse problem3IAM J. Imag. Scj.vol. 2, no. 1,

pp. 183-202, 2009.

Y. E. Nesterov, “Gradient methods for minimizing comjtesobjective

function,” CORE Report2007.

J. Bioucas-Dias and M. Figueiredo, “A new TwIST: Tweystiterative
shrinkage/thresholding algorithms for image restorgtidBEE Trans.

Image Processvol. 16, no. 12, pp. 2992 — 3004, Dec. 2007.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Ecksteisttibuted

optimization and statistical learning via the alternatdigection method
of multipliers,” Found. Trends Mach. Learnvol. 3, no. 1, 2010.

J. Eckstein and D. Bertsekas, “On the Douglas-Rachfsptitting

method and the proximal point algorithm for maximal monetarp-

erators,”Math. Program, vol. 5, pp. 293—-318, 1992.

T. Goldstein and S. Osher, “The split Bregman method Edr

regularized problemsSIAM J. Imaging Sciencesol. 2, no. 2, 2009.

X. Zhang, M. Burger, and S. Osher, “A unified primal-dwgorithm

framework based on Bregman iteratio'AM J. Sci. Computvol. 46,

pp. 20-46, 2011.

P. L. Combettes and V. R. Wajs, “Signal recovery by pnai forward-

backward splitting,”Multiscale Model. Simul.vol. 4, pp. 1168-1200,
2005.

P. Tseng, “Applications of a splitting algorithm to a@esposition in
convex programming and variational inequalitieSJAM J. Control and
Optimization vol. 29, no. 1, pp. 119-138, Jan. 1991.

M. Zhu and T. Chan, “An efficient primal-dual hybrid giadt algorithm

for total variation image restoration,” UCLA CAM, Tech. Rep8-34,

2008.

J. E. Esser, “Primal dual algorithms for convex modetsl applica-
tions to image restoration, registration and nonlocal impzg,” Ph.D.

dissertation, The University of California, Los Angele§1D.

A. Chambolle and T. Pock, “A first-order primal-dual atghm for

convex problems with applications to imaging,” Math. Imaging Vis.

vol. 40, pp. 120-145, 2011.

B. He and X. Yuan, “Convergence analysis of primal-dalgrithms for
a saddle-point problem: From contraction perspecti&&AM J. Imaging
Sci, vol. 5, no. 1, pp. 119-149, 2012.

D. L. Donoho, A. Maleki, and A. Montanari, “Message-pig algo-
rithms for compressed sensindg?toc. Nat. Acad. Scivol. 106, no. 45,
pp. 18914-18 919, Nov. 2009.

——, “Message passing algorithms for compressed sgrisinotivation

and construction,” irProc. Info. Theory Worksho@an. 2010.

——, “Message passing algorithms for compressed sgrisiranalysis
and validation,” inProc. Info. Theory Workshe@lan. 2010.

M. Bayati and A. Montanari, “The dynamics of messagespas on

dense graphs, with applications to compressed sensiB&E Trans.
Inform. Theory vol. 57, no. 2, pp. 764-785, Feb. 2011.

S. Rangan, “Estimation with random linear mixing, bélpropagation
and compressed sensing,” RAroc. Conf. on Inform. Sci. & Sys.
Princeton, NJ, Mar. 2010, pp. 1-6.

——, “Generalized approximate message passing fomesibn with

random linear mixing,” inProc. IEEE Int. Symp. Inform. Theqr§aint

Petersburg, Russia, Jul.—Aug. 2011, pp. 2174-2178.

G. Caire, S. Shamai, A. Tulino, and S. Verdd, “Supp@tavery in
compressed sensing: Information-theoretic bounds,”Pmmc. UCSD
Workshop Inform. Theory & Its Applicationga Jolla, CA, Jan. 2011.
M. Bayati, M. Lelarge, and A. Montanari, “Universalitin polytope

phase transitions and iterative algorithms,”Hroc. ISIT, Jul. 2012, pp.
1643 -1647.

A. Javanmard and A. Montanari, “State evolution for gexh approxi-
mate message passing algorithms, with applications tdespatupling,”

arXiv:1211.5164 [math.PR]., Nov. 2012.

30] Y. Weiss and W. T. Freeman, “On the optimality of solatioof the max-

product belief-propagation algorithm in arbitrary graph&EE Trans.
Inform. Theory vol. 47, no. 2, pp. 736-744, Feb. 2001.

T. Heskes, “Stable fixed points of loopy belief propagratare minima
of the Bethe free energy,” ifPfroc. Neural Information Process. Syst.
Vancouver, Canada, Dec. 2003.

J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understagdbelief
propagation and its generalizations,” Exploring Atrtificial Intelligence



10

(33]
[34]

[35]

(36]

[37]

(38]

[39]

[40]
[41]

[42]

in the New Millennium  San Francisco, CA: Morgan Kaufmann
Publishers, 2003, pp. 239-269.

M. Opper and O. Winther, “Expectation consistent agpmate infer-
ence,”J. Mach. Learning Resvol. 1, pp. 2177-2204, 2005.

M. Wainwright and M. Jordan, “Graphical models, expoti@ families,
and variational inference Found. Trends Mach. Learnvol. 1, 2008.

J. Boutros and G. Caire, “Iterative multiuser joint dding: Unified
framework and asymptotic analysisfEEE Trans. Inform. Theory
vol. 48, no. 7, pp. 1772-1793, Jul. 2002.

T. Tanaka and M. Okada, “Approximate belief propagatiaensity
evolution, and neurodynamics for CDMA multiuser detectiofieEE
Trans. Inform. Theoryvol. 51, no. 2, pp. 700-706, Feb. 2005.

D. Guo and C.-C. Wang, “Asymptotic mean-square opfityaif belief
propagation for sparse linear systems,”"Rroc. IEEE Inform. Theory
Workshop Chengdu, China, Oct. 2006, pp. 194-198.

A. Montanari, “Graphical model concepts in compressahsing,”
in Compressed Sensing: Theory and Applicatio’s C. Eldar and
G. Kutyniok, Eds. Cambridge Univ. Press, Jun. 2012, pp. 398-—
T. P. Minka, “A family of algorithms for approximate Bagian in-
ference,” Ph.D. dissertation, Massachusetts InstituteTethnology,
Cambridge, MA, 2001.

M. Seeger, “Bayesian inference and optimal designHergparse linear
model,” J. Machine Learning Researchol. 9, pp. 759-813, Sep. 2008.
R. Tibshirani, “Regression shrinkage and selectioa the lasso,"J.
Royal Stat. Soc., Ser, Bol. 58, no. 1, pp. 267-288, 1996.

W. Hachem, P. Loubaton, and J. Najim, “Deterministiaiigglents for
certain functionals of large random matricesfin. Applied Probability
vol. 17, no. 3, pp. 875-930, Jun. 2007.



	I Introduction
	II Review of GAMP and Related Methods
	II-A Generalized Approximate Message Passing
	II-B Iterative Shrinkage and Thresholding Algorithm
	II-C Alternating Direction Method of Multipliers

	III Fixed-Points of Max-Sum GAMP
	IV Fixed-Points of Sum-Product GAMP
	IV-A Variational Formulation
	IV-B Equivalent Optimization

	Appendix A: Approximate Diagonals
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Lemma 1
	Appendix D: Proof of Lemma 2
	Appendix E: Proof of Theorem 2
	E-A KL Minimization with Moment Constraints
	E-B Equivalence of GAMP and ADMM-ISTA Iterations
	E-C Characterization of the Fixed Points

	References

