Functions and Their Basic Properties

Czesław Byliński Warsaw University Białystok

Summary. The definitions of the mode Function and the graph of a function are introduced. The graph of a function is defined to be identical with the function. The following concepts are also defined: the domain of a function, the range of a function, the identity function, the composition of functions, the 1-1 function, the inverse function, the restriction of a function, the image and the inverse image. Certain basic facts about functions and the notions defined in the article are proved.

MML Identifier: FUNCT_1.

WWW:http://mizar.org/JFM/Vol1/funct_1.html

The articles [1] and [2] provide the notation and terminology for this paper.

We use the following convention: X, X_1 , X_2 , Y, Y_1 , Y_2 are sets and p, x, x_1 , x_2 , y, y_1 , y_2 , z are sets.

Let *X* be a set. We say that *X* is function-like if and only if:

(Def. 1) For all x, y_1, y_2 such that $\langle x, y_1 \rangle \in X$ and $\langle x, y_2 \rangle \in X$ holds $y_1 = y_2$.

Let us observe that there exists a set which is relation-like and function-like. A function is a function-like relation-like set. One can check that every set which is empty is also function-like. We follow the rules: f, g, h denote functions and R, S denote binary relations. Next we state the proposition

(2)¹ Let F be a set. Suppose for every p such that $p \in F$ there exist x, y such that $\langle x, y \rangle = p$ and for all x, y_1, y_2 such that $\langle x, y_1 \rangle \in F$ and $\langle x, y_2 \rangle \in F$ holds $y_1 = y_2$. Then F is a function.

The scheme *GraphFunc* deals with a set \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists *f* such that for all *x*, *y* holds $\langle x, y \rangle \in f$ iff $x \in \mathcal{A}$ and $\mathcal{P}[x, y]$

provided the parameters meet the following requirement:

• For all x, y_1 , y_2 such that $\mathcal{P}[x, y_1]$ and $\mathcal{P}[x, y_2]$ holds $y_1 = y_2$.

Let us consider f, x. The functor f(x) yielding a set is defined as follows:

(Def. 4)²(i) $\langle x, f(x) \rangle \in f \text{ if } x \in \text{dom } f$,

(ii) $f(x) = \emptyset$, otherwise.

One can prove the following propositions:

(8)³ $\langle x, y \rangle \in f \text{ iff } x \in \text{dom } f \text{ and } y = f(x).$

1

¹ The proposition (1) has been removed.

² The definitions (Def. 2) and (Def. 3) have been removed.

³ The propositions (3)–(7) have been removed.

(9) If dom f = dom g and for every x such that $x \in \text{dom } f$ holds f(x) = g(x), then f = g.

Let us consider f. Then rng f can be characterized by the condition:

(Def. 5) For every y holds $y \in \operatorname{rng} f$ iff there exists x such that $x \in \operatorname{dom} f$ and y = f(x).

We now state two propositions:

- (12)⁴ If $x \in \text{dom } f$, then $f(x) \in \text{rng } f$.
- (14)⁵ If dom $f = \{x\}$, then rng $f = \{f(x)\}$.

Now we present two schemes. The scheme *FuncEx* deals with a set \mathcal{A} and a binary predicate \mathcal{P} , and states that:

There exists *f* such that dom $f = \mathcal{A}$ and for every *x* such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, f(x)]$ provided the parameters meet the following requirements:

- For all x, y_1, y_2 such that $x \in \mathcal{A}$ and $\mathcal{P}[x, y_1]$ and $\mathcal{P}[x, y_2]$ holds $y_1 = y_2$, and
- For every *x* such that $x \in \mathcal{A}$ there exists *y* such that $\mathcal{P}[x, y]$.
- The scheme *Lambda* deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that: There exists a function f such that dom $f = \mathcal{A}$ and for every x such that $x \in \mathcal{A}$ holds

$$f(x) = \mathcal{F}(x)$$

for all values of the parameters.

One can prove the following propositions:

- (15) If $X \neq \emptyset$, then for every *y* there exists *f* such that dom f = X and rng $f = \{y\}$.
- (16) If for all f, g such that dom f = X and dom g = X holds f = g, then $X = \emptyset$.
- (17) If dom f = dom g and rng $f = \{y\}$ and rng $g = \{y\}$, then f = g.
- (18) If $Y \neq \emptyset$ or $X = \emptyset$, then there exists f such that X = dom f and $\text{rng } f \subseteq Y$.
- (19) If for every y such that $y \in Y$ there exists x such that $x \in \text{dom } f$ and y = f(x), then $Y \subseteq \text{rng } f$.

Let us consider f, g. We introduce $g \cdot f$ as a synonym of $f \cdot g$. Let us consider f, g. One can check that $g \cdot f$ is function-like. We now state several propositions:

- (20) Let given *h*. Suppose for every *x* holds $x \in \text{dom} h$ iff $x \in \text{dom} f$ and $f(x) \in \text{dom} g$ and for every *x* such that $x \in \text{dom} h$ holds h(x) = g(f(x)). Then $h = g \cdot f$.
- (21) $x \in \text{dom}(g \cdot f)$ iff $x \in \text{dom} f$ and $f(x) \in \text{dom} g$.
- (22) If $x \in \text{dom}(g \cdot f)$, then $(g \cdot f)(x) = g(f(x))$.
- (23) If $x \in \text{dom } f$, then $(g \cdot f)(x) = g(f(x))$.
- (25)⁶ If $z \in \operatorname{rng}(g \cdot f)$, then $z \in \operatorname{rng} g$.
- (27)⁷ If dom $(g \cdot f) = \text{dom} f$, then rng $f \subseteq \text{dom} g$.
- (33)⁸ If rng $f \subseteq Y$ and for all g, h such that dom g = Y and dom h = Y and $g \cdot f = h \cdot f$ holds g = h, then $Y = \operatorname{rng} f$.

Let us consider *X*. One can check that id_X is function-like. Next we state several propositions:

⁴ The propositions (10) and (11) have been removed.

⁵ The proposition (13) has been removed.

⁶ The proposition (24) has been removed.

⁷ The proposition (26) has been removed.

⁸ The propositions (28)–(32) have been removed.

- (34) $f = id_X$ iff dom f = X and for every x such that $x \in X$ holds f(x) = x.
- (35) If $x \in X$, then $id_X(x) = x$.
- $(37)^9 \quad \operatorname{dom}(f \cdot \operatorname{id}_X) = \operatorname{dom} f \cap X.$
- (38) If $x \in \text{dom } f \cap X$, then $f(x) = (f \cdot \text{id}_X)(x)$.
- $(40)^{10}$ $x \in \text{dom}(\text{id}_Y \cdot f)$ iff $x \in \text{dom} f$ and $f(x) \in Y$.
- $(42)^{11}$ $f \cdot \operatorname{id}_{\operatorname{dom} f} = f$ and $\operatorname{id}_{\operatorname{rmg} f} \cdot f = f$.
- (43) $\operatorname{id}_X \cdot \operatorname{id}_Y = \operatorname{id}_{X \cap Y}$.
- (44) If rng $f = \operatorname{dom} g$ and $g \cdot f = f$, then $g = \operatorname{id}_{\operatorname{dom} g}$.

Let us consider f. We say that f is one-to-one if and only if:

(Def. 8)¹² For all x_1, x_2 such that $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$ and $f(x_1) = f(x_2)$ holds $x_1 = x_2$.

Next we state several propositions:

- $(46)^{13}$ If f is one-to-one and g is one-to-one, then $g \cdot f$ is one-to-one.
- (47) If $g \cdot f$ is one-to-one and $\operatorname{rng} f \subseteq \operatorname{dom} g$, then f is one-to-one.
- (48) If $g \cdot f$ is one-to-one and $\operatorname{rng} f = \operatorname{dom} g$, then f is one-to-one and g is one-to-one.
- (49) f is one-to-one iff for all g, h such that $\operatorname{rng} g \subseteq \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} f$ and $\operatorname{dom} g = \operatorname{dom} h$ and $f \cdot g = f \cdot h$ holds g = h.
- (50) If dom f = X and dom g = X and rng $g \subseteq X$ and f is one-to-one and $f \cdot g = f$, then $g = id_X$.
- (51) If $\operatorname{rng}(g \cdot f) = \operatorname{rng} g$ and g is one-to-one, then dom $g \subseteq \operatorname{rng} f$.
- (52) id_X is one-to-one.
- (53) If there exists g such that $g \cdot f = id_{\text{dom } f}$, then f is one-to-one.

One can verify that there exists a function which is empty. Let us observe that every function which is empty is also one-to-one. One can verify that there exists a function which is one-to-one.

Let f be an one-to-one function. Observe that f^{\sim} is function-like.

Let us consider f. Let us assume that f is one-to-one. The functor f^{-1} yields a function and is defined by:

(Def. 9) $f^{-1} = f^{\sim}$.

The following propositions are true:

- (54) Suppose f is one-to-one. Let g be a function. Then $g = f^{-1}$ if and only if the following conditions are satisfied:
- (i) $\operatorname{dom} g = \operatorname{rng} f$, and
- (ii) for all y, x holds $y \in \operatorname{rng} f$ and x = g(y) iff $x \in \operatorname{dom} f$ and y = f(x).
- (55) If f is one-to-one, then $\operatorname{rng} f = \operatorname{dom}(f^{-1})$ and $\operatorname{dom} f = \operatorname{rng}(f^{-1})$.
- (56) If f is one-to-one and $x \in \text{dom } f$, then $x = f^{-1}(f(x))$ and $x = (f^{-1} \cdot f)(x)$.

⁹ The proposition (36) has been removed.

¹⁰ The proposition (39) has been removed.

¹¹ The proposition (41) has been removed.

¹² The definitions (Def. 6) and (Def. 7) have been removed.

¹³ The proposition (45) has been removed.

- (57) If f is one-to-one and $y \in \operatorname{rng} f$, then $y = f(f^{-1}(y))$ and $y = (f \cdot f^{-1})(y)$.
- (58) If f is one-to-one, then dom $(f^{-1} \cdot f) = \text{dom } f$ and $\text{rng}(f^{-1} \cdot f) = \text{dom } f$.
- (59) If f is one-to-one, then dom $(f \cdot f^{-1}) = \operatorname{rng} f$ and $\operatorname{rng}(f \cdot f^{-1}) = \operatorname{rng} f$.
- (60) Suppose f is one-to-one and dom $f = \operatorname{rng} g$ and $\operatorname{rng} f = \operatorname{dom} g$ and for all x, y such that $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} g$ holds f(x) = y iff g(y) = x. Then $g = f^{-1}$.
- (61) If f is one-to-one, then $f^{-1} \cdot f = \operatorname{id}_{\operatorname{dom} f}$ and $f \cdot f^{-1} = \operatorname{id}_{\operatorname{rng} f}$.
- (62) If f is one-to-one, then f^{-1} is one-to-one.
- (63) If f is one-to-one and rng f = dom g and $g \cdot f = \text{id}_{\text{dom } f}$, then $g = f^{-1}$.
- (64) If f is one-to-one and rng g = dom f and $f \cdot g = \text{id}_{\text{rng } f}$, then $g = f^{-1}$.
- (65) If *f* is one-to-one, then $(f^{-1})^{-1} = f$.
- (66) If f is one-to-one and g is one-to-one, then $(g \cdot f)^{-1} = f^{-1} \cdot g^{-1}$.
- (67) $(\mathrm{id}_X)^{-1} = \mathrm{id}_X.$

Let us consider f, X. One can verify that $f \upharpoonright X$ is function-like. One can prove the following propositions:

- (68) $g = f \upharpoonright X$ iff dom $g = \text{dom } f \cap X$ and for every x such that $x \in \text{dom } g$ holds g(x) = f(x).
- (70)¹⁴ If $x \in \text{dom}(f \upharpoonright X)$, then $(f \upharpoonright X)(x) = f(x)$.
- (71) If $x \in \text{dom } f \cap X$, then $(f \upharpoonright X)(x) = f(x)$.
- (72) If $x \in X$, then $(f \upharpoonright X)(x) = f(x)$.
- (73) If $x \in \text{dom } f$ and $x \in X$, then $f(x) \in \text{rng}(f \upharpoonright X)$.
- (76)¹⁵ dom $(f \upharpoonright X) \subseteq$ dom f and rng $(f \upharpoonright X) \subseteq$ rng f.
- (82)¹⁶ If $X \subseteq Y$, then $f \upharpoonright X \upharpoonright Y = f \upharpoonright X$ and $f \upharpoonright Y \upharpoonright X = f \upharpoonright X$.
- (84)¹⁷ If f is one-to-one, then $f \upharpoonright X$ is one-to-one.

Let us consider *Y*, *f*. Observe that $Y \upharpoonright f$ is function-like. One can prove the following propositions:

- (85) $g = Y \upharpoonright f$ if and only if the following conditions are satisfied:
- (i) for every *x* holds $x \in \text{dom } g$ iff $x \in \text{dom } f$ and $f(x) \in Y$, and
- (ii) for every *x* such that $x \in \text{dom} g$ holds g(x) = f(x).
- (86) $x \in \text{dom}(Y \upharpoonright f)$ iff $x \in \text{dom } f$ and $f(x) \in Y$.
- (87) If $x \in \text{dom}(Y \upharpoonright f)$, then $(Y \upharpoonright f)(x) = f(x)$.
- (89)¹⁸ dom($Y \upharpoonright f$) \subseteq dom f and rng($Y \upharpoonright f$) \subseteq rng f.

(97)¹⁹ If $X \subseteq Y$, then $Y \upharpoonright (X \upharpoonright f) = X \upharpoonright f$ and $X \upharpoonright (Y \upharpoonright f) = X \upharpoonright f$.

 $^{^{14}}$ The proposition (69) has been removed.

¹⁵ The propositions (74) and (75) have been removed.

¹⁶ The propositions (77)–(81) have been removed.

¹⁷ The proposition (83) has been removed.

¹⁸ The proposition (88) has been removed.

¹⁹ The propositions (90)–(96) have been removed.

 $(99)^{20}$ If f is one-to-one, then $Y \upharpoonright f$ is one-to-one.

Let us consider f, X. Then $f^{\circ}X$ can be characterized by the condition:

- (Def. 12)²¹ For every y holds $y \in f^{\circ}X$ iff there exists x such that $x \in \text{dom } f$ and $x \in X$ and y = f(x). One can prove the following propositions:
 - $(117)^{22}$ If $x \in \text{dom } f$, then $f^{\circ}\{x\} = \{f(x)\}.$
 - (118) If $x_1 \in \text{dom } f$ and $x_2 \in \text{dom } f$, then $f^{\circ}\{x_1, x_2\} = \{f(x_1), f(x_2)\}$.
 - $(120)^{23} \quad (Y \restriction f)^{\circ} X \subseteq f^{\circ} X.$
 - (121) If *f* is one-to-one, then $f^{\circ}(X_1 \cap X_2) = f^{\circ}X_1 \cap f^{\circ}X_2$.
 - (122) If for all X_1, X_2 holds $f^{\circ}(X_1 \cap X_2) = f^{\circ}X_1 \cap f^{\circ}X_2$, then f is one-to-one.
 - (123) If *f* is one-to-one, then $f^{\circ}(X_1 \setminus X_2) = f^{\circ}X_1 \setminus f^{\circ}X_2$.
 - (124) If for all X_1, X_2 holds $f^{\circ}(X_1 \setminus X_2) = f^{\circ}X_1 \setminus f^{\circ}X_2$, then *f* is one-to-one.
 - (125) If X misses Y and f is one-to-one, then $f^{\circ}X$ misses $f^{\circ}Y$.
 - (126) $(Y \upharpoonright f)^{\circ} X = Y \cap f^{\circ} X.$

Let us consider f, Y. Then $f^{-1}(Y)$ can be characterized by the condition:

(Def. 13) For every x holds $x \in f^{-1}(Y)$ iff $x \in \text{dom } f$ and $f(x) \in Y$.

We now state a number of propositions:

$$(137)^{24} \quad f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2).$$

- (138) $f^{-1}(Y_1 \setminus Y_2) = f^{-1}(Y_1) \setminus f^{-1}(Y_2).$
- (139) $(R \upharpoonright X)^{-1}(Y) = X \cap R^{-1}(Y).$
- $(142)^{25}$ $y \in \operatorname{rng} R$ iff $R^{-1}(\{y\}) \neq \emptyset$.
- (143) If for every *y* such that $y \in Y$ holds $R^{-1}(\{y\}) \neq \emptyset$, then $Y \subseteq \operatorname{rng} R$.
- (144) For every y such that $y \in \operatorname{rng} f$ there exists x such that $f^{-1}(\{y\}) = \{x\}$ iff f is one-to-one.
- (145) $f^{\circ}f^{-1}(Y) \subseteq Y$.
- (146) If $X \subseteq \operatorname{dom} R$, then $X \subseteq R^{-1}(R^{\circ}X)$.
- (147) If $Y \subseteq \operatorname{rng} f$, then $f^{\circ}f^{-1}(Y) = Y$.
- (148) $f^{\circ}f^{-1}(Y) = Y \cap f^{\circ} \operatorname{dom} f.$
- (149) $f^{\circ}(X \cap f^{-1}(Y)) \subseteq f^{\circ}X \cap Y.$
- (150) $f^{\circ}(X \cap f^{-1}(Y)) = f^{\circ}X \cap Y.$
- (151) $X \cap R^{-1}(Y) \subseteq R^{-1}(R^{\circ}X \cap Y).$

(152) If *f* is one-to-one, then $f^{-1}(f^{\circ}X) \subseteq X$.

²⁰ The proposition (98) has been removed.

²¹ The definitions (Def. 10) and (Def. 11) have been removed.

²² The propositions (100)–(116) have been removed.

²³ The proposition (119) has been removed.

²⁴ The propositions (127)–(136) have been removed.

²⁵ The propositions (140) and (141) have been removed.

- (153) If for every X holds $f^{-1}(f^{\circ}X) \subseteq X$, then f is one-to-one.
- (154) If *f* is one-to-one, then $f^{\circ}X = (f^{-1})^{-1}(X)$.
- (155) If *f* is one-to-one, then $f^{-1}(Y) = (f^{-1})^{\circ} Y$.
- (156) If $Y = \operatorname{rng} f$ and dom g = Y and dom h = Y and $g \cdot f = h \cdot f$, then g = h.
- (157) If $f^{\circ}X_1 \subseteq f^{\circ}X_2$ and $X_1 \subseteq \text{dom } f$ and f is one-to-one, then $X_1 \subseteq X_2$.
- (158) If $f^{-1}(Y_1) \subseteq f^{-1}(Y_2)$ and $Y_1 \subseteq \operatorname{rng} f$, then $Y_1 \subseteq Y_2$.
- (159) *f* is one-to-one iff for every *y* there exists *x* such that $f^{-1}(\{y\}) \subseteq \{x\}$.
- (160) If $\operatorname{rng} R \subseteq \operatorname{dom} S$, then $R^{-1}(X) \subseteq (R \cdot S)^{-1}(S^{\circ}X)$.

References

- Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [2] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html.

Received March 3, 1989

Published January 2, 2004