
Two Optimization Mechanisms to Improve the Isolation Property of Server
Consolidation in Virtualized Multi-Core Server

Kejiang Ye, Xiaohong Jiang, Deshi Ye, Dawei Huang

College of Computer Science, Zhejiang University
Hangzhou 310027, China

{yekejiang,jiangxh,yedeshi,davidhuang}@zju.edu.cn

Abstract—Virtualization brings many benefits such as im-
proving system utilization and reducing cost through server
consolidation. However, it also introduces isolation problem
when running multiple virtual machine workloads in one
physical platform. Additionally, with the advent of multi-
core technology, more and more cores are built into one die
in today’s data center that will share and compete for the
resource like cache. It’s worthy to study the isolation of server
consolidation in modern multi-core platform. However, to our
knowledge there are few work done on the isolation property
especially the fault isolation property when one of the virtual
machine workloads is attacked in server consolidation. In
this paper, we study the isolation property from performance
perspective and provide two optimization methods to improve
the isolation property. We first define the isolation property
and quantify the performance isolation in consolidation and
propose a VM-level optimization method. Then we study the
fault isolation by introducing a misbehavior virtual machine in
server consolidation scenario and propose a core-level cache-
aware optimization method to improve the fault isolation.
Experimental results show that our two optimization methods
can effectively improve the performance isolation and fault
isolation with 29.39% and 19.52% respectively. What’s more,
Oprofile/Xenoprof toolkits are used to find out the factors
affecting isolation property from the hardware events level.

Keywords-Cache-aware; Fault Isolation; Multi-core; Server
Consolidation; Virtualization

I. INTRODUCTION

Virtualization technology [1, 5, 19, 20] has brought a lot
of benefits such as improving resource utilization, reducing
costs, easing management of computer servers and con-
solidating multiple server workloads into a single physical
platform which named server consolidation. Server consol-
idation [3, 4, 13] is one of the most common scenarios of
virtualization, which enables to consolidate multiple server
workloads into a single physical platform to maximize the
system utilization. Although server consolidation offers great
potential to improve resource utilization and reduce cost,
it may also introduce new challenges in managing the
consolidated servers such as isolation.

With development of multi-core technology, consolidation
of multiple workloads will incur resource competition issues
such as core competition and L2 cache competition. What’s
more, the scheduling of virtual machines across the physical

cores is also a notable issue. In this paper, we will perform
a detailed performance study about the isolation property
in server consolidation scenario on the multi-core platform,
based on which we propose two optimization mechanisms to
improve the isolation property. Fig. 1 shows a typical server
consolidation scenario in a modern multi-core platform.

We divide the isolation property into performance iso-
lation and fault isolation. Performance isolation indicates
the performance effects when consolidating several work-
loads into one physical servers, and fault isolation indicates
the performance effects when there exist a misbehavior
workload which will affect other workloads. Our goal is
to quantify the performance isolation and fault isolation
of server consolidation and identify the factors that affect
the isolation, and then improve the isolation property using
efficient optimization methods based on the our experimental
discovery. Fig. 2 shows a consolidation optimization mech-
anism to improve the performance isolation. The resource
characterization analysis can be done through various meth-
ods, such as workloads profiling analysis or tool analysis
like Xentop.

The main contributions of the paper are summarized as
follows: (i) Performance isolation. To explore the isolation
under different consolidation scenarios, we formally define
the concept of performance isolation and design a variety of
experiments using typical workloads in data center to verify
its correctness. After the evaluation, one VM-level optimiza-
tion mechanism is proposed to improve the performance
isolation. (ii) Fault isolation. We also define the concept
of fault isolation and try to evaluate it quantitatively by
introducing a misbehavior virtual machine with a fork bomb.
Based on the experimental discovery, we propose a cache-
aware core scheduling mechanism to improve the fault isola-
tion. (iii) Profiling analysis. We use the Oprofile/Xenoprof
toolkit to profile the hardware events (CPU cycle, L2 cache
misses, etc.), helping explain how the multi-core architecture
features influence the isolation.

The rest of the paper is organized as follows. In Section II,
we introduce the background of server consolidation and
the motivation to study the isolation property in multi-core
platform. Section III describes our evaluation methodology
to address the issues of isolation evaluation. In Section IV we

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.95

255

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.95

281

VMM or Hypervisor
(VMware/Xen/OpenVZ…)

L2 Cache L2 Cache L2 Cache L2 Cache

JavaVM FileVM DBVM Web VM

Cache AwareCore Scheduling Controller

Consolidation StrategyController

HardwareEvents Profiling

Figure 1. A Typical Server Consolidation Scenario on Multi-core Platform.

Resource Characteristics Analysis

VMM

Workload1 Workload2 Workload3 Workload4

CPU
Demands

Memory
Demands

Disk
Demands

Network
Demands

Consolidation StrategySelection

VM VM

VMM

VM VM

Figure 2. The VM-Level Consolidation Optimization Mechanism.

perform a variety of experiments to investigate how different
consolidation strategies influence the performance isolation
and propose a VM-level optimization mechanism. While in
Section V, we investigate the fault isolation by introducing
a misbehavior virtual machine running a fork bomb and
propose a cache-aware core scheduling optimization mech-
anism. We discuss related work in Section VI. Finally, we
summarizes our conclusion and future work in Section VII.

II. BACKGROUND & MOTIVATION

The virtualization technology promises to give a better
isolation property than the scenario that running multiple ap-
plications in one physical platform by multi-thread method.
However, consolidating several workloads together leads to a
certain degree of performance degradation. It is necessary to
carefully study the isolation property in server consolidation
scenario. Especially, when one of the consolidated work-
loads encounters a failure such as continuously consuming
large amounts of resources, how will the other workloads be
affected? We divided the isolation property into two types:
performance isolation and fault isolation. We give a formal
definition of performance isolation and fault isolation in the
next section.

To the best of our knowledge, most of the previous
studies focus on the performance degradation of server
consolidation in real physical machine [4] or perform their
experiments in the simulator platform to investigate multi-
core effects on isolation property [10]. However, there
are few studies focus on the isolation property of server
consolidation in real multi-core platform, especially the fault
isolation property. It is essential to quantify the isolation
effects and identify the potential factors that may affect the
isolation and then propose optimization methods.

The requirements of isolation of server consolidation are
summarized as follows: (i) What’s is the isolation? How can
we quantify it? How much performance isolation and fault
isolation can be achieved in server consolidation? (ii) What
factors can affect the isolation property in modern multi-core

platform? Is the shared resource contention issues (such as
core, L2 cache contention) be a key factor? How will the
scheduling strategy affect the isolation? (iii) How can we
optimize it?

III. EXPERIMENTATION METHODOLOGY FOR ISOLATION

PROPERTY

A. Workloads and Benchmarks Selection

We choose four typical server workloads in modern data
center running in virtual machine in our experiments. They
are java server, file server, database server, and web server.
We choose SPECjbb2005 [2] as the java server benchmark,
IOzone [17] as the file server benchmark, Sysbench [12] as
the database benchmark and Webbench as the web server
benchmark. The database used in the experiment is Mysql
and web server used is Apache. Fig. 1 gives an example
of scheduling scenario of server consolidation in 8-core
platform, in which the java server is fixed to dedicated cores
by varied scheduling strategies. The java virtual machine in
red means it is attacked by the bomb.

In order to quantify the isolation property, we present the
formal definition of isolation: Let W = {W1, W2, ..., Wn}
be the set of workloads, where Wi represents the workload
of V Mi. Denote by P = {P1, P2, ..., Pn} the performance
metrics of workload W . We use the following equation to
quantify the performance isolation:

Iperf =
n∑

i=1

wi(PCon
i /P Ind

i) (1)

and fault isolation:

Ifault =
n∑

i=1

wi(PFault
i /PNormal

i) (2)

In the performance isolation definition, PCon
i represents

the performance of Wi when running in consolidated mode,
while P Ind

i represents the performance when running in
individual mode. In the fault isolation definition, PFault

i

256282

indicates the performance running with a misbehavior vir-
tual machine, while PNormal

i indicates the performance
without misbehavior virtual machine. Let wi be the weight
of workload performance which reflects the importance of
workloads in data center, and

∑n
i=1 wi = 1. In this paper

we set all the workloads have the same weight wi = 1/n
which indicates all the workloads have equal importance.
Obviously, we can conclude I ∈ (0, 1].

All experimental evaluations are performed on the Dell
2900 PowerEdge server with two Quad-core 64-bit Xeon
processors at 2 GHz, with 6GB physical memory and 6MB
second level cache. We use Ubuntu 8.10 with kernel version
2.6.27 in domain0, and the version of Xen hypervisor is
3.3.1, which has built-in support for Oprofile. All the virtual
machines are configured with 4 vCPU and 1 GB memory
size.

For each experiment, we also provide a detailed analysis
of the corresponding Oprofile/Xenoprof statistical data and
try to present the causes for the observed isolation effects.
Three hardware counters are recorded for our isolation
analysis, they are CPU CLK UNHALT (The number of
cycles outside halt state is used to estimate the CPU time),
INST RETIRED (The number of retired instructions is
a estimate of the number of instructions executed), and
LLC MISSES (The number of last level cache misses
measures the number of times the memory references in
an instruction miss the last level cache and access main
memory). Then we compute the CPI and MPI using the for-
mulas: CPI = Cnum/IRetired , MPI = Mnum/IRetired,
where Cnum represents the number of CPU cycles, Mnum

represents the number of cache misses, IRetired represents
the number of retired instructions.

IV. PERFORMANCE ISOLATION CHARACTERIZATION

AND OPTIMIZATION

A. Workloads Characterization Analysis in Server Consoli-
dation

Figure 3. Performance Comparison between Alone and Consolidated
Mode.

To understand the performance interference of each work-
load in server consolidation which will affect the perfor-

mance isolation property, we have compared the perfor-
mance running alone and in consolidated mode. As ex-
pected, the performance of each workload decreases due to
the interference from other workloads within consolidation
scenario. Fig. 3 shows the performance of the workloads
running in alone and consolidated mode. We normalized
the result to a fraction of the alone mode. We observe that
compared with individual mode, the performance of each
workload has a degradation in some extend in consolidated
mode, while has a raise in CPI (Cycle per Instruction) and
MPI (L2 Cache Miss per Instruction). Java server loses
15.5% performance, while has 10.20% increasing in CPI
and 33.10% increasing in MPI. File server loses 36.36%
performance, and has 24.57% increasing in CPI and 51.80%
in MPI. Database server loses 27.17% performance, and
has 10.93% increasing in CPI and 43.13% increasing in
MPI. Web server loses 31.48% performance, has 26.59%
increasing in CPI and 40.38% increasing in MPI. The reason
for this loss in performance is due to the shared resource
contention such as core, cache, memory, etc. The increase
of CPI and MPI reflects performance degradation, the higher
MPI means higer L2 cache misses rate and affects the
performance.

With this experiment, we can compute the performance
isolation of consolidating four servers according to
the equation (1): Iperf =

∑n
i=1 wi(PCon

i /P Ind
i) =

(PCon
Java/P Ind

Java + PCon
File /P Ind

File + PCon
DB /P Ind

DB +
PCon

Web/P Ind
Web)/4 = (0.84502 + 0.63641 + 0.72835 +

0.68518)/4 = 0.72374, where PJava, PFile, PDB and
PWeb represent the performance of java server, file server,
database server and web server respectively. It is obvious
that the performance isolation in server consolidation is
less than 1 which means that there is isolation degradation
in when consolidating multiple workloads into one physical
machine.

B. Performance Isolation with Various Consolidation Strate-
gies

Next, we will investigate the performance effects and
performance isolation when consolidating every two work-
loads together, which is helpful to understand which two
workloads are suitable to consolidate together, and will give
guidance to data center administrator to consolidate appro-
priate workloads together to achieve the best performance.

Fig. 4 shows the result of performance effects when
consolidating every two workloads together. We can draw
four conclusions from the figures presented above: (1) Con-
solidating with other workloads will lead to different degree
of performance loss. (2) It is not suitable to consolidate
two same workloads in a single platform because of the
contention of the same kind resource. Take java server as
an example which is CPU intensive, when consolidate two
java server together, there will be a heavy pressure of CPU
resource, while bringing little demands on other resource

257283

Figure 4. Performance Isolation with Various Consolidation Strategies: (a) Consolidate Java with Other Servers; (b) Consolidate File with Other Servers;
(c) Consolidate DB with Other Servers; (d) Consolidate Web with Other Servers

like network bandwidth. (3) Java server and database are
most friendly with each other, leading least performance
loss, while file server and database are least suitable to
consolidate together. It is because that java server consume
a lot of CPU resource while database consumes a lot of I/O
resource and consumes little CPU, the consolidation of the
two workloads will make the best use of the different aspects
of system resources. On other hand, file server and database
server are both I/O intensive, when consolidating the two
workloads, I/O becomes a performance bottleneck. (4) The
file server is the most vulnerable to other workloads which
is consistent with the changes of CPU utilization of file
server in the previous experiment. So it’s better to running
file server in a stand-alone server.

C. Optimization of Performance Isolation with Suitable
Consolidation Strategies

Figure 5. Quantify the Performance Isolation under Various Consolidation
Scenarios.

Based on the above workloads characterization analysis
and consolidation strategies analysis, we can make suitable
consolidation strategy to improve the performance isolation.

Fig. 5 shows the performance isolations with all con-
solidation scenarios. The consolidation of database server
and database server achieves best performance isolation
since database server consumes CPU, memory and I/O
resource instead of single resource and the performance
isolation is 0.91. While consolidation of file server and file

server results in heavy contention for disk I/O and achieves
the worst performance isolation with 0.26. The average
performance isolation of all the consolidation scenarios
is 0.70. Obviously, our proposed VM-level consolidation
optimization mechanism can achieve 29.39% performance
isolation improvement compared with average performance
isolation.

V. FAULT ISOLATION AND CACHE-AWARE CORE

SCHEDULING OPTIMIZATION

In this section, we will study the fault isolation and
quantify it. It is very necessary to isolate misbehavior virtual
machine and offer a secure virtualization environment. We
write a fork bomb program in C to simulate the misbe-
havior virtual machine and perform several core scheduling
experiments to study the cache effects on the fault isolation.
Further more, one cache-aware core scheduling optimization
mechanism is presented to improve the fault isolation. And
also, we will investigate CPI and MPI which are gained
by the hardware events profiling to analyze the potential
architecture features affecting the fault isolation property.

We have designed three sets of experiments. Firstly, we
study the case of consolidating two same workloads into
a physical machine with both controlling the scheduling of
the two workloads (one is normal, the other is subjected by
the bomb). Due to the limited space, we take java server as
an example in this paper. Secondly, we study the case of
four virtual machines with the same workload (also take
java server as an example) consolidated into a physical
machine. At this time, we only control the misbehavior
virtual machine scheduling to the dedicated cores while
leave the other three virtual machine floating. Finally, we
present a typical consolidation scenario in real data center
that consolidating four typical servers and study the fault
isolation. Through these experiments, we will investigate
how the normal virtual machines can be affected by the
misbehavior virtual machine under different core scheduling
strategies. Based on experimental discovery, we propose a
cache-aware core scheduling algorithm to improve the fault
isolation.

258284

Figure 6. The Fault Isolation of Consolidating 2 Java Servers with Various
Scheduling Strategies.

Figure 7. The Fault Isolation of Consolidating 4 Java Servers with Various
Scheduling Strategies.

Figure 8. The Performance Effects of File Server when Consolidated with
other Servers with Various Scheduling Strategies.

Figure 9. The Performance Effects of Database Server when Consolidated
with other Servers with Various Scheduling Strategies.

A. Fault Isolation with Same Workloads

Fig. 6 shows the fault isolation property of two java
servers under six different scheduling cases. The cores
belonging to the virtual machine which suffers bomb attack
are marked in dark gray, while the cores belonging to the
other normal virtual machine are marked in light gray.

In case 1, the two vCPUs of the misbehavior virtual
machine are pined to two physical cores (in dark gray) in
socket0 with no shared L2 cache, and vCPUs belonging
to the normal virtual machine are pined in socket1. This
case obtains a overall best fault isolation since maximize the
utilization of cache resource for java server and the cache
pollution in socket0 has little impact on the cache resource in
socket1. While in case 2, the misbehavior cores and normal
cores are mixed in the physical CPU (See Fig. 6), and
achieve less isolation than case 1 because the misbehavior
cores will affect the normal cores through L3 cache in the
same socket.

In case 3 and case 4, the cores only use half the L2 cache
resource in both sockets and can not achieve the performance
as case 1 and case 2 apparently. The performance of case 4
is worse than case 3 is due to the shared L2 cache resource
is polluted by the misbehavior virtual machine and causes a
direct impact on the normal virtual machine.

While case 5 and case 6 only use one socket and get
worse performance. Similarly, case 6 will obtain worse
performance than case 5 due to the more serious cache
pollution.

We can conclude that the SPEC JBB is cache sensitive,
more cache resource and better performance, and obviously
it’s better to affintize the vCPUs to the cores that having
the same shared L2 cache. The shared cache resource will
improve the performance of SPEC JBB. What’s more, we
note that it is better to affintize the misbehavior virtual ma-
chine into the cores away from the normal virtual machine,
ensuring the isolation in the core level. Further, the CPI and

259285

Figure 10. The Performance Effects of Web Server when Consolidated
with other Servers with Various Scheduling Strategies.

Figure 11. The Fault Isolation in the Consolidation of Four Heterogeneous
Workloads under Various Scheduling Strategies.

MPI trend indicates the contention of L2 cache resource
by misbehavior cores and normal cores will lead to visible
L2 cache miss and also lead an increase on CPI. It once
again proved that if we don’t isolate the cache resource in
the physical core level, the cache resource can be polluted
by the misbehavior virtual machine quickly and leads to
degradation of fault isolation.

Fig. 7 presents the result of consolidation with four same
workloads with a misbehavior virtual machine. In this exper-
iment we investigate the fault isolation of consolidating four
same workloads, and only affintize the vCPUs belonging
to misbehavior virtual machine to dedicated physical cores
while leave the vCPUs of other virtual machines floating.

We take java server as an example. In case 1, the vCPUs
belonging to the bomb virtual machine are affintized to the
two physical cores that share the same L2 cache. In case
2, we affintize the vCPUs to the cores that have no cache
sharing but in the same socket. And in case 3, we affintize
the vCPUs to the different sockets. From the figure, we see

that case 1 obtains the worst performance, case 2 the next,
and case 3 the best performance.

From the CPI and MPI analysis, we find that MPI increase
directly leads the performance degradation in case 3. The
cache resource in case 3 is worst polluted, therefore when
other three java servers are scheduled across the physical
cores the L2 cache misses will be the main bottleneck and
then lead to degradation of fault isolation.

B. Fault Isolation with Four Heterogeneous Workloads

In this section, we will study a more realistic scenario
in data center that consolidating four different typical work-
loads. The scheduling strategies are the same with the above
experiments. Fig. 8 to 10 show the performance changes of
file server, database server and web server, while the java
server is attacked by the bomb and presents no result. From
all the three figures, we find that case 1 achieves the best
performance, while case 3 achieves the worst performance.
In case 1, the two cores that affected by the bomb is limited
in one L2 cache and have least impact on other workloads,
while case 3 achieve the worst performance due to the
heavier cache pollution. Besides, we also present the default
scheduling scenario in case 0 as a baseline, and compare the
results of other three cases with it to investigate the impact
of scheduling strategy on the performance.

From Fig. 8 we find file server achieves better per-
formance than normal scenario (case 0) in case 1 and
case 2, while obtains worse performance in case 3 with a
degradation of 23.39%. It is because the misbehavior virtual
machine affects the two sockets and causes high cache miss
rate (The increase of MPI in Fig. 8 can illustrate it). While
in Fig. 9, compared with case 0, all the three cases lead to
performance degradation with 3.80% in case 1, 3.60% in
case 2, 7.67% in case 3. The reason for the slight decline
can be explained by the obvious increase of MPI with about
9.28%, 24.18% and 26.02% respectively. Fortunately, we
find the web server acquires a obvious increase of throughput
compared with case 0. That is to say, the fault isolation in
case 0 is not so good, and a huge performance increase
will be achieved by using new cache-aware core scheduling
strategy instead of using the default credit algorithm in Xen.

C. Cache-Aware Core Scheduling Optimization to Improve
the Fault Isolation

Because the current credit scheduler in virtual machine
monitor is designed for SMP load balance, and can not
schedule the two vCPUs with data sharing to the physical
cores that sharing the L2 cache, It is necessary to study
the new scheduling strategies according to the workloads
characterization.

According to previous experimental results discovery, we
find that L2 cache miss rate will affect the performance
isolation. What’s more, different workloads have different
characterization and consume different aspects of system

260286

Algorithm 1 Cache aware VM-Core scheduling strategy in
multi-core platform.
Input:

The set of workloads in consolidation, W ;
The set of performance of individual workload, P Ind.;
The sign indicates whether the VM subjects a bomb, f ;

Output:
The isolation of the whole system, I;

1: If f = 1,
2: Pin the misbehavior VM to the cores that have no cache

sharing with other VMs;
3: Else if Wi is cache sensitive,
4: Pin the Wi to the cores that share the same L2 cache;
5: Else,
6: Let the remaining workloads floating across the remain-

ing cores by the default scheduling algorithm;
7: Running the workloads, and get a new perfor-

mance set PCon. = {PCon.
1 , PCon.

2 , ..., PCon.
n } or

PFault = {PFault
1 , PFault

2 , ..., PFault
n }, and calculate

performance isolation through equation (III-A) or fault
isolation through equation (2)

8: return I;

resource. Based on these findings, we present a cache aware
core scheduling strategy to maximize both fault isolation,
and minimize the failure affecting other workloads.

From the Algorithm 1, we first check if there is a
misbehavior virtual machine which can be monitored by
existing tools like Xentop, if there is a misbehavior virtual
machine, we fix the virtual machine in the dedicated physical
cores so that the cache belonging to other virtual machines
will not be polluted. Then we will schedule the VM to the
remaining cores according to the workload characterization.

Fig. 11 shows the fault isolation in all cases. The normal
case indicates the normal server consolidation with no
misbehavior virtual machine and case 0 indicates the default
scheduling algorithm in Xen. We quantify the fault isolation
by equation (2). We take case 0 as an example: Icase0

fault =∑n
i=1 wi(PFault

i /PNormal
i) = (PFault

F ile /PNormal
File +

PFault
DB /PNormal

DB + PFault
Web /PNormal

Web)/3 = (0.65 + 0.98 +
0.823)/3 = 0.82, where Icase0

fault represents the fault isolation
in case 0, while PFile, PDB and PWeb represent the
performance of file server, database server and web server
respectively. It is noteworthy that java server presents no
resource due to the bomb effect, so PFault

Java = 0 here. It is
obvious, our proposed cache-aware core scheduling strategy
achieves better fault isolation than Xen’s default scheduling
algorithm with 19.52% fault isolation improvement for
case 1.

D. Discussion

We also did the bomb experiment under native Linux.
Unsurprisingly, the disruptive processes made the machine

completely unusable for the other workloads, causing almost
all the CPU time to be spent by the abnormal process. While
in virtual machine, the bomb only leads the unusable for the
virtual machine itself and affects the other virtual machine
with a certain degree. It also demonstrates virtualization can
ensure a certain degree of isolation.

Through the above experiments, we demonstrate that
several factors can affect the performance isolation and
fault isolation: 1) Workload types. Through the analysis of
workloads characterization, we can ensure the isolation by
consolidating suitable workloads. 2) Architecture features of
multi-core platform. We find the contention for the shared
resource can affect the isolation, especially the core and L2
cache resource. 3) Scheduling strategy. We present a cache-
aware core scheduling optimization strategy to improve
the fault isolation. Experimental results show that the new
scheduling strategy can improve the fault isolation obviously
with 19.52% compared with default Xen scheduling exper-
iment.

Experimental results collected from hardware events pro-
filing analysis using Oprofile/Xenoprof indicate that cache
contention is a main factor affecting fault isolation which
will cause apparent L2 cache misses.

VI. RELATED WORK

A lot of work has been done on the evaluation of virtual-
ization performance [3, 5–7, 16] or approaches to improve
the virtualization performance [11, 15, 18]. However, few
work has referred to the isolation property especially not
too much work has been done on the fault isolation in
virtualization environment.

Govil et al. [8] presented a system called Cellular Disco
which exploited the structure of the Origin2000 to increase
performance and performance isolation by using NUMA-
aware memory allocation to virtual machine. Denali [21]
provided scalability as well as isolation for untrusted code,
but it didn’t provide any specialized mechanisms for perfor-
mance isolation. Waldspurger [20] considered the problem
of allocating memory across virtual machines in VMware
ESX server. An idle memory tax was introduced to achieve
efficient memory utilization while maintaining performance
isolation guarantees. However, they didn’t conduct a detailed
evaluation of performance isolation property and fault iso-
lation property, and have not considered the factors coming
from CMP platform, which would affect isolation property
due to core and cache interference when running several
workloads simultaneously.

Recently, Marty et al. [13] created a two-level virtual
coherence hierarchy at a high level to help manage the cache
resources of a many-core CMP when running consolidated
workloads. Gupta et al. [9] proposed two mechanisms to
improve the performance isolation across virtual machines
in Xen, but only focused on the CPU and network resource.

261287

However, they didn’t consider the modern CMP architec-
ture characteristics affecting the isolation property. One
important work on the evaluating the performance isolation
was done by Matthews et al. [14], where they compared
the isolation property among Xen, Solaris Containers and
OpenVZ. We extended their work to CMP case within server
consolidation scenarios, and explored the impact on the
isolation.

VII. CONCLUSION AND FUTURE WORK

In this paper we focused on the isolation property of
server consolidation on multi-core platform. We proposed
the possible factors that would affect the isolation property in
multi-core platform and then performed detailed experiments
to quantify the isolation and verify the factors leading to
affecting isolation property. We not only quantify the per-
formance isolation, but also the fault isolation. What’s more,
we present a VM-level optimization mechanism and a cache-
aware core scheduling strategy to improve the isolation.

Our experiments show that: (i) the isolation property
closely relates to the workloads types since different work-
loads have different resource demands characteristic; (ii)
The multi-core architecture characteristics can significantly
affect the isolation property due to the shared resource
contention like core and cache; (iii) Our proposed two opti-
mization mechanism can improve the performance isolation
and fault isolation efficiently.

Future work will include developing other effective mech-
anisms to improve the isolation property including efficient
shared resource management mechanisms.

VIII. ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their
comments and suggestions on the paper. This work is
funded by the National 973 Basic Research Program of
China under grant NO.2007CB310900 and National Natural
Science Foundation of China under grant NO. 60970125.

REFERENCES

[1] OpenVZ: Server virtualization open source project.
http://openvz.org/, 2010.

[2] Standard Performance Evaluation Corporation, SPECjbb.
http://www.spec.org/jbb2005/, 2010.

[3] P. Apparao, R. Iyer, and D. Newell. Implications of cache
asymmetry on server consolidation performance. In IISWC
’08: Proceedings of IEEE International Symposium on Work-
load Characterization, pages 24–32, Sept. 2008.

[4] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer.
Characterization & analysis of a server consolidation bench-
mark. In VEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments, pages 21–30, 2008.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. ACM SIGOPS Operating Systems Review,
37(5):164–177, 2003.

[6] L. Cherkasova and R. Gardner. Measuring cpu overhead
for i/o processing in the xen virtual machine monitor. In
ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 24–24, 2005.

[7] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. Matthews. Xen and the art of repeated
research. USENIX annual Technical Conference, pages 135–
144, 2004.

[8] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cel-
lular disco: resource management using virtual clusters on
shared-memory multiprocessors. ACM Trans. Comput. Syst.,
18(3):229–262, 2000.

[9] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. En-
forcing performance isolation across virtual machines in xen.
In Middleware ’06: Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, pages 342–
362, 2006.

[10] N. E. Jerger, D. Vantrease, and M. Lipasti. An evaluation
of server consolidation workloads for multi-core designs. In
IISWC ’07: Proceedings of the 2007 IEEE 10th Interna-
tional Symposium on Workload Characterization, pages 47–
56, 2007.

[11] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-
aware virtual machine scheduling for i/o performance. In
VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments,
pages 101–110, 2009.

[12] Sysbench benchmark: http://sysbench.sourceforge.net/, 2010.
[13] M. R. Marty and M. D. Hill. Virtual hierarchies to support

server consolidation. In ISCA ’07: Proceedings of the 34th
annual international symposium on Computer architecture,
pages 46–56, 2007.

[14] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane,
D. Dimatos, G. Hamilton, M. McCabe, and J. Owens. Quan-
tifying the performance isolation properties of virtualization
systems. In ExpCS ’07: Proceedings of the 2007 workshop
on Experimental computer science, page 6, 2007.

[15] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing network
virtualization in Xen. In Proc. USENIX Annual Technical
Conference, pages 15–28, 2006.

[16] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the
xen virtual machine environment. In VEE: Proceedings of
the 1st ACM Conference on Virtual Execution Environments,
pages 13–23, 2005.

[17] IOzone benchmark: http://www.iozone.org, 2010.
[18] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling i/o in

virtual machine monitors. In VEE ’08: Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 1–10, 2008.

[19] M. Rosenblum and T. Garfinkel. Virtual machine monitors:
Current technology and future trends. Computer, 38(5):39–
47, 2005.

[20] C. A. Waldspurger. Memory resource management in vmware
esx server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

[21] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications.
Technical report, University of Washington, February 2002.

262288

