
A Tool Kit for Finding Small Roots of

Bivariate Polynomials over the Integers

Johannes Blömer, Alexander May

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn

33102 Paderborn, Germany
bloemer,alexx@uni-paderborn.de

Abstract. We present a new and flexible formulation of Coppersmith’s
method for finding small solutions of bivariate polynomials p(x, y) over
the integers. Our approach allows to maximize the bound on the solu-
tions of p(x, y) in a purely combinatorial way. We give various construc-
tion rules for different shapes of p(x, y)’s Newton polygon. Our method
has several applications. Most interestingly, we reduce the case of solv-
ing univariate polynomials f(x) modulo some composite number N of
unknown factorization to the case of solving bivariate polynomials over
the integers. Hence, our approach unifies both methods given by Cop-
persmith at Eurocrypt 1996.

Keywords: Coppersmith’s method, univariate vs. bivariate, RSA

1 Introduction

In 1996, Coppersmith [6–9] introduced two rigorous lattice-based methods for
finding small roots of polynomials: One for univariate modular and another one
for bivariate integer polynomial equations. Additionally, Coppersmith proposed
heuristic multivariate extensions for both approaches. The goal in both methods
is to maximize the bounds up to which roots of the polynomials can be found in
polynomial time. Coppersmith’s method for finding small solutions of modular
polynomial equations has been applied in many settings, mainly for cryptanalytic
purposes [1, 3, 4, 11] but also for proving the security of schemes [2, 15].

In contrast, the method for finding roots of polynomial equations over the
integers has not found so many applications, yet. The most well-known result
is the so-called factoring with high bits known [7, 8]: Let N = pq be an RSA
modulus and suppose we are given half of the high-order bits of p, then N can
be factored in polynomial time. Recently, May [13] gave another application for
the bivariate method: He showed that if the RSA secret key is known, then N

can be factored in deterministic polynomial time. However, both results can also
be proven using univariate polynomial equations.

In 1997, Howgrave-Graham [10] gave an easily applicable reformulation of
Coppersmith’s univariate modular method. This might be one of the reasons
that up to now the univariate modular approach has found more applications

than the bivariate integer approach. At Eurocrypt ’04, Coron [5] succeeded to
give a similar reformulation of Coppersmith’s method over the integers.

While it is clear how to optimize a lattice basis for a given univariate polyno-
mial of fixed degree, the construction of an optimal lattice basis for a bivariate
polynomial p(x, y) depends on the monomials that appear in p(x, y). Copper-
smith [8] analyzed the cases where p(x, y) either has degree δ in x and y sepa-
rately or degree δ in total.

Let us define the Newton polygon of p(x, y) as the convex hull of the point
set

{(i, j) ∈ N2 | monomial xiyj appears in p(x, y) with non-zero coefficient}.

For p(x, y) with degree δ in each variable separately, the shape of the Newton
polygon is a square. For p(x, y) with total degree δ, the shape is an equilateral
lower triangle (having his right angle in the lower left corner). These two shapes
were also analyzed by Coron [5]. In addition, Coppersmith [8] mentions the case
where the maximal degree of p(x, y) in x is δx and the maximal degree in y is
δy, which corresponds to a rectangle with side lengths δx and δy.

In this work, we provide a method that can be used to analyze arbitrary
shapes of the Newton polygon of p(x, y). One advantage of our main result is
that we can formulate it just in terms of the monomials of p(x, y). Although
the proof of our main result requires lattice-based techniques, using our theorem
the analysis of different shapes of p(x, y) is purely combinatorial and can be
done without any lattice theory. Hence, one can view our approach as a tool
kit: If we are given a polynomial p(x, y), we can maximize the bounds up to
which a solution can be found in polynomial time. More precisely, let X and
Y be upper bounds on the desired roots of p(x, y). I.e., we want to find all
solutions (x0, y0) such that p(x0, y0) = 0 and |x0| ≤ X , |y0| ≤ Y . Our goal is to
maximize X and Y . The formulation of our main theorem allows to specify this
maximization problem as an optimization problem over two sets of monomials.
No lattice theory is required and the theorem can be used as a black box for
cryptanalysts.

The proof of our main theorem is a variation of Coppersmith’s original proof
for the bivariate method [8]. We could use Coron’s approach [5] for the proof of
our result as well, but we prefer Coppersmith’s approach since it has a crucial
advantage: We usually obtain bounds of the form XY ≤ W g(δ)−ǫ, where g(δ) is
some function in the degree of p(x, y) in x, y and W = ||p(xX, yY)||∞ is the max-
norm of the coefficient vector of p(xX, yY). The running time of Coppersmith’s
algorithm is polynomial in (log W, δ, 1

ǫ), while Coron’s approach is polynomial
in (log W, δ) but exponential in 1

ǫ . This difference is due to a clever trick of
Coppersmith which significantly reduces the dimension of the lattice involved
by considering only a certain sublattice.

As applications of our main result, we provide rules to analyze different
shapes of a Newton polygon of p(x, y), thereby deriving some of the most well-
known cryptographic results of Coppersmith’s method. Hence, one can also see
our new method as a unifying method for certain different approaches to find

2

small roots of polynomial equations. In particular, we obtain the following re-
sults for different shapes of the Newton polygons:

Rectangle: The rectangle can be seen as a warm-up example. Let us define
W = ||p(xX, yY)||∞. For polynomials of degree δ in each variable separately, we
show the Coppersmith bound [8]

XY ≤ W
2
3δ

−ǫ.

Lower triangle: We analyze p(x, y) with variable degree in x and y. When the
total degree of p(x) is δ, we obtain Coppersmith’s bound [8]

XY ≤ W
1
δ
−ǫ.

Moreover, let us consider a univariate modular polynomial equation f(x) =
0 mod N , where f has degree δ. This can also be written as a bivariate poly-
nomial p(x, y) = f(x) − yN over the integers. The shape of p(x, y)’s Newton
polygon is also a lower triangle, but with side-lengths δ and 1.

Our analysis shows that one can find all roots (x0, y0) of p(x, y) over the
integers provided that

|x0| ≤ N
1
δ ,

which is exactly Coppersmith’s result for univariate modular equations [8]. This
unifies both approaches of Coppersmith from Eurocrypt ’96 [6, 7]: The univariate
modular case is already included in the bivariate integer case.

Surprisingly, the lattice basis underlying this result does not use powers of
the polynomial p(x, y), whereas in the univariate modular case it seems necessary

to use powers of p(x) in order to achieve the bound N
1
δ .

Upper triangle: To our knowledge, the shape of an upper triangle (where the
right angle is in the upper right corner) has not been analyzed in the literature
before.

We use this shape to analyze the factorization algorithm for RSA-moduli
N = prq, r ≥ 1 of Boneh, Durfee and Howgrave-Graham [4]. In the original
work, this is done using a variant of Coppersmith’s univariate approach, namely
one works modulo the divisor pr of N . Interestingly, one can solve equations
modulo pr although one knows only N . Boneh, Durfee and Howgrave-Graham
propose to exhaustively search approximations p̃ of p. For each guess p̃, they try
to solve the polynomial equation (p̃ + x)r = 0 mod pr, which has the solution
p − p̃.

Alternatively, for each guess p̃ we consider the bivariate polynomial f(x, y) =
(p̃ + x)ry − N with the solution (x0, y0) = (p − p̃, q). Notice that the shape of
f(x, y)’s Newton polygon is an upper triangle. Our analysis yields the same
result as the one in the work of Boneh, Durfee and Howgrave-Graham: One can
find the factorization of N provided that

|x0| ≤ N
r

(r+1)2 .

3

Surprisingly, for r > 1 the following approach gives a smaller bound: Compute
q̃ = N

p̃ and try to solve the polynomial f ′(x, y) = (p̃ + x)r(q̃ + y)−N . Let X , Y

be upper bounds on the desired solution (x0, y0) = (p− p̃, q− q̃). At first glance,
the polynomial f ′(x, y) seems to be superior since we can decrease the size of
Y . On the other hand, W = ||p(xX, yY)||∞ decreases as well and the shape of
f ′(x, y)’s Newton polygon now is a rectangle, which has an inferior analysis.
These two facts together outweigh the benefit of decreasing Y and we obtain a
smaller bound.

In the case r = 1, both approaches give the same bound |x0| = |p− p̃| ≤ N
1
4 .

But still, the first approach should be preferred in practice since it uses a smaller
lattice basis. So counterintuitively, one should sometimes ignore information
about one variable in order to obtain a better shape of the Newton polygon.
As the moral of this story, one should keep in mind that optimizing Copper-
smith’s bivariate method is not only a matter of optimizing the bounds X , Y

but also of optimizing the structure of the underlying polynomial p(x, y) itself!

In addition to the results above, we also prove general bounds for univariate
polynomials of degree δ modulo some divisor b of N . The bounds are functions
of the sizes of δ, b and N .

Rectangle and lower triangle: As a last example, we show how to combine
two basic shapes such that all results for rectangles and/or for lower triangles
follow as special cases by parameter settings.

We expect that similar to Coppersmith’s approach [8] our bivariate method
extends to a heuristic method for general multivariate equations, but we have
not checked this so far.

The paper is organized as follows: In Section 2, we give our main result that
allows to formulate the maximization problem of X and Y as an optimization
problem for sets of monomials. In Section 3, we formulate our construction rules
for the different shapes of Newton polygons of p(x, y). Applications of these
shapes are given in Section 4.

2 The Main Theorem

In this section we state our main theorem. We also describe the general setting
in which we are going to apply the theorem in the following sections. First we
need a couple of preliminary remarks and definitions.

Let M be a set of monomials in the variables x, y. We say that a polynomial
g(x, y) is defined over M or is a polynomial over M iff g(x, y) can be written as

g(x, y) =
∑

µ∈M

cµµ, cµ ∈ Z.

The proof of our main result uses a certain resultant that is required to be non-
zero. In order to prove this property, the following definition is going to be useful.
Later we will elaborate on this definition.

4

Definition 1 Let p(x, y) be a bivariate integer polynomial and S, M be finite

non-empty sets of monomials in the variables x, y. The sets S, M are called

admissible for p(x, y) iff

1. For every monomial α ∈ S the polynomial α · p(x, y) is defined over M .
2. For every polynomial g defined over M , if g(x, y) = f(x, y) ·p(x, y) for some

polynomial f , then f is defined over S.

We say that an integer polynomial p(x, y) ∈ Z[x, y] is irreducible if p(x, y) =
f(x, y) · g(x, y) with f(x, y), g(x, y) ∈ Z[x, y] implies that either f(x, y) = ±1 or
g(x, y) = ±1. In particular, the gcd of all coefficients of an irreducible polynomial
p(x, y) must be 1.

Using these definitions we can already state our main theorem. Its proof can
be found in Section 5.

Theorem 2 Let p(x, y) ∈ Z[x, y] be an irreducible integer polynomial in two

variables with degree at most dx, dy ≥ 1 in the variables x and y, respectively.

Let X, Y ∈ N and set W := ‖p(xX, yY)‖∞. Furthermore let S, M, S ⊆ M, be

admissible for p(x, y). Set

s := |S|, m := |M |

sx :=
∑

xiyj∈M\S

i, sy :=
∑

xiyj∈M\S

j.

All pairs (x0, y0) ∈ Z2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

can be found in time polynomial in m, dx, dy and log(W) provided

XsxY sy < W s · 2−(8+c)sdxdy , (1)

where we assume that (m − s)2 ≤ csdxdy for some constant c.

In the following we call elements of the set S shift monomials. The set S itself
will be called the set of shift monomials. Let us describe how we are going
to apply Theorem 2. To do so, we will identify sets of monomials with sets
in the Euclidean plane R2. More precisely, for a set A of monomials in two
variables x, y we define {(i, j) ∈ N2|xiyj ∈ A} and the convex hull conv({(i, j) ∈N2|xiyj ∈ A}) of this set. To simplify the notation we call these sets A as
well. It will always be clear from the context whether we talk about a set of
monomials or about the corresponding sets in the plane. Next, for a polynomial
g(x, y) =

∑

cijx
iyj , cij ∈ R we define a convex set N(g) in the Euclidean plane,

called the Newton polygon of g. We set

N(g) := conv{(i, j) ∈ N2|cij 6= 0}.

The Newton polygon of the polynomial p(x, y) = 2+y+3xy is depicted in Fig. 1.
Now suppose we want to use Theorem 2 to determine roots of some polyno-

mial p(x, y). Of course, we want to choose the bounds X, Y as large as possible.

5

Fig. 1. Newton polygon of
2 + y + 3xy

To do so, we need to choose sets S and M carefully
under the constraint that S, M are admissible for
p(x, y). Once we have chosen S, there is an obvious
choice for M in order to guarantee the first property
in Definition 1. That is, we choose M as the set of
monomials xiyj such that (i, j) lies in the so-called
Minkowski sum N(p) + S of the Newton polygon
N(p) and S. Here the Minkowski sum A+B of two
sets A, B in R2 is defined as

A+B := {(a1, a2)+(b1, b2) | (a1, a2) ∈ A, (b1, b2) ∈ B}.

As will be seen in our applications of Theorem 2, setting M := N(p) + S will
usually lead to a pair S, M of sets of monomials that also satisfies the second
property of Definition 1, i.e. S, M will be admissible for the polynomial p(x, y).

It remains to explain how to choose S in order to achieve large bounds X, Y ,
that satisfy Equation (1) in Theorem 2. Choosing good sets S requires a trade-off
between the size s of S and the quantities sx, sy that depend on monomials in
M \S, where M = N(p)+S. We want s to be large, while sx and sy should stay
relatively small. We have no provable method to find optimal sets S. However,
the following general strategy proves to be successful.

We consider a whole class of sets S, that may be parametrized by several
parameters. The shape of these sets resembles N(p). Given these parametrized
sets we determine the values s, sx, sy as functions of the parameters used to
describe the sets. Finally, based on Equation (1) we determine the optimal setting
for our parameters in order to get sets S, M and large bounds X, Y satisfying
the conditions of Theorem 2.

3 The Constructions

Let us explain the construction of parametrized sets S for a few important
shapes of Newton polygons N(p) of polynomials p(x, y). Applications of these
examples and analysis of the bounds for X and Y that we can derive using
these constructions will be given in the following section. First we define some
important geometric shapes.

Definition 3 In the following all parameters are real positive numbers.

1. Sets R(a, b) := {xiyj | 0 ≤ j ≤ a, 0 ≤ i ≤ b} are called rectangles.

2. Sets L(c, a, λ) := {xc+iyj | 0 ≤ j ≤ a, 0 ≤ i ≤ λ(a − j)} are called lower

triangles.

3. Sets U(c, a, λ) := {xc+iyj | 0 ≤ j ≤ a, 0 ≤ i ≤ λj} are called upper triangles.

4. Sets E(c, a, λ) := R(a, c) ∪ L(c, a, λ) are called extended rectangles.

Illustrations for these definitions are given in Fig. 2.
With these definitions we can state our main constructions.

6

Fig. 2. Illustrations for Definition 3

Construction 4 (Rectangle construction) Assume the Newton polygon N(p)
of polynomial p(x, y) is the rectangle R(d, λd), λ > 0. Then we use sets S such

that

xiyj ∈ S ⇔ (i, j) ∈ R(k, γk).

Here k ∈ N and γ > 0. Consequently, the sets M of monomials are defined by

xiyj ∈ M ⇔ (i, j) ∈ R(k + d, γk + λd).

Furthermore

s =

k
∑

j=0

γk
∑

i=0

1, m =

k+d
∑

j=0

γk+λd
∑

i=0

1

sx =
k+d
∑

j=0

γk+λd
∑

i=0

i −
k

∑

j=0

γk
∑

i=0

i, sy =
k+d
∑

j=0

γk+λd
∑

i=0

j −
k

∑

j=0

γk
∑

i=0

j.

In this construction the parameter γ is used to optimize the bounds X, Y .

In the rectangle construction as well as in the subsequent constructions, the
parameter k is not used to optimize X, Y . Mainly it is used to control the size
of certain low order error terms.

As it turns out the optimal γ is given by
√

λ, not by λ itself. Using the convex
hulls of S and M instead of S, M itself, this construction is shown in Fig. 3.

7

Fig. 3. The rectangle construction

Similarly, we define constructions for the lower and upper triangle, shown in
Fig. 4. In the lower triangle construction we need no parameter to optimize the
bounds X, Y .

Construction 5 (Lower triangle construction) Assume the Newton poly-

gon N(p) of polynomial p(x, y) is the lower triangle L(0, d, λ), λ > 0. Then we

use sets S such that

xiyj ∈ S ⇔ (i, j) ∈ L(0, k, λ).

Here k ∈ N. Consequently, the sets M of monomials are defined by

xiyj ∈ M ⇔ (i, j) ∈ L(0, k + d, λ).

Using Definition 3, the formulas for s, m, sx, and sy can expressed in a similar
fashion as in the rectangle construction.

Construction 6 (Upper triangle construction) Assume the Newton poly-

gon N(p) of polynomial p(x, y) is the upper triangle U(0, d, λ), λ > 0. Then we

use sets S such that

xiyj ∈ S ⇔ (i, j) ∈ R(k, ck) ∪ U(ck, k, λ).

Here k ∈ N and c ≥ 0. Consequently, the sets M of monomials are defined by

xiyj ∈ M ⇔ (i, j) ∈ R(k + d, ck) ∪ U(ck, k + d, λ).

Again using Definition 3, the formulas for s, m, sx, and sy can expressed in a
similar fashion as in the rectangle construction.

Of course, one can combine some or even all of these constructions into a
single construction using several parameters to describe the shapes of N(p) and
S. For example, combining the rectangle and the lower triangle construction leads
to the extended rectangle construction. This construction is shown in Fig. 5.

Our applications of Theorem 2 only use the constructions defined above.
The following lemma shows that these constructions always yield admissible
sets S and M . Hence in the subsequent sections we need not worry about the
admissibility of the sets S and M that are used.

8

Fig. 4. Lower and upper triangle construction

Fig. 5. The extended rectangle construction

Lemma 7 The rectangle, lower triangle, upper triangle, and extended rectangle

constructions as defined above lead to admissible sets S and M for the respective

polynomials.

Proof: We only show the lemma for the rectangle construction. The proofs
for the other constructions are similar. As mentioned above, since M is the
Minkowski sum of N(p) and S, the sets S, M have the first property of Def-
inition 1. To see that S, M also have the second property, consider a polyno-
mial f(x, y) =

∑

fijx
iyj that is not defined over S. We need to show that

f(x, y) · p(x, y) is not defined over M . By lx, ly denote the degree of f in x, y,
respectively. Since f(x, y) is not defined over S, we have that lx > γk or ly > k.
Since the two cases are symmetric, we only consider the case that ly > k.

Let g be maximal over all i with fily 6= 0. Then the coefficient of xi+λdyly+d

in f(x, y) · p(x, y) will be non-zero. Since ly > k we get ly + d > k + d and
xi+λdyly+d 6∈ M . Hence f(x, y) · p(x, y) is not defined over M .

9

4 Applications of Our Method

The following lemma is due to Coppersmith [8]. It is often used in the subsequent
proofs to remove small error terms from the bounds. Namely, whenever we have
a bound of B for the size of our solution, we can enlarge this bound to cB by
doing some brute-force search. This search increases the time complexity also by
a factor of c.

Lemma 8 (Coppersmith) Let p(x, y) ∈ Z[x, y]. Assume that we have an al-

gorithm A that finds all pairs (x0, y0) ∈ Z2 satisfying

p(x0, y0) = 0 with |x0 · y0| ≤ B

in time complexity T . Then one can find all (x0, y0) satisfying

p(x0, y0) = 0 with |x0 · y0| ≤ cB

in time complexity cT .

Proof: We split our interval [−cB, cB] into c subintervals of the size 2B cen-
tered at some xi. For each of the subintervals with center xi, we apply algorithm
A to the polynomial p(x − xi, y) and output the roots in this subinterval.

By Lemma 8, whenever we derive a bound of B2−O(δ) in the following the-
orems, we can also derive a bound of B by increasing the time complexity by a
factor polynomial in 2δ.

4.1 Rectangular Shape

We start by analyzing the case, where p(x, y) has degree δ in x and y seperately.

Theorem 9 (Coppersmith) Let p(x, y) ∈ Z[x, y] be an irreducible polyno-

mial of degree δ in each variable separately. Let X, Y ∈ N and define W =
||p(xX, yY)||∞. Then we can find all pairs (x0, y0) ∈ Z2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

in time polynomial in log W and δ provided that

XY ≤ W
2
3δ 2−O(δ).

Proof: Since the Newton polygon of our polynomial p(x, y) is a rectangle, we
apply Construction 4. We use the parameter setting

k = max{log W, δ}, γ = 1 and λ = 1.

According to Construction 4, we shift our polynomial p(x, y) with all the mono-
mials in S = R(k, k). Let M = R(k + δ, k + δ). By Lemma 7, the sets S and M

are admissible for p(x, y) and Theorem 2 is applicable.

10

Plugging our values of γ = λ = 1 in the formulas for sx, sy, s and m gives us

sx = sy =
3δ

2
k2

(

1 + O
(δ

k

))

, s ≥ k2 and s, m = O(k2).

Furthermore, we have dx = dy = δ. One easily checks the condition (m − s)2 =
O(sdxdy) of Theorem 2. An application of Theorem 2 with the values of sx, sy,
s, dx and dy leaves us with the condition

(XY)
3δ
2 k2(1+O(δ

k
)) ≤ W k2

2−O(k2δ2)

This implies the bound

XY ≤ W
k2

3δ
2

k2(1+O(δ
k

)) 2−O(δ).

Now we observe that for any x, we have 1
1+x ≤ 1 − x. Therefore, we can bound

the exponent of W by 2
3δ (1 −O(δ

k)). This leads to the new condition

XY ≤ W
2
3δ W−O(1

k
)2−O(δ).

Since we chose k ≥ log W , our term WO(1
k
) is of constant size. An application

of Lemma 8 shows that we can omit this term by increasing the running time
only by a constant factor. This concludes the proof of the theorem.

4.2 Lower Triangular Shape

First, we state the case where p(x, y) has total degree δ.

Theorem 10 (Coppersmith) Let p(x, y) ∈ Z[x, y] be an irreducible polyno-

mial of total degree δ. Let X, Y ∈ N and define W = ||p(xX, yY)||∞. Then we

can find all pairs (x0, y0) ∈ Z2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

in time polynomial in log W and δ provided that

XY ≤ W
1
δ 2−O(δ).

Proof: The shape of the Newton polygon of p(x, y) is a lower triangle. Therefore,
we apply Construction 5. Our parameter setting is

k = max{log N, δ} and λ = 1.

That means, we shift our polynomial p(x, y) by all monomials that appear in the
set S = L(0, k, 1). Define M = L(0, k + δ, 1). According to Lemma 7, the sets S

and M are admissible for p(x, y).

11

From the formulas for sx, sy, s and m, we obtain

sx = sy =
δ

2
k2

(

1 + O
(δ

k

))

, s ≥ 1

2
k2 and s, m = O(k2).

Since dx = dy = δ, we can easily check that the condition (m − s)2 = O(sdxdy)
of Theorem 2 is satisfied.
An application of Theorem 2 gives us the condition

(XY)
δ
2k2(1+O(δ

k
)) ≤ W

1
2 k2

2−O(δ2k2).

This implies

XY ≤ W

1
2

k2

δ
2

k2(1+O(δ
k

)) 2−O(δ)

Analogous to the reasoning in the proof of Theorem 9 we can bound the exponent
of W , which leaves us with the condition

XY ≤ W
1
δ W−O(1

k
)2−O(δ).

Since k ≥ log W , we obtain the desired bound.

Next, let us analyze the case p(x, y) = f(x) − yN , where f(x) is a univariate
polynomial of degree δ. This is exactly the univariate modular case and the
following result reduces Coppersmith’s univariate modular method [6] to the
bivariate integer method [7].

In order to state Theorem 11, we use the following notation: Let a1, a2, . . . , an ∈Z. We denote by gcd(a1, a2, . . . , an) the greatest integer that divides all ai, i =
1 . . . n.

Theorem 11 (Coppersmith) Let N be a composite integer of unknown fac-

torization. Let f(x) =
∑

fix
i ∈ Z[x] be a polynomial of degree δ with

gcd(f1, f2, . . . , fδ, N) = 1. Furthermore, let X ∈ N. Then we can find all point

x0 ∈ Z satisfying

f(x0) = 0 mod N with |x0| ≤ X

in time polynomial in log N and δ provided that

X ≤ N
1
δ .

Proof: We define the following bivariate polynomial

p(x, y) = fN (x) − yN,

where fN (x) = f(x) mod N . I.e., we reduce the coefficients of f(x) modulo N .
Notice that x0 is a root of f(x0) modulo N iff p(x, y) has the root (x0, y0) for
some y0 over the integers. Furthermore, p(x, y) is irreducible. Since we reduced
f(x) by N , we can upper bound the size of y0 by

|y0| ≤
|fN (x0)|

N
≤ Xδ + Xδ−1 + · · · + X0 ≤ (δ + 1)Xδ.

12

Let us define Y = (δ + 1)Xδ. Then we obtain W = ||f(xX, yY)||∞ = Y N .
The shape of the Newton polygon of p(x, y) is a lower triangle. Therefore,

we apply Construction 5. Here, we use the parameter setting

k = max{log W, δ}, d = 1 and λ = δ.

That means, we apply the shifts with the monomials in S = L(0, k, δ) to the
polynomial f(x, y). Let M = L(0, k + δ, δ). By Lemma 7 the sets S and M are
admissible for p(x, y), and Theorem 2 is applicable.

Setting the values d = 1 and λ = δ in our formulas for sx, sy, s and m

provides us with the bounds

sx =
δ2

2
k2

(

1 + O
(1

k

))

, sy =
δ

2
k2

(

1 + O
(1

k

))

, s ≥ δ

2
k2 and s, m = O(δk2).

Furthermore, we observe that dx = δ and dy = 1. One easily checks that our
parameters satisfy the condition (m − s)2 = O(sdxdy) of Theorem 2.
Using these values in combination with Theorem 2 leads to the condition

X
δ2

2 k2(1+O(1
k
))Y

δ
2 k2(1+O(1

k
)) ≤ W

δ
2k2

2−O(δ2k2)

Since W = Y N , we obtain

X
δ2

2 k2(1+O(1
k
)) ≤ N

δ
2 k2

Y −O(δk)2−O(δ2k2)

Analogous to the reasoning in the proof of Theorem 9, this implies the bound

X ≤ N
1
δ N−O(1

δk
)Y −O(1

δk
)2−O(1). (2)

By our setting, we have k ≥ log W which bounds the term (NY)−O(1
δk

) =

W−O(1
δk

) by a constant. An application of Lemma 8 shows that we can increase
the bound in (2) to the desired bound X ≤ N

1
δ by increasing the running time

by a constant factor.
By Theorem 2, we know that the running time of our algorithm is poly-

nomial in log W and δ. It remains to show that log W is also a polynomial in
log N and δ. Since our condition in inequality (2) implies that X ≤ N

1
δ , we have

W = Y N = (δ+1)XδN ≤ (δ+1)N2 or equivalently log W ≤ log(δ+1)+2 logN .
This concludes the proof of the theorem.

4.3 Upper Triangular Shape

In this subsection, we analyze a variant of Coppersmith’s univariate modular
approach, where one solves polynomial equations modulo a divisor of N . We
start by reproducing the Boneh, Durfee and Howgrave-Graham [4] lattice-based
factoring for RSA-moduli N = prq, r ≥ 1, which is a generalization of “factoring
with high bits known” of Coppersmith [8].

13

Theorem 12 (BDH) Let N = prq be an RSA modulus, where p and q are

primes of the same bit-size and r ≥ 1 is an integer. Suppose we are given an

approximation p̃ of p with

| p − p̃ | ≤ N
r

(r+1)2 .

Then we can find the factorization of N in time polynomial in log N and r.

Proof: We define the polynomial

f(x, y) = (p̃ + x)ry − N.

with the root (x0, y0) = (p − p̃, q). Let X = N
r

(r+1)2 , then by our assumption
|x0| ≤ X . Now, let us also find an upper bound Y for the size of y0 = q. Since
p and q are of the same bit-size, we know that p > q

2 . Therefore, we obtain q =
N
pr < 2rN

qr which gives us qr+1 < 2rN . This yields the upper bound q < 2N
1

r+1 .

Thus, we set Y = 2N
1

r+1 . Obviously, we have W = ||f(xX, yY)||∞ ≥ N .
Since the structure of the Newton polygon of our polynomial f(x, y) is an

upper triangle, we apply Construction 6. Here we use the parameter setting

k = max{log N, r}, d = 1, λ = r and c = 1.

Thus, we use the shifts of the polynomial f(x, y) with all the monomials in
S = R(k, k)∪U(k, k, r). Let M = R(k + 1, k)∪U(k, k + 1, r). By Lemma 7, the
sets S and M are admissible. Therefore, Theorem 2 is applicable.
Plugging the values d = 1, λ = r and c = 1 into our formulas for sx, sy, s and
m yields

sx = (r+1)2

2 k2
(

1 + O
(

1
k

))

, sy =
(

r + 1
)

k2
(

1 + O
(

1
k

))

s ≥
(

r
2 + 1

)

k2 and s, m = O(rk2)

Furthermore, we have dx = r and dy = 1. One can check that these parameters
meet the condition (m − s)2 = O(sdxdy) of Theorem 2.
Now we apply Theorem 2 with the above parameters, which gives us

X
(r+1)2

2 k2(1+O(1
k
))Y (r+1)k2(1+O(1

k
)) ≤ W (r

2+1)k2

2−O(r2k2).

Using Y = 2N
1

r+1 and W ≥ N leads to the new condition

X
(r+1)2

2 k2(1+O(1
k
)) ≤ N

r
2k2−O(k)2−O(r2k2).

This in turn gives us

X ≤ N

r
2

k2

(r+1)2

2
k2(1+O(1

k
)) N−O(1

r2k
)2−O(1),

14

which can be transformed into

X ≤ N
r

(r+1)2 N−O(1
rk

)2−O(1).

Since k ≥ log N , an application of Lemma 8 gives us the desired bound X ≤
N

r

(r+1)2 by an increase of the running time by a constant factor.

For the special case r = 1, we use the polynomial p(x, y) = (p̃ + x)y − N in the
analysis of the proof of Theorem 12. In contrast, Coppersmith [8] proposed to
use the polynomial p′(x, y) = (p̃ + x)(q̃ + y) − N , where q̃ = N

p̃ .

For r = 1, both polynomials give the same bound (but p(x, y) yields smaller
lattice bases, so it should lead to a faster algorithm in practice). Interestingly, for
r > 1 the polynomial (p̃ + x)ry −N yields a better bound than its counter-part
with q̃, although we have to increase the bound on y0. But this disadvantage is
outweighed by the fact that the shape of p(x, y) is upper triangular rather than
rectangular, and that we can increase W to N .

In the following theorem, we analyze the more general case where we want to
solve a univariate polynomial f(x) with f(x0) = c̄b for some small root x0 and
some (unknown) divisor b of N. Here, we assume that c̄ is a known constant. By
the result of the theorem, a large c̄ helps to improve the bound. Unfortunately,
we are not aware of an application with c̄ > 1.

Theorem 13 Let N be a composite integer of unknown factorization with di-

visor b ≥ Nβ. Let f(x) =
∑

fix
i ∈ Z[x] be a polynomial of degree δ with

gcd(f1, f2, . . . , fδ, c̄N) = 1. Then we can find all points x0 ∈ Z satisfying f(x0) =
c̄b for some known constant c̄ = Nγ , γ ≥ 0 in time polynomial in log N, δ and γ

provided that

|x0| ≤ N
(β+γ)2

δ(1+γ) .

Proof: We define the following bivariate polynomial

p(x, y) = f(x)y − c̄N.

Notice that p(x, N
b) has the same roots as f(x) − c̄b over the integers. Fur-

thermore, p(x, y) is irreducible. Define y0 = N
b . Since b ≥ Nβ , we know that

y0 ≤ N1−β. Let Y = N1−β denote this upper bound for y0.
Next, we will determine all integer roots (x0, y0) of p(x, y) with the property

that |x0| ≤ X and |y0| ≤ Y . Among these roots must be all roots of f(x)− c̄b. (It
may happen that we additionally find roots of f(x) − c̄b′ for some other divisor
b′ of N .)
We observe that W = ||f(xX, yY)||∞ ≥ c̄N .

Notice that the structure of the Newton polygon of p(x, y) is an upper tri-
angle. Therefore, we apply Construction 6. In this case, we use the parameter
setting

k = max{log N, δ, γ}, d = 1, λ = δ and c =
(1 − β)δ

β + γ

15

That means that we shift the polynomial p(x, y) with all the monomials in the
set S = R(k, ck)∪U(ck, k, δ). Let M = R(k+1, ck)∪U(ck, k+1, δ). By Lemma 7
the sets S and M are admissible for p(x, y). Therefore, Theorem 2 is applicable.

If we plug in the values of d, λ and c in our formulas for sx, sy, s and m, we
obtain

sx = δ2(1+γ)2

2(β+γ)2 k2
(

1 + O(1
k)

)

, sy = δ(1+γ)
β+γ k2

(

1 + O(1
k)

)

,

s ≥ δ(2−β+γ)
2(β+γ) k2 and s, m = O(δk2)

Notice that dx = δ and dy = 1. We easily check that the condition (m − s)2 =
O(sdxdy) of Theorem 2 is satisfied.
Using Y = N1−β and W ≥ c̄N = N1+γ , an application of Theorem 2 yields

X
δ2(1+γ)2

2(β+γ)2
k2(1+O(1

k
))

N
δ(1+γ)(2−2β)

2(β+γ) k2(1+O(1
k
)) ≤ N

δ(1+γ)(2−β+γ)
2(β+γ) k2

2−O(δ2k2).

This can be rewritten as

X
δ2(1+γ)2

2(β+γ)2
k2(1+O(1

k
)) ≤ N

(

δ(1+γ)(2−β+γ)
2(β+γ)

− δ(1+γ)(2−2β)
2(β+γ)

)

k2

N−O(δk)2−O(δ2k2),

which simplifies to

X
δ2(1+γ)2

2(β+γ)2
k2(1+O(1

k
)) ≤ N

δ(1+γ)
2 k2

N−O(δk)2−O(δ2k2)

This in turn gives us the new condition

X ≤ N
(β+γ)2

δ(1+γ) N−O(1
δk

)2−O(1)

Since k ≥ log N , an application of Theorem 8 yields the desired bound.

As the special case c̄ = 1 of Theorem 13, we obtain the following corollary.

Corollary 14 Let N be a composite integer of unknown factorization with di-

visor b ≥ Nβ. Let f(x) =
∑

fix
i ∈ Z[x] be a polynomial of degree δ with

gcd(f1, f2, . . . , fδ, N) = 1. Then we can find all points x0 ∈ Z satisfying f(x0) =
b in time polynomial in log N and δ provided that

|x0| ≤ N
β2

δ .

An application of Corollary 14 is again “factoring with high bits known” [8]:
Let N = pq with p > q. Define f(x) = p̃ + x. We want to find x0 = p − p̃

with f(x0) = p. We have p ≥ N
1
2 , which implies β = 1

2 . Hence, we obtain the

well-known bound |x0| ≤ N
1
4 .

Another application is the deterministic reduction of May [13]: Let N = pq

be an RSA modulus and let (e, d) satisfy ed = 1 mod φ(N). Suppose, we are

given (N, e, d). Define f(x) = N − x. We want to find x0 = p + q− 1 ≈ N
1
2 with

16

f(x0) = φ(N). Notice that we know the multiple ed−1 of φ(N). Let ed−1 = Nα

with α ≤ 2. Then we can set β = 1
α . Therefore, we can recover x0 as long as

|x0| ≤ N
1
α . Since α ≤ 2, our bound is at least of the desired size N

1
2 .

Similar to the case of “factoring with high bits known”, the reduction yields
another polynomial than originally proposed by May. Here, we obtain the poly-
nomial p(x, y) = (N − x)y + 1 − ed, whereas May suggested to use p′(x, y) =
(N − x)(k̃ + y) + 1 − ed with k̃ = ed−1

N . Again, we can ignore the knowledge

provided by k̃ in the analysis without affecting the bound. As before, p(x, y)
should be preferred in practice since it yields smaller lattice bases.

We want to point out that a result similar to the bound given in Corol-
lary 14 has been given by Howgrave-Graham [11]. He showed a bound of Nβ2

for solving f(x) = 0 mod b, where f(x) has degree 1. This was later generalized

by May [14] to N
β2

δ for f(x) of degree δ. Notice that these approaches allow to
solve f(x) = c′b for some unknown c′ as opposed to f(x) = c̄b for some known c̄

as in Theorem 13.
We pose the open problem to reduce this case of unknown c′ to the bivariate

integer case or a provable trivariate integer case. To our knowledge, this is the
only rigorous variant of Coppersmith’s method which is not covered by our new
approach.

5 Proof of Main Theorem

Let us recall our main theorem.

Theorem 2 Let p(x, y) ∈ Z[x, y] be an irreducible integer polynomial in two

variables with degree at most dx, dy ≥ 1 in the variables x and y, respectively.

Let X, Y ∈ N and set W := ‖p(xX, yY)‖∞. Furthermore let S, M, S ⊆ M, be

admissible for p(x, y). Set

s := |S|, m := |M |

sx :=
∑

xiyj∈M\S

i, sy :=
∑

xiyj∈M\S

j.

All pairs (x0, y0) ∈ Z2 satisfying

p(x0, y0) = 0 with |x0| ≤ X, |y0| ≤ Y

can be found in time polynomial in m, dx, dy and log(W) provided

XsxY sy < W s · 2−(8+c)sdxdy ,

where we assume that (m − s)2 ≤ csdxdy for some constant c.

17

To prove Theorem 2, we use a rather straightforward generalization of Cop-
persmith’s proof for the case of bivariate integer polynomials. In particular,
we will use lattice reduction. We fix some bivariate integer polynomial p(x, y),
bounds X, Y ∈ N, and admissible sets of monomials S, M that satisfy the con-
ditions of Theorem 2. The outline of the proof is as follows.

1. Based on p, S, M, X , and Y we define a matrix B, whose rows generate a
lattice L = L(B).

2. We show that for every root (x0, y0) of p(x, y) the vector (xg
0y

h
0)xgyh∈M

defines a lattice vector v0 that is contained in a certain sublattice L̄ of L.
Moreover, small roots (x0, y0) define short vectors in L̄.

3. Using Hermite normal forms we compute a basis A of L̄, i.e. L̄ = L(A).
4. Using the LLL lattice reduction we compute a vector b̄, such that all vectors

v in L(A) that are sufficiently short satisfy v · b̄ = 0.
5. From this it will follow that v0 ·B · b̄ = 0. We set b = B · b̄. The vector b will

define the coefficients of some polynomial b(x, y) over M with root (x0, y0).
6. Using the fact that S, M are admissible for p(x, y), we show that b(x, y) is

not a multiple of p(x, y).
7. We compute the resultant resy(p, b) of b and p with respect to y. Then x0 is

a root of resy(p, b) that we can find using standard root finding algorithms
over the integers. Once we have x0, we can compute y0 as an integer root of
the univariate polynomial p(x0, y).

As will become clear from the detailed explanation of this outline given below,
all steps of the algorithm described in this outline can be performed in time
polynomial in m, dx, dy and log(W).

5.1 Definition of the Lattice

In this section we describe the construction of the matrix B and the lattice
L = L(B). We use some fixed ordering of the monomials in M . For concreteness
sake let us use a lexicographical ordering on monomials xiyj , i, j ≥ 0. In this
ordering monomial xiyj is smaller than monomial xgyh iff i < g or i = g and
j < h.

Let s = |S| and m = |M |. First we construct an m × s matrix P . The rows
of P are indexed with the monomials in M and the columns of P are indexed
by the monomials in S. Both rows and columns are ordered according to the
lexicographical ordering. For monomials xgyh ∈ M and xiyj ∈ S the entry in
the row indexed by xgyh and the column indexed by xiyj is the coefficient of
xgyh in the polynomial xiyj · p(x, y). We need to extend matrix P by m − s

columns to obtain matrix B. These m− s columns will be columns of the m×m

diagonal matrix that has the values X−gY −h, xgyh ∈ M, on its main diagonal.
To determine the m− s columns of this matrix that we use to extend matrix P

to matrix B, we consider the matrix P̄ obtained from matrix P by multiplying
the row indexed by xgyh by XgY h and the column indexed by xiyj by X−iY −j .
Then the entry in row indexed by xgyh and column indexed by xiyj in P̄ is the
coefficient of xgyh in xiyj · p(xX, yY).

18

If sx and sy are defined as in Theorem 2, we see that

det(P̄) = XsxY sy det(P). (3)

Next we show that P̄ contains an s × s submatrix P̂ with large determinant.
The following lemma is a straightforward generalization of a result due to Cop-
persmith. Hence we omit its proof.

Lemma 15 Let P̄ be defined as above and set

W := ‖p(xX, yY)‖∞.

Then there is a subset M̄ of M of size |M̄ | = |S| = s such that the submatrix

P̂ of P̄ consisting of rows indexed by monomials in M̄ has determinant with

absolute value at least

W s2−8sdxdy .

Moreover, given p, S, and M the subset M̄ can be found in time polynomial in s

and s, the size of S and M , respectively, and in log(W).

Given the subset M̄ of M we construct an m × m − s matrix D as follows.
The rows of D are indexed with the monomials in M and the columns of D are
indexed with the monomials in M \ M̄ . The rows indexed with monomials in
M̄ have zeros as entries. A row indexed with a monomial xgyh ∈ M \ M̄ has
entry X−gY −h in the column indexed with xgyh. All other entries are zero. If
we reorder the monomials in M such that we first have the monomials in M̄

and then the monomials in M \ M̄ , then the first s rows of D are zero and the
remaining m− s rows form a diagonal matrix with entries X−gY −h, xgyh ∈ M̄,

on the diagonal.
Now we can describe the m × m matrix B we use to define our lattice. The

matrix is simply given by
B := (D|P),

i.e. the matrix B consists of the columns of matrix D and of matrix P . The rows
of B generate the lattice L = L(B) we use in the sequel.

We need to determine the determinant of L, i.e. the value | det(B)|. To com-
pute the determinant, first we consider the matrix B̄ obtained from matrix B

by multiplying the row indexed by xgyh by XgY h and the column indexed by
xiyj by X−iY −j . Analogously to Equation (3) we obtain

det(B) = det(B̄)X−sxY −sy .

If we reorder the monomials in M such that first we have the monomials in M̄

and if we use the definition of M̄ and D, we see that B̄ has the following shape

B̄ :=

(

P̂ 0s×m−s

⋆ Im−s

)

,

where Im−s is m−s×m−s identity matrix. It follows that | det(B̄)| = | det(P̂)|.
Using Lemma 15 we get

Lemma 16 det(L) = | det(B)| ≥ W s2−8sdxdyX−sxY −sy .

19

5.2 Small Roots of p(x, y) and Short Vectors in L

In this section we show that small roots of p(x, y) correspond to short vectors in
a certain sublattice L̄ of L. We also show how to compute a basis A for lattice
L̄ = L(A). Consider some root (x0, y0) ∈ Z2 of p(x, y) satisfying |x0| ≤ X, |y0| ≤
Y . For (x0, y0) consider the vector v0 consisting of all power products x

g
0y

h
0 ,

where xgyh is a monomial in M . The ordering of the power products in v0 is
given by the lexicographical ordering of the monomials in M .

Next consider the lattice vector v0 · B. Since (x0, y0) is a root of p(x, y) we
know that

v0 · B ∈ Rm−s × 0s, (4)

i.e. the last s coordinates of v0 ·B are 0. Moreover, by definition of matrix D the
first m− s coordinates of v0 ·B are at most 1. Combining this with Equation (4)
we get

‖v0 · B‖2 ≤
√

m − s, (5)

We now define the sublattice L̄ by L̄ = L ∩Rm−s × 0s. Equation (4) and Equa-
tion (5) together yield

Lemma 17 The vector v0·B is an element of lattice L̄ of length at most
√

m − s.

We need to construct a basis for L̄. To do so, we compute the Hermite normal
form of the matrix P . Since the polynomial p(x, y) is irreducible, its coefficients
are relatively prime. Therefore, the Hermite normal form of P consists of an
s× s identity matrix Is and the matrix 0m−s×s consisting of m− s zero rows of
dimension s. While computing Hermite normal forms we can also determine an
m × m integer matrix T with determinant ±1 such that

T · P =

(

0m−s×s

Is

)

.

Multiplying the matrix B by T we obtain

T · B =

(

Ā 0m−s×s

⋆ Is

)

,

where Ā is an m − s × m − s matrix. We denote the matrix (Ā|0m−s×s) by A.
From the shape of T · B and A we see that

L̄ = L(A),

i.e. the rows of A form a basis of the sublattice L̄ we are looking for. Moreover,
using Lemma 16 and the fact that det(T) = ±1 we deduce that

det(L̄) = (det(A · AT))1/2 = | det(Ā)| = | det(T)|| det(B)|

= | det(B)|

≥ W s2−8sdxdyX−sxY −sy .

(6)

20

5.3 Short Vectors in L̄ and a New Polynomial with Root (x0, y0)

The following lemma characterizes short vectors in an arbitrary lattice Λ.

Lemma 18 Let Λ be an n-dimensional lattice. Then there is an efficiently com-

putable vector b such that for any vector v in λ with length

‖v‖ ≤ det(Λ)1/n2−(n−1)/4, (7)

we have v · b = 0.

Proof. The proof is again due to Coppersmith. Let b1, . . . , bn be an LLL-reduced
basis of Λ. By b

†
1, . . . , b

†
n denote the Gram-Schmidt orthogonalization of b1, . . . , bn.

Then we know that any vector v ∈ Λ satisfying Equation (7) lies in the sublat-
tice spanned by b1, . . . , bn−1. Hence v must be orthogonal to b†n. Equivalently,
v · b†n = 0.

We apply this lemma to lattice L̄ = L(A). The dimension of L(A) is m− s. Let
b1, . . . , bm−s be an LLL-reduced basis of L(A). From (6) we conclude that

det(L(A))1/(m−s)2−(m−s−1)/4 ≥
(

W s2−8sdxdyX−sxY −sy
)1/(m−s)

2−(m−s−1)/4.

From the previous lemma and Lemma 17 we conclude that v0 ·B ·b†n = 0 provided
that √

m − s ≤
(

W s2−8sdxdyX−sxY −sy
)1/(m−s)

2−(m−s−1)/4.

This translates to

XsxY sy ≤ W s · 2−8sdxdy · 2−(m−s−1)(m−s)/4 · (m − s)(m−s)/2.

Using csdxdy ≥ (m − s)2, we can replace this by the stronger condition.

XsxY sy ≤ W s2−(8+c)sdxdy

This is Equation (1) in Theorem 2. Hence v0 · B · b†n = 0.

Now we set

b := B · b†n.

Furthermore, we let b(x) be the polynomial defined over M whose coefficients
are given by the vector b (in the order defined by the lexicographical ordering of
monomials in M). Since v0 · b = v0 · B · b†n = 0 we conclude that b(x0, y0) = 0.

5.4 Resultants and the Computation of (x0, y0)

If we can show that r(x) = resy(p(x, y), b(x, y)) 6= 0, then x0 is a root of the
polynomial r(x). Consequently, in this case x0 can be computed using an integer
root finding algorithm, for example algorithms based on Sturm sequences. Once

21

x0 is known, we can also find y0 as an integer root of the univariate polynomial
p(x0, y). It remains to show that r(x) 6= 0.

Now resy(p(x, y), b(x, y)) = 0 iff p(x, y) and b(x, y) have a non-trivial common
divisor. Since p(x, y) is irreducible this in turn can happen iff b(x, y) is a multiple
of p(x, y). To show that b(x, y) is not a multiple of p(x, y), first we show that
the vector b can not lie in the vector space spanned by the columns of matrix
P . Assume that b lies in the vector space spanned by the columns of P . Then
we get

v · b = 0 for all v with v · P = 0s

⇔ v · B · b†n = 0 for all v with v · P = 0s

⇔ v · B · b†n = 0 for all v with v · B ∈ L̄ = L(A) (by definition of L̄)
⇔ w · b†n = 0 for all w ∈ L̄ = L(A).

However, the last property contradicts the definition of b†n. Hence b is not a linear
combination of columns of P .

Since b is not a linear combination of columns in P , the polynomial b(x, y)
cannot be of the form

b(x, y) = f(x, y) · p(x, y) with f(x, y) =
∑

µ∈S

cµµ, cµ ∈ R,

i.e., b(x, y) is not a multiple of p(x, y) with some polynomial defined over S.
Moreover, since b(x, y) is defined over M and S, M are admissible for p(x, y),
the polynomial b(x, y) cannot be a multiple of p(x, y) and some polynomial not
defined over S. This shows that b(x, y) is not a multiple of p(x, y). The proof of
Theorem 2 is complete.

References

1. J. Blömer, A. May, “New Partial Key Exposure Attacks on RSA”, Advances in
Cryptology – Crypto 2003, Lecture Notes in Computer Science Vol. 2729, pp. 27–43,
Springer-Verlag, 2003

2. D. Boneh, “Simplified OAEP for the RSA and Rabin Functions”, Advances in Cryp-
tology – Crypto 2001, Lecture Notes in Computer Science Vol. 2139, pp. 275–291,
Springer-Verlag, 2001

3. D. Boneh, G. Durfee, “Cryptanalysis of RSA with private key d less than N0.292”,
IEEE Trans. on Information Theory, Vol. 46(4), pp. 1339–1349, 2000

4. D. Boneh, G. Durfee, and N. Howgrave-Graham, “Factoring N = prq for large r”,
Advances in Cryptology – Crypto ’99, Lecture Notes in Computer Science Vol. 1666,
Springer-Verlag, pp. 326–337, 1999

5. J.-S. Coron, “Finding Small Roots of Bivariate Integer Polynomial Equations Revis-
ited”, Advances in Cryptology – Eurocrypt ’04, Lecture Notes in Computer Science
Vol. 3027, Springer-Verlag, pp. 492–505,2004

6. D. Coppersmith, “Finding a Small Root of a Univariate Modular Equation”, Ad-
vances in Cryptology – Eurocrypt ’96, Lecture Notes in Computer Science Vol. 1070,
Springer-Verlag, pp. 155–165, 1996

22

7. D. Coppersmith, “Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known”, Advances in Cryptology – Eurocrypt ’96, Lecture Notes in
Computer Science Vol. 1070, Springer-Verlag, pp. 178–189, 1996

8. D. Coppersmith, “Small solutions to polynomial equations and low exponent vul-
nerabilities”, Journal of Cryptology, Vol. 10(4), pp. 223–260, 1997.

9. D. Coppersmith, “Finding Small Solutions to Small Degree Polynomials”, Cryp-
tography and Lattice Conference (CaLC 2001), Lecture Notes in Computer Science
Volume 2146, Springer-Verlag, pp. 20–31, 2001.

10. N. Howgrave-Graham, “Finding small roots of univariate modular equations revis-
ited”, Proceedings of Cryptography and Coding, Lecture Notes in Computer Science
Vol. 1355, Springer-Verlag, pp. 131–142, 1997

11. N. Howgrave-Graham, “Approximate Integer Common Divisors”, Cryptography
and Lattice Conference (CaLC 2001), Lecture Notes in Computer Science Vol. 2146,
Springer-Verlag, pp. 51–66, 2001

12. A. K. Lenstra, H. W. Lenstra, and L. Lovász, ”Factoring polynomials with rational
coefficients,” Mathematische Annalen, Vol. 261, pp. 513–534, 1982

13. A. May, “Computing the RSA Secret Key is Deterministic Polynomial Time Equiv-
alent to Factoring”, Advances in Cryptology – Crypto ’04, Lecture Notes in Computer
Science Vol. 3152, Springer Verlag, pp. 213–219, 2004

14. A. May, “Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq”,
Practice and Theory in Public Key Cryptography – PKC 2004, Lecture Notes in
Computer Science Vol. 2947, Springer-Verlag, pp. 218–230, 2004

15. V. Shoup, “OAEP Reconsidered”, Advances in Cryptology – Crypto 2001, Lecture
Notes in Computer Science Vol. 2139, Springer-Verlag, pp. 239–259, 1998

23

