
Automatic Generation of High Coverage Usability Tests

Renée C. Bryce
Dept. of Computer Science & Engineering

Arizona State University
Tempe, AZ, USA
rcbryce@asu.edu

ABSTRACT
Software systems are often complex in the number of fea-
tures that are available through the user interface and con-
sequently, the number of interactions that can occur. Such
systems are prone to errors when interactions do not work as
anticipated. This research introduces a combinatorial method
for setting up task-based usability tests. The method bridges
contributions from mathematics, design of experiments, soft-
ware test, and algorithms for application to usability testing.

Categories & Subject Descriptors: H.5.2[User Interfaces]:
Evaluation/methodology

General Terms: Human Factors, Measurement, Theory, Ver-
ification

Keywords: Covering arrays, design of experiments, interac-
tion testing, mixed-level covering arrays, usability testing

INTRODUCTION
A high coverage usability test is a form of interaction testing
such that every combination of pair wise (or t-way) interac-
tions is tested at least once. All pairs (or t-tuples) of user
interactions are built into a collection of task variants called
a test suite. Each task variant within the test suite is given
to users for testing. The interaction coverage can enforce the
execution of a well-rounded set of interactions that can oc-
cur in a system. As a supplement to traditional testing, this
method can help to identify more usability problems. For in-

Table 1: An example user interface has four features that
each have three setting options

Log-in Status Member Discount Shipping
Status Method

New Member Basic None Standard
(5-7 day)

Existing Member Silver Employee Express
– logged in (3 - 5 day)
Existing Member Gold Holiday Overnight
– not logged in (1 day)

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

stance, consider testing a screen of an on-line store as broken
down in Table 1. During usability testing, one may choose
to set up a suite of tests to exhaustively test all variations of
tasks so that every scenario that may occur is reviewed by
respective test users. In this example, this is34(3*3*3*3),
or 81 tests. Alternatively, a tester may choose a combinato-
rial approach such that each pair of interactions is covered
at least once to get user feedback. This would reduce the 81
tests down to 9 tests as shown in Table 2.

Table 2: There are 9 tests for pair-wise interaction testing
Log-in Status Member Discount Shipping

Status Method
1 New Member Basic None Standard

(5-7 day)
2 New Member Silver Employee Express

(3-5 day)
3 New Member Gold Holiday Overnight

(1 day)
4 Existing Member Basic Holiday Express

– logged in (3-5 day)
5 Existing Member Silver None Overnight

– logged in (1 day)
6 Existing Member Gold Employee Standard

– logged in (5-7 day)
7 Existing Member Basic Employee Overnight

– not logged in (1 day)
8 Existing Member Silver Holiday Standard

– not logged in (5-7 day)
9 Existing Member Gold None Express

– not logged in (3-5 day)

Each test case results in different portions of the user inter-
face being exposed. During any task-based usability test,
with each interaction reviewed, doors are opened for the user
to experience and comment on the respective features. For
instance, if a user is a new member, they go through a regis-
tration page. If the user is a member that is not logged in, they
are prompted to log on. Once logged on, they move on to the
next step. In this example, it may be found that the ”Silver”
member status and ”Employee” discount clashed causing a
usability problem for the user. Assuming that this is an un-
likely scenario that an average user most likely would not



encounter, it could have been overlooked in a typical test that
does not attempt to create the 81 tests. However, if all pairs
of interactions are covered, the scenario will be accounted
for.

This approach to setting up usability tests provides better
coverage of features than simply telling the user to ”place an
order” and yet does not incur the high cost to execute numer-
ous tasks for exhaustively testing all combinations of scenar-
ios. Both standard and nonstandard usage patterns are exam-
ined in order to increase the assortment of usability problems
that can be caught.

AN ALGORITHM FOR PRACTICAL CONCERNS

Constructing high coverage usability tests is not trivial. A
combinatorial object called a mixed-level covering array must
be constructed to adapt to the practical concerns of this ap-
plication. Several methods for constructing these covering
arrays have recently been published (the reader is referred
to [3] for a brief summary of current methods). Many can
quickly be applied for generating high coverage usability tests.
The respective algorithms fall into one of three genres of al-
gorithms: algebraic constructs, greedy methods, and heuris-
tic search. In this application, algorithms are evaluated by
the practical concerns and limitations that apply to the high
coverage usability application.

In practical application, user interfaces are likely to have nu-
merous features that take on various numbers of setting op-
tions. Testers want the mostaccurate (smallest size) test suite
to be generated because every test adds to the cost of testing.
A tester may also desire to seed part of the test suite with
specific tests or partial tests that they want to be included in
testing. Conversely, they may desire to specify constraints
of combinations that do not make sense to combine in a test.
Consistency of test suites is also desired. Test suites should
not be randomly generated because it can cause confusion
if different testers produce different test suites for the same
problem. It should be possible for a tester to regenerate a
test case that they had previously used. Further, test suites
should be generated quickly so that testers do not have to
wait a long time to begin their testing. Finally, user interfaces
may change over time and hence a test suite should accom-
modate for change. This may include additions, removals,
or modifications to features in a system. It may also include
modification of the desired level of interaction coverage.

Currently, greedy algorithms may be the most appropriate
construction techniques that are known to adapt efficiently
to these practical concerns. The reader is referred to [1] for
further support on this choice. We have pursued applying the
Deterministic Density Algorithm (DDA)[2] to the practical
concerns of this application. DDA may be considered a rea-
sonable algorithm to select because it is deterministic, quick,
provides competitive results, and guarantees that the size of
the test suite is within a logarithmic size bound.

At the highest level of description, DDA constructs one row
of a covering array at a time until all t-tuples are covered.
Within the construction of each row, the order in which fea-
tures are assigned values is based on density formulas. The
formulas help to optimize the number of t-tuples that each
row (or test case) will cover. For each feature, the value as-
signed is also selected by density formulas that calculate the
likeliness of each value contributing to the most newly cov-
ered t-tuples in the row (or local test case). For an in-depth
description of the algorithm, the reader is referred to [2].

ALGORITHM RESULTS
In practice, an exponential problem is reduced significantly
in size when interaction testing is applied. For instance, Ta-
ble 3 shows some sample problem parameters and sizes of
test suites generated using DDA. The size of test suites in-
cluded here is for pair-wise coverage. A tester may choose
to have individual or separate users execute each task in the
test suite.

Table 3: Sizes of test suites generated using DDA
Number of Number of settings Size of test suite
features for each feature
4 3 9
40 2 13
100 2 14
11 1 with 5, 8 with 3, 2 with 2 21

FUTURE WORK
A contribution has been made with a new idea referred to
ashigh coverage usability testing, definition of the method’s
context in usability testing, and the development of an algo-
rithm to automatically and economically generate such test
suites. Future work includes a vast amount empirical study
of the application in practice and definition of its role in the
User Centered Design process.

ACKNOWLEDGEMENTS
Thank you to my advisor, Dr. Charles J. Colbourn. This
research is supported by the Consortium for Embedded and
Internetworking Technologies (CEINT).

REFERENCES
1. R. C. Bryce, C. J. Colbourn, M. B. Cohen. A Framework

of Greedy Methods for Constructing Interaction Tests.
Intl. Conf. on Software Engineering (ICSE’05), To appear.

2. C. J. Colbourn, M. B. Cohen, and R. C. Turban. A de-
terministic density algorithm for pairwise interaction cov-
erage.Proc. of the IASTED Intl. Conference on Software
Engineering, pages 242–252, February 2004.

3. D. S. Hoskins, R. C. Turban, and C. J. Colbourn. Ex-
perimental Designs in Software Engineering: D-Optimal
Designs and Covering Arrays.Proc. SIGSOFT 2004/FSE-
12: Workshop on Interdisciplinary Software Engineering
Research, pages 55 – 66, November 2004.


