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Information processing in neocortex can be very fast, indicating that
neuronal ensembles faithfully transmit rapidly changing signals to each
other. Apart from signal-to-noise issues, population codes are fundamen-
tally constrained by the neuronal dynamics. In particular, the biophysical
properties of individua neurons and collective phenomena may substan-
tialy limit the speed at which a graded signal can be represented by the
activity of an ensemble. These implications of the neuronal dynamics are
rarely studied experimentally. Here, we combine theoretical analysis and
whole cell recordings to show that encoding signas in the variance of
uncorrelated synaptic inputs to a neocortical ensemble enables faithful
transmission of graded signals with high temporal resolution. In contrast,
the encoding of signalsin the mean current is subject to low-passfiltering.

INTRODUCTION

The firing rate of many neurons in the cortex is known to
depend on various aspects of stimuli in a smooth way. While
this finding suggests that the graded rate of an individual
neuron is used to distinguish between different stimuli, it can
be estimated only after a sufficiently large number of spikes
have occurred. For this reason, reliable rate signals are neces-
sarily slow if obtained from single neurons and hence cannot
account for the rapid information processing observed in the
cortex (Thorpe et al. 1996). In contrast, at the level of popu-
lations, this problem of signal-to-noise can be overcome such
that the population rate of an ensemble of neurons (i.e., the
average number of spikes in the population per time interval)
can be estimated on a time scale that is even smaller than the
interspike intervals of the individual neurons. If the neuronal
responses are statistically independent from each other, the
achievable time resolution will in fact depend only on the total
number of neurons in the ensemble: the larger the ensemble,
the higher the tempora precision with which the population
rate can be estimated. Although it is possible to overcome the
limitations of temporal precision due to noise by using an
increasing number of neurons, there is another constraint on
the speed of signal transmission caused by the neuronal dy-
namics. intrinsic properties of individual neurons like the
membrane time constant and population effects like synchro-
nization can severely limit the ability of neuronal ensemblesto
realize rapid rate codes (Knight 1972). Therefore we here
investigate to what extent rapid transmission of graded rate
signals between populations of cortical neurons rely on the
encoding strategy due to the neurona population dynamics.
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In contrast to the usua characterization of a signal by the
temporally averaged mean and the variance components, we
here consider the instantaneous distribution of input currents
into the neurons of a functional ensemble at each moment in
time. In this case, the synaptic inputs can also be divided into
two components. one component is given by the input aver-
aged over the ensemble, the other component is given by the
deviations of individual inputs from the average: the popula
tion variance. Both components can, in general, fluctuate with
time, contributing to the observable fluctuationsin the synaptic
currents of single neurons. The output of the ensemble can be
described by an instantaneous population rate, estimated by
the number of spikes emitted by the entire ensemble in small
time intervals divided by the number of neurons. The popula-
tion rate depends on the amplitudes of both components of the
input. This reasoning alows one to conclude that signals
delivered to a neuronal ensemble could in principle be carried
by (encoded in) either the common, correlated part of the
synaptic inputs to the neurons, or by the variance of the inputs
across the population, or by both.

In this study, we examine the respective implications of
these coding strategies for rapid and reliable transmission of
information between neurona ensembles. We show that cor-
related input currents cannot be used to transmit rapidly chang-
ing signals, whereas encoding the signa in the variance en-
ables faithful signal transmission in the population rate on a
millisecond time scale irrespective of the membrane time con-
stants of the neurons.

METHODS

General methods

INTEGRATE-AND-FIRE MODEL. The leaky integrate-and-fire neuron
is characterized by its membrane potential, whose dynamics is de-
scribed by the circuit equation (Laplicque 1907; Tuckwell 1988)

dv

T E = 7(V - Vreﬂ) + lewn (l)

where 7 denotes the membrane time constant, V, . is the membrane
resting potential, I, is the synaptic current, and R, is the input
resistance of aneuron. This equation is supplemented by the condition
that each time the membrane potential hits the threshold potential, V,,
aspike is emitted and the membrane potential is instantaneously reset
to a certain subthreshold level, V, oo

To achieve an analytical understanding of the population dynamics,
we consider an infinite population of identical integrate-and-fire neu-
rons indexed by i, receiving input currents of the form
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Li® = p®) + o®n(® @)

where u(t) denotes the mean input across the population at timet, n;(t)
is Gaussian white noise with unit spectral density, and o(t) isascaling
factor measuring how strongly the individua input currents deviate
from the mean. Rigorously speaking, Gaussian white noise does not
exist in nature, but it is understood as a reasonable idealization that
together with Eq. 1 becomes a well-defined mathematical term in the
sense of Langevin equations.

Correspondingly, the time evolution of the population density func-
tion P(V, t) then obeys the Fokker-Planck equation

PNV,D VY
at v

@)
where the probability flux J(V, t) is given by

Ram(t) — V(1) Reo(t)? oP(V, 1)

Iy = 22 oV

P(V, 1) —

4)

The flux consists of two components: the first term is the drift
component, which is governed by the mean p(t), and the second term
is the diffusion component representing the effect of random fluctu-
ations. The firing threshold and the reset potential impose boundary
conditions on the flux, which imply P(V,, t) = 0 for all D =
[o(t)?]/2 > 0 (Risken 1984; Tsodyks and Sejnowski 1995). Therefore
at threshold, the only contribution to the flux is given by the diffusion
component.

Data collection

INTRACELLULAR RECORDINGS. Parasagittal slices 300-um thick
were obtained from Wistar rats (14—16 days old). Slices were incu-
bated for 30 min at 32—34°C before being transferred to the recording
chamber. The recordings were made at 32-34°C. Neurons were se-
lected for recording according to the morphology of the soma and
proximal dendrites, as visualized by IR-DIC optics using a Zeiss
Axioscope and Hamamatsu CCD camera. The bathing solution con-
sisted of (in mM) 125 NaCl, 25 NaHCO,, 25 glucose, 2.5 KClI, 2
CaCl,, 1.25 NaH,PO,, and 1 MgCl,. Whole cell recordings were
made using patch pipettes (5-10 M), containing (in mM) 110
K-gluconate, 10 KCl, 10 HEPES, 10 phosphocreatine(Na), 4 MgATP,
0.3 NaGTP, and 2% bhiocytin. Recorded voltage and current were
amplified by axopatch 200/B amplifiers (Axon instruments). Acqui-
sition was done using IGOR-Pro software (WaveMetrics). Injected
current was calculated for each individua injection using random
values drawn from a Gaussian distribution. The values for w and ¢®
were determined according to the discharge rate of the stimulated
neuron. Current recordings used for stimulation were obtained in
voltage-clamp mode and inverted before injection. Activity in the
slice wasinduced by agradua application of 4-aminopyridine (4-AP),
a blocker of transient potassium current.

RESULTS

Itisinstructiveto first analyze a simplified model, where the
issue of population coding can be addressed in a mathemati-
cally rigorous way. We consider an (infinitely) large popula
tion of identical integrate-and-fire neurons indexed by i (see
METHODS), each receiving fluctuating synaptic inputs of the
following form

L) = & + T (5)

Here fu(t) := /N S, 1, (t) stands for the instantaneous
amplitude of the averaged, correlated part of the input (com-
mon to all the neurons), while I;(t) := I;(t) — @(t) are the
deviations of individua inputs from the average (unique for
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every neuron). A global measure for the time-dependent input
diversity is given by the instantaneous population variance of

the input G%(t)=1/N 2, 1Z(t). In general, both of the vari-
ables, fi(t) and G°(t), change in time, and thereby can serve as
signals carrying information from presynaptic populations. The
main goal of the analysis is to estimate how the activity of the
population reflects the signals carried by either variable. In
particular, we are interested in the conditions under which the
instantaneous population rate will faithfully follow the analog
value of the signal at any time (“perfect signaling”). .

The analysis can be pursued to the ultimate solution, if I;(t)
are mutually independent and temporally uncorrelated random
processes (i.e., Gaussian white noise; see METHODS). In that
limiting case, 5 diverges because of the vanishing correlation
time. It is understood, however, that if the correlation time 7,
of area current is sufficiently small (i.e., clearly smaller than
the membrane time constant) essentially only the product o =
. isrelevant. For the sake of convenience, we will therefore
call o® somewhat incorrectly a population variance, too, in the
following.

Because the momentary state of an integrate-and-fire neuron
is defined only by its membrane potential V(t), the state of the
whole population is completely characterized by a probability
density function P(V; t), i.e., the fraction of neurons with
membrane potential close to V. The time evolution of the
density function is governed by both the average and the
fluctuating components of the inputs via the so-called Fokker-
Planck equation (Risken 1984) (see METHODS).

One can visualize this formulation by considering a collec-
tion of point-like particles moving independently along a one-
dimensiona axis under the combined influence of the deter-
ministic force and a random, diffusing force which tends to
equilibrate the particles along the axis. In this analogy, P(V) is
just the density of particles on the axis of V.

The advantage of this approach is that one can derive an
exact expression for the instantaneous firing rate of a popula
tion of neurons, which is given by the flux of particles to the
firing threshold Vi,

Roo(t)> aP(V; t)

RO=-"07 "%

- ©

The instantaneous population rate R(t) is defined here as the
number of spikes emitted by the whole population in an (infi-
nitely) small time bin around timet, normalized by the duration
of the bin. Importantly, if the uncorrelated noise has a positive
amplitude, only the diffusion component of the flux (see METH-
obs) is contributing to the firing rate, since in this case the
density of particles at the threshold is zero. The preceding
formula, together with the Fokker-Planck equation, represents
a complete characterization of the population response in its
dependence on the parameters of the input. In a stationary
situation when w and ¢ are constants, the density function
adjusts its shape to the values of these parameters. The output
rate, as stated in the preceding text, is therefore a function of
both parameters (Roy and Smith 1969; Tuckwell 1988).

In the general situation, when the signals depend on time, the
density function P(V; t) evolves according to the Fokker-
Planck partial differential equation (see meTHoDs), thereby ex-
hibiting a low-pass filtered response to changes in the signals
w(t) and o(t) with a filtering parametrized by the membrane
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time constant of the neurons in a population (Brunel and
Hakim 1999). This means that the output rate R(t) given by Eq.
6 depends not only on the current values of the input param-
eters but also on their previous values, i.e., the instantaneous
population rate does not faithfully reflect the instantaneous
signals. However, if the modulations of the input signals
around some baseline values are much faster than the mem-
brane time constant, the shape of P(V; t) will be amost sta-
tionary, due to the above-mentioned filtering property of the
Fokker-Planck equation.

To verify that the density function is indeed stable to very
fast modulations of the input signals, we performed numerical
simulations of the activity of a large population of integrate-
and-fire neurons receiving noisy input currents with an instan-
taneous mean value oscillating in time with increasing fre-
guency. The time evolution of the density function was then
computed from the results of the simulations and its stability
was assessed. In Fig. 1 A and B, we show a sample of
probability density functions across the population computed
over subsequent 1-ms bins for two different values of the
frequency. Obviously, the variationsin the density function are
smaller for higher frequency. To quantify thisresult, we plot on
Fig. 1C the SD of the density function averaged over al
positive values of the voltage as a function of the frequency of
the signal. For very high frequency the SD reduces to a low
residual valuethat is explained by the finite size of the neuronal
population. Qualitatively similar results were obtained for os-
cillating instantaneous variance in the input current (results not
shown).

This result, together with Eq. 6, implies that the output
population rate R(t) will be proportional to the quickly chang-
ing instantaneous values of the population variance of the

g

0.02
0.015 F = 50Hz

0.01

Probability

0.005

F = 1000Hz

Voltage

0 100 200 300 400 500

Frequency (Hz)

600

700

SILBERBERG, BETHGE, MARKRAM, PAWELZIK, AND TSODYKS

uncorrelated component of the inputs, o?(t), and ignores the
modulation in the mean. In other words, the population can
faithfully transmit rapid signals, if they are encoded in the
amplitude of the uncorrelated “noise.”

Intuitively, this effect can be understood most easily in a
population of neurons simultaneously receiving excitatory and
inhibitory inputs. An excess of excitation at a given time will
drive the neurons toward threshold. Some neurons will be
caused to fire and immediately afterward will be synchronously
refractory. To achieve a rapid response the excitatory pulse
would have to be huge, which in turn would temporarily
saturate the population activity. Therefore the analog signal
cannot be transmitted this way because the population activity
will not be able to remain constantly at the intermediate values
dictated by the signal. If, in contrast, the inhibition is increased
simultaneously together with the excitation, this implies an
increased population variance of the inputs. In this case, only
a fraction of the neurons will receive strong excitatory pulses
and thereby respond rapidly, whereas alarge proportion will be
less affected or driven away from threshold. In this way, the
balance of excitation and inhibition randomly selects changing
subsets of neurons that are driven across threshold. This mech-
anism avoids population saturation and the number of firing
neurons at each moment in time (population rate) faithfully
reflects the graded signal encoded in the population variance of
the input.

Because this theoretical prediction could be of fundamental
importance for the issue of the neural code in neocortex, we
undertook a series of experimentsto test its validity (METHODS).
Experimental testing is clearly warranted due to the many
simplifications in the mathematical model, most notably the
neglect of the kinetics of ionic channels.

FG. 1. Simulations of the probability
1 density function evolution in response to fast
changes in input mean. A population of
20,000 integrate- and fire-neurons with = =
10ms, Vi, = 1, Vieg = Vi = 0 are
simulated (see METHODS), with constant in-
put variance o = 0.3 and u(t) oscillating
between the values of 0.4 and 0.9, applied
for 200 ms. A: overlayed probability density
functions computed for subsequent 1-ms
time bins, where u(t) oscillates with a fre-
quency of 50 Hz. B: same as A, but now pu(t)
oscillates with a frequency of 1,000 Hz. C:
the SD of the density function averaged over
positive values of voltage plotted as a func-
tion of the frequency.
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FIG. 2. Response of neocortical neurons to abrupt changes in input param-
eters w and 2. In each case, 4,000 different virtually white noise current traces
(sampling interval in all of the experiments is Tempye = 0.25 ms) were injected
into apyramidal neuron sequentially. A, bottom: an example of asingle current
trace injected. |, , the moment at which the amplitude of the mean current was
increased. Middle: histogram of the “population” response with a time bin of
1 ms. At the transition point, the mean current was increased from 120 to 200
pA. Top: raster plot of spike trains for 10 randomly chosen trials. Solid red
lines show the stationary levels of the response before and after the transition.
B: same as in A, but the set of current time courses featured a change in the
population variance 0® = *Tgmye from 22.5 to 90 (pA)?sec. Histogram
binning is 1 ms.

ple

We prepared an ensemble of virtually white noise current
traces (see caption Fig. 2) characterized by particular w(t) and
o”(t) and injected them into neocortical neurons while moni-
toring their spiking response. |deally we would then proceed to
estimate the instantaneous firing rate of a large neuronal pop-
ulation with every neuron receiving a different current trace
from the prepared ensemble. Because intracellular recordings
from so many neurons would be extremely time consuming,
we instead repeatedly injected into single neurons, but every
time choosing a different current trace from the same ensem-
ble. The “population” activity can then be estimated by com-
puting the average number of spikes emitted by the neuron in
subsequent time bins of 1 ms, i.e., a so called peri-stimulus-
time-histogram (PSTH). Substituting the PSTH for the popu-
lation firing rate can be justified only if every neuron exhibits
the same time course of the PSTH response (up to a possible
scaling factor) because, in this case, subsequent responses
obtained in single neurons would accurately represent different
neurons in a population.

In our first series of experiments, we compared the response
to two simple forms of input signals, for which either w(t) or
o”(t) increases abruptly at a particular time (Fig. 2, A and B).
Equation 6 predicts that there should be a gradua response to
the jump in w and an instantaneous initia response to a change
in o because the latter enters as a multiplying factor in the
expression for the response. The amplitudes of the signalswere
calibrated such that the steady-state level of a neuron’s firing
was identical in both cases because this implies that the aver-
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age firing rates are almost identical in both casestoo. However,
the time profile of the PSTH in response to abrupt increase in
w and 0@ was very different: whereas in the first case there was
agradual change in the PSTH, in the second case we observed
an instantaneous initial response with subsequent decay to the
new stationary level. These results are in agreement with the
theoretical prediction (Eg. 6).

Similar results were obtained in al 18 of a wide variety of
neocortical neurons, which included pyramidal neurons and
different types of interneurons. We emphasize that in both
cases, the output rate continued to change after the transition,
when the input signa (the values of either w or ¢®) stayed
constant at a different level. This means that the instantaneous
population rate did not follow the step in the signal amplitude
when this was modulating the mean current to the population.
On the other hand, the rate response faithfully followed the
step in the population variance ¢ but was then also slowly
changed, thereby decreasing to the steady-state discharge level.
Note that in both cases, the responses did NOT faithfully
reflect the overall shape of the single step and showed temporal
modulations, which are also a prediction of the theory pre-
sented in the preceding text.

We then proceeded to test our main theoretical prediction by
studying the population response to signals that undergo rapid
ongoing changes in time. To this end, we injected the same
type of current forms as in the first experiment, whereas now
both w(t) and o*(t) are rapidly fluctuating al the time. In other
words, the two signals were present simultaneously in the
input. To separate the effectiveness of these two signals, we
constructed u(t) and o(t) by randomly assigning new valuesto
each of them independently at every millisecond drawn from
uniform distributions (see Fig. 3, A and B). Theranges for both
kinds of input signals were calibrated for each neuron individ-
ually, such that the corresponding output ranges of the firing
rates were of the same size (i.e., the calibration makes sure that
the stationary firing rate for constant w,o? is identical in both
Cases, L = Mminy o = Oﬁmx and B = P, o = Oﬁﬂn)-

The spiking PSTH response to these currents was obtained
(Fig. 3C). Strikingly, the instantaneous popul ation rate reliably
followed the signal carried by the variance of the input currents
and there was no observable correlation with the signal con-
tained in the mean (Fig. 3F). To quantitatively test the predic-
tion contained in Eq. 6 about the dependency of the response
on the components of the input, we plotted the instantaneous
values of the PSTH response versus the instantaneous variance
of the currents (Fig. 3E). In agreement with the prediction, the
points in this graph scatter around the straight line passing
through the origin. The same graph, but with the signal con-
tained in the average current, w does not result in any signif-
icant dependency (Fig. 3D), again following the theoretical
prediction. Very similar results were obtained in al four py-
ramidal neurons that were tested. We therefore conclude that
substituting the PSTH responses obtained in single neurons for
instantaneous population rate of large neuronal populations is
justified and that the instantaneous population rate reflects the
signal carried by the rapidly changing instantaneous variance
of the input.

The preceding experiments confirm that signaling with vari-
ance applies to neurons in the cortex and does not rely on the
particular choice of the model neuron used in the theoretical
analysis. However, because in these experiments the injected
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FIG. 3. Fast signaling by current vari-
ance. The response of a pyramidal neuron to
virtually white noise current injection
(Tsample = 0.25 ms) in which 2 temporaly
uncorrelated signals are encoded. A: instanta-
neous values of mean current. B: instantaneous

200

values of population variance. C: instanta-
neous response [peristimulus time histogram
(PSTH)] in time bins of 1 ms. For every time
- bin, the PSTH was computed from the spiking
responses of a neuron to repeated injections of
different current traces as explained in the text.
D and E: instantaneous response plotted vs.
the instantaneous value of w and o2, respec-
tively, after compensating for a 1-ms delay.
Every point on the graph represents a pair
[(t), PSTH(t)] or [o(t), PSTH(t)] for consec-
utive time bins. D: correlation coefficient R =
0.15. E: the line is a linear regression. The
sample correlation coefficient is p = 0.79, and
the sample correlation ratio is 0.65, which is

220
1 (pA)

240 260 280 300

708 SILBERBERG,
300 — .
280 —
260 —
o
. 240 - o
{ =
[=% [=)
= 220 b5
=S 3
200 — g
180
160 —
160 180
500 —
g 400 — E‘-"
N;\_ a
(-
£ 300 3
o
"B Iy
200 —
100 —
C 0 100

frequency (Hz)
Correlation coefficient

200

very close to p? and hence confirms the linear
relationship (Stuart and Ord 1994). Overdl,
5,600 current traces were injected (i.e., the
observed correlation reflects the precision that
would be achieved in a population at a time
scale of 1 msin a population of about 5,000
neurons.) F: the cross-correlation values be-
tween the population response and the signals
carried by the mean and the variance of the
input currents.
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currents were artificial and in particular did not correctly reflect
the temporal correlations of real input currents, we in addition
obtained realistic synaptic currents from whole cell voltage-
clamp recordings in cortical slices with different levels of
excitation (metHops). With these currents, we performed a
control experiment by injecting them into a neuron and record-
ing the discharge responses for both, step changes in mean
current and step changes of the variance.

Asin the first experiments, the discharge response increased
gradually when we injected recorded currents containing
abrupt changes in the mean current (Fig. 4A), whereas the
change in discharge was much faster when the variance of the
current increased abruptly (Fig. 4B). These results demonstrate
that the difference between signaling by variance and signaling
by mean persists with real synaptic noise currents (Brunel et al.
2001). In particular, signaling by variance does not require
white noise currents but is possible with the synaptic currents
generated in neocortex.

Finally, in this study, we did not consider the effects of
changing neuronal conductances, which would result from the
barrage of excitatory and inhibitory synaptic inputs. Experi-
mentally, this issue could be addressed by employing the
dynamic clamp technique, which remains a challenge for fu-
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-600
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FIG. 4. Response of neocortical neurons to currents obtained from voltage-
clamp experiments. A, bottom: an example of a segment of a current obtained
in a voltage-clamp recording from a slice with low activity level (see METH-
ops). At the transition time, a constant value was added to the current. Top:
histogram of 4,000 responses to different current segments. B: same asin A but
with a step change in the variance of the current. This was achieved by
switching to current traces recorded at higher activity level.
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ture studies. In a series of simulations (results not shown) with
populations of integrate-and-fire neurons receiving inputs in
the form of noisy conductance changes, we found qualitatively
the same effects as presented in this paper.

DISCUSSION

Cortical neurons in vivo fire irregularly (Softky and Koch
1993) and in an apparently irreproducible manner (Schiller et
al. 1976; Vogels et al. 1989). As a possible explanation, this
phenomenon has been suggested to originate from a balance of
excitatory and inhibitory synaptic inputs (Gerstein and Man-
delbrot 1964; Shadlen and Newsome 1995), in which case the
mean becomes small and signaling by variance is particularly
relevant. The resulting variability, however, if considered
noise, clearly impairs the precision of rate estimates. This
raises the question whether there is a functional reason that
may justify this loss. To this puzzle, our study contributes a
novel, independent argument demonstrating that in case of
neocortical neurons, signaling by variance, in contrast to the
mean, allows for rapid population rate codes. This result does
not rely on synaptic connectivity within an ensemble but re-
flects the basic biophysical properties of populations of neo-
cortical neurons. It could be generated either by the dynamics
of a network in which the neurons are embedded or by the
activity of presynaptic ensembles. Indeed, network models
have been devel oped the activity of whic can rapidly follow the
input (Abbott and vanVreeswijk 1993; Battaglia and Treves
1998; Tsodyks and Sejnowski 1995; vanVreeswijk and Som-
polinsky 1996). In conclusion, our work suggests that signaling
by variance may be important as being a simple mechanism for
desynchronizing neurona populations, something that is nec-
essary for the realization of rapid population rate codes. Future
experiments are required to clarify whether this is indeed the
case.
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