
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, MAY 1997 1Evolutionary Computation:Comments on the History and Current StateThomas B�ack, Member , IEEE , Ulrich Hammel, and Hans-Paul SchwefelAbstract| Evolutionary computation has started to re-ceive signi�cant attention during the last decade, althoughthe origins can be traced back to the late 1950s. This art-icle surveys the history as well as the current state of thisrapidly growing �eld. We describe the purpose, the gen-eral structure and the working principles of di�erent ap-proaches, including genetic algorithms (GA) (with links to ge-netic programming (GP) and classi�er systems (CS)), evolutionstrategies (ES), and evolutionary programming (EP), by analysisand comparison of their most important constituents (i.e.,representations, variation operators, reproduction and se-lection mechanism). Finally, we give a brief overview on themanifold of application domains, although this necessarilymust remain incomplete.Keywords| Genetic algorithms, evolutionary program-ming, evolution strategies, genetic programming, classi�ersystems, evolutionary computation.I. Evolutionary Computation:Roots and PurposeTHIS �rst issue of the IEEE Transactions on Evolution-ary Computation marks an important point in the his-tory of the rapidly growing �eld of evolutionary computa-tion, and we are glad to participate in this event. In pre-paration for this summary, we strove to provide a compre-hensive review of both the history and the state-of-the-artin the �eld for both the novice and the expert in evolution-ary computation. The number of excellent publicationscurrently available in this �eld required strong selectionsof the material to be presented here. These selections arenecessarily subjective and we regret any signi�cant omis-sions.Although the origins of evolutionary computation can betraced back to the late 1950s (see e.g. the inuencing worksof Bremermann [1], Friedberg [2], [3], Box [4] and oth-ers), the �eld remained relatively unknown to the broaderscienti�c community for almost three decades. This waslargely due to the lack of available powerful computer plat-forms at that time, but also due to some methodologicalshortcomings of those early approaches (see e.g. Fogel [5,p. 103]).The fundamental work of Holland [6], Rechenberg [7],Schwefel [8] and Fogel [9] served to slowly change this pic-ture during the 1970s and we currently observe a remark-The research of Th. B�ack is supported by a grant from the Ger-man BMBF, project EVOALG. He is with the Informatik CentrumDortmund, Center for Applied Systems Analysis (CASA), Joseph-von-Fraunhofer-Str. 20, D{44227 Dortmund, Germany, and LeidenUniversity, Niels Bohrweg 1, NL{2333 CA Leiden, The Netherlands.EMail: baeck@icd.deU. Hammel and H.-P. Schwefel are with the Computer Sci-ence Department, Dortmund University, D{44221 Dortmund, Ger-many. EMail: hammel@LS11.informatik.uni-dortmund.de andschwefel@LS11.informatik.uni-dortmund.de

able and steady (still exponential) increase in the numberof publications (see e.g. the bibliography [10]) and confer-ences in this �eld, a clear demonstration of the scienti�c aswell as economic relevance of this subject matter.But what are the bene�ts of evolutionary computation(compared to other approaches) which may justify the ef-fort invested in this area? We argue that the most sig-ni�cant advantage of using evolutionary search lies in thegain of exibility and adaptability to the task at hand, incombination with robust performance (although this de-pends on the problem class) and global search character-istics. In fact, evolutionary computation should be under-stood as a general adaptable concept for problem solving,especially well suited for solving di�cult optimization prob-lems, rather than a collection of related and ready-to-usealgorithms.The majority of current implementations of evolutionaryalgorithms descend from three strongly related but inde-pendently developed approaches: genetic algorithms, evol-utionary programming , and evolution strategies.Genetic algorithms, introduced by Holland [6], [11], [12]and subsequently studied by De Jong [13], [14], [15], [16],Goldberg [17], [18], [19], [20], [21], and others such as Davis[22], Eshelman [23], [24], Forrest [25], Grefenstette [26],[27], [28], [29], Koza [30], [31], Mitchell [32], Riolo [33], [34],Scha�er [35], [36], [37], to name only a few, have been ori-ginally proposed as a general model of adaptive processes,but by far the largest application of the techniques is inthe domain of optimization [15], [16]. Since this is true forall three of the main-stream algorithms presented in thispaper we will discuss their capabilities and performancemainly as optimization strategies.Evolutionary programming, introduced by Fogel [9], [38]and extended in Burgin [39], [40], Atmar [41], Fogel [42],[43], [44], and others, was originally o�ered as an attemptto create arti�cial intelligence. The approach was to evolve�nite state machines (FSM) to predict events on the basisof former observations. An FSM is an abstract machinewhich transforms a sequence of input symbols into a se-quence of output symbols. The transformation depends ona �nite set of states and a �nite set of state transition rules.The performance of an FSM with respect to its environ-ment might then be measured on the bases of the machine'sprediction capability, i.e., by comparing each output sym-bol with the next input symbol and measuring the worthof a prediction by some payo� function.Evolution strategies as developed by Rechenberg [45],[46] and Schwefel [47], [48] and extended by Herdy [49],Kursawe [50], Ostermeier [51], [52], Rudolph [53], Schwe-fel [54], and others, were initially designed with the goal



2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, MAY 1997of solving di�cult discrete and continuous, mainly experi-mental [55], parameter optimization problems.During the 1980s, advances in computer performance en-abled the application of evolutionary algorithms to solvedi�cult real-world optimization problems, and the solu-tions received a broader audience. In addition, begin-ning in 1985, international conferences on the techniqueswere o�ered ([56], [57], [58], [59], [60], [61] mainly focus-ing on genetic algorithms, [62], [63], [64], [65], [66] withan early emphasis on evolutionary programming, [67], [68],[69] as small workshops on theoretical aspects of geneticalgorithms, [70] as a genetic programming conference, [71],[72], [73], [74] with the general theme of problem solvingmethods gleaned from nature, and [75], [76], [77], [78] withthe general topic of evolutionary computation). But some-what surprisingly, the researchers in the various disciplinesof evolutionary computation remained isolated from eachother until the meetings in the early 1990s [59], [63], [71].The remainder of this paper is intended as an overviewof the current state of the �eld. We cannot claim thatthis overview is close to complete. As good starting pointsfor further studies we recommend [79], [80], [22], [5], [18],[81], [31], [82], [32], [48]. In addition moderated mail-ing lists (e.g. GA-List-Request@AIC.NRL.NAVY.MIL,EP-List-Request@magenta.me.fau.edu) and newsgroups(e.g. comp.ai.genetic) allow for keeping track of currentevents and discussions in the �eld.In the next section we describe the application domainof evolutionary algorithms and contrast them with the tra-ditional approach of mathematical programming.II. Optimization, Evolutionary Computation, andMathematical ProgrammingIn general, an optimization problem requires �nding asetting ~x 2M of free parameters of the system under con-sideration, such that a certain quality criterion f :M ! IR(typically called the objective function) is maximized (or,equivalently, minimized):f(~x)! max : (1)The objective function might be given by real-world sys-tems of arbitrary complexity. The solution to the globaloptimization problem (1) requires �nding a vector ~x� suchthat 8~x 2 M : f(~x) � f(~x�) = f�. Characteristics suchas multimodality , i.e., the existence of several local maxima~x0 with9" > 0 : 8~x 2M : �(~x; ~x0) < " ) f(~x) � f(~x0) (2)(where � denotes a distance measure on M ), constraints,i.e., restrictions on the set M by functions gj : M ! IRsuch that the set of feasible solutions F � M is only asubset of the domain of the variables:F = f~x 2M j gj(~x) � 0 8jg ; (3)and other factors, such as large dimensionality, strong non-linearities, non-di�erentiability and noisy and time-varying

objective functions, frequently lead to di�cult if not un-solvable optimization tasks (see [83, p. 6]). But even inthe latter case, the identi�cation of an improvement of thecurrently known best solution through optimization is oftenalready a big success for practical problems, and in manycases evolutionary algorithms provide an e�cient and ef-fective method to achieve this.Optimization problems occur in many technical, eco-nomic, and scienti�c projects, like cost-, time- andrisk-minimization or quality-, pro�t- and e�ciency-maximization [10], [22] (see also [80, part G]). Thus, thedevelopment of general strategies is of great value.In real-world situations the objective function f and theconstraints gj are often not analytically treatable or areeven not given in closed form, e.g., if the function de�nitionis based on a simulation model [84], [85].The traditional approach in such cases is to develop aformal model that resembles the original functions closeenough but is solvable by means of traditional mathem-atical methods such as linear and nonlinear programming.This approach most often requires simpli�cations of the ori-ginal problem formulation. Thus, an important aspect ofmathematical programming lies in the design of the formalmodel.No doubt, this approach has proven to be very successfulin many applications but has several drawbacks which mo-tivated the search for novel approaches, where evolutionarycomputation is one of the most promising directions. Themost severe problem is that, due to oversimpli�cations, thecomputed solutions do not solve the original problem. Suchproblems, e.g. in the case of simulation models, are thenoften considered unsolvable.The fundamental di�erence in the evolutionary compu-tation approach is to adapt the method to the problem athand. In our opinion, evolutionary algorithms should notbe considered as o�-the-peg, ready-to-use algorithms butrather as a general concept which can be tailored to most ofthe real-world applications that often are beyond solutionby means of traditional methods. Once a successful EC-framework has been developed it can be incrementally ad-apted to the problem under consideration [86], to changesof the requirements of the project, to modi�cations of themodel and to the change of hardware resources.III. The Structure of anEvolutionary AlgorithmEvolutionary algorithms mimic the process of naturalevolution, the driving process for the emergence of complexand well adapted organic structures. To put it succinctlyand with strong simpli�cations, evolution is the result ofthe interplay between the creation of new genetic inform-ation and its evaluation and selection. A single individualof a population is a�ected by other individuals of the pop-ulation (e.g., by food competition, predators, and mating),as well as by the environment (e.g., by food supply andclimate). The better an individual performs under theseconditions the greater is the chance for the individual tolive for a longer while and generate o�spring, which in turn



B�ACK, HAMMEL, AND SCHWEFEL: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE 3inherit the (disturbed) parental genetic information. Overthe course of evolution, this leads to a penetration of thepopulation with the genetic information of individuals ofabove-average �tness. The non-deterministic nature of re-production leads to a permanent production of novel ge-netic information and therefore to the creation of di�eringo�spring (see [87], [79], [5] for more details).This neo-Darwinian model of organic evolution is reec-ted by the structure of the general evolutionary algorithm:Algorithm 1:t := 0;initialize P (t);evaluate P (t);while not terminate doP 0(t) := variation(P (t));evaluate(P 0(t));P (t+ 1) := select(P 0(t) [Q);t := t+ 1;odIn this algorithm, P (t) denotes a population of � indi-viduals at generation t. Q is a special set of individualsthat might be considered for selection, e.g., Q = P (t) (butQ = ; is possible as well). An o�spring population P 0(t)of size � is generated by means of variation operators suchas recombination and / or mutation (but others such asinversion [11, pp. 106{109] are also possible) from the pop-ulation P (t). The o�spring individuals are then evaluatedby calculating the objective function values f(~xk) for eachof the solutions ~xk represented by individuals in P 0(t), andselection based on the �tness values is performed to drivethe process toward better solutions. It should be notedthat � = 1 is possible, thus including so-called steady-state selection schemes [88], [89] if used in combinationwith Q = P (t). Furthermore, by choosing 1 � � � �an arbitray value of the generation gap [90] is adjustable,such that the transition between strictly generational andsteady-state variants of the algorithm is also taken into ac-count by the formulation o�ered here. It should also benoted that � > �, i.e., a reproduction surplus, is the nor-mal case in nature.IV. Designing an Evolutionary AlgorithmAs mentioned, at least three variants of evolutionaryalgorithms have to be distinguished: genetic algorithms,evolutionary programming and evolution strategies. Fromthese (\canonical") approaches innumerable variants havebeen derived. Their main di�erences lie in:� The representation of individuals.� The design of the variation operators (mutationand/or recombination).� The selection / reproduction mechanism.In most real-world applications the search space isde�ned by a set of objects, e.g. processing units, pumps,heaters and coolers of a chemical plant, each of which havedi�erent parameters such as energy consumption, capacity,etc. Those parameters which are subject to optimizationconstitute the so-called phenotype space. On the other

hand the genetic operators often work on abstract mathem-atical objects like binary strings, the genotype space. Ob-viously, a mapping or coding function between the pheno-type and genotype space is required. Figure 1 sketches thesituation (see also [5, p. 38-43]).
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representation Fig. 1. The relation of genotype space and phenotype space afterFogel [5, p. 39].In general, two di�erent approaches can be followed. The�rst is to choose one of the standard algorithms and todesign a decoding function according to the requirementsof the algorithm. The second suggests designing the rep-resentation as close as possible to the characteristics of thephenotype space almost avoiding the need for a decodingfunction.Many empirical and theoretical results are available forthe standard instances of evolutionary algorithms, whichis clearly an important advantage of the �rst approach, es-pecially with regard to the reuse and parameter setting ofoperators. On the other hand, a complex coding functionmay introduce additional nonlinearities and other math-ematical di�culties which can hinder the search processsubstantially [79, p. 221-227][82, p. 97].There is no general answer to the question of which one ofthe two approaches mentioned above to follow for a speci�cproject, but many practical applications have shown thatthe best solutions could be found after imposing substantialmodi�cations to the standard algorithms [86]. We thinkthat most practitioners prefer natural, problem-related rep-resentations. Michalewicz [82, p. 4] o�ers:\It seems that a `natural' representation of apotential solution for a given problem plus a fam-ily of applicable `genetic' operators might be quiteuseful in the approximation of solutions of manyproblems, and this nature-modeled approach . . .is a promising direction for problem solving ingeneral."Furthermore, many researchers also use hybrid al-gorithms, i.e. combinations of evolutionary search heurist-ics and traditional as well as knowledge-based search tech-



4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, MAY 1997niques [22, p. 56] [91], [92].It should be emphasized that all this becomes possiblebecause the requirements for the application of evolution-ary heuristics are so modest compared to most other searchtechniques. In our opinion, this is one of the most import-ant strengths of the evolutionary approach and one of thereasons for the popularity evolutionary computation hasgained throughout the last decade.A. The RepresentationSurprisingly, despite the fact that the representationproblem, i.e., the choice or design of a well-suited geneticrepresentation for the problem under consideration, hasbeen described by many researchers [82], [93], [94] onlyfew publications explicitly deal with this subject exceptfor specialized research directions such as genetic program-ming [31], [95], [96] and the evolution of neural networks[97], [98].Canonical genetic algorithms use a binary representa-tion of individuals as �xed-length strings over the alphabetf0; 1g [11], such that they are well suited to handle pseudo-boolean optimization problems of the formf : f0; 1g` ! IR : (4)Sticking to the binary representation, genetic algorithmsoften enforce the utilization of encoding and decoding func-tions h : M ! f0; 1g` and h0 : f0; 1g` !M that facilitatemapping solutions ~x 2 M to binary strings h(~x) 2 f0; 1g`and vice versa, which sometimes requires rather complexmappings h and h0. In case of continuous parameter optim-ization problems, for instance, genetic algorithms typicallyrepresent a real-valued vector ~x 2 IRn by a binary string~y 2 f0; 1g` as follows: the binary string is logically dividedinto n segments of equal length `0 (i.e., ` = n � `0), each seg-ment is decoded to yield the corresponding integer value,and the integer value is in turn linearly mapped to the in-terval [ui; vi] � IR (corresponding with the ith segment ofthe binary string) of real values [18].The strong preference for using binary representations ofsolutions in genetic algorithms is derived from schema the-ory [11], which analyzes genetic algorithms in terms of theirexpected schema sampling behavior under the assumptionthat mutation and recombination are detrimental. Theterm schema denotes a similarity template that repres-ents a subset of f0; 1g`, and the schema theorem of ge-netic algorithms o�ers that the canonical genetic algorithmprovides a near-optimal sampling strategy (in terms of min-imizing expected losses) for schemata by increasing thenumber of well-performing, short (i.e., with small distancebetween the leftmost and rightmost de�ned position), andlow-order (i.e., with few speci�ed bits) schemata (so-calledbuilding blocks) over subsequent generations (see [18] fora more detailed introduction to the schema theorem). Thefundamental argument to justify the strong emphasis onbinary alphabets is derived from the fact that the num-ber of schemata is maximized for a given �nite numberof search points under a binary alphabet [18, pp. 40{41].Consequently, the schema theory presently seems to favor

binary representations of solutions (but see [99] for an al-ternative view, and [100] for a transfer of schema theory toS-expression representations used in genetic programming).Practical experience, as well as some theoretical hints re-garding the binary encoding of continuous object variables[101], [102], [103], [104], [105], however, indicate that thebinary representation has some disadvantages. The codingfunction might introduce an additional multimodality, thusmaking the combined objective function f = f 0 �h0 (wheref 0 : M ! IR) more complex than the original problem f 0was. In fact, the schema theory relies on approximations[11, pp. 78{83] and the optimization criterion to minim-ize the overall expected loss (corresponding to the sumof all �tness values of all individuals ever sampled duringthe evolution) rather than the criterion to maximize thebest �tness value ever found [15]. In concluding this briefexcursion into the theory of canonical genetic algorithms,we would like to emphasize the recent work by Vose [106],[107], [108], [109] and others [110], [111] on modeling ge-netic algorithms by Markov chain theory. This approachhas already provided a remarkable insight into their conver-gence properties and dynamical behavior and led to the de-velopment of so-called executable models that facilitate thedirect simulation of genetic algorithms by Markov chainsfor problems of su�ciently small dimension [112], [113].In contrast to genetic algorithms, the representation inevolution strategies and evolutionary programming is dir-ectly based on real-valued vectors when dealing with con-tinuous parameter optimization problems of the generalform f :M � IRn ! IR : (5)Both methods have originally been developed and are alsoused, however, for combinatorial optimization problems[43], [42], [55]. Moreover, since many real-world prob-lems have complex search spaces which cannot be mapped\canonically" to one of the representations mentioned sofar, lots of strategy variants, e.g. for integer [114], mixed-integer [115], structure optimization [116], [117] and others[82, chapter 10], have been introduced in the literature, butexhaustive comparative studies especially for non-standardrepresentations are still missing. The actual developmentof the �eld is characterized by a progressing integration ofthe di�erent approaches, such that the utilization of thecommon labels \genetic algorithm," \evolution strategy,"and \evolutionary programming"might be sometimes evenmisleading.B. MutationOf course, the design of variation operators has to obeythe mathematical properties of the chosen representation,but there are still many degrees of freedom.Mutation in genetic algorithms was introduced as a ded-icated \background operator" of small importance (see[11], pp. 109{111). Mutation works by inverting bits withvery small probability such as pm = 0:001 [13], pm 2[0:005; 0:01] [118], or pm = 1=` [119], [120]. Recent stud-ies have impressively clari�ed, however, that much largermutation rates, decreasing over the course of evolution, are



B�ACK, HAMMEL, AND SCHWEFEL: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE 5often helpful with respect to the convergence reliability andvelocity of a genetic algorithm [101], [121], and that evenself-adaptive mutation rates are e�ective for pseudobooleanproblems [122], [123], [124].Originally, mutation in evolutionary programming wasimplemented as a random change (or multiple changes) ofthe description of the �nite state machines according to�ve di�erent modi�cations: change of an output symbol,change of a state transition, addition of a state, deletion ofa state, or change of the initial state. The mutations weretypically performed with uniform probability, and the num-ber of mutations for a single o�spring was either �xed oralso chosen according to a probability distribution. Cur-rently, the most frequently used mutation scheme as ap-plied to real-valued representations is very similar to thatof evolution strategies.In evolution strategies, the individuals consist of objectvariables xi 2 IR (1 � i � n) and so-called strategy para-meters which are discussed in the next section. Mutationis then performed independently on each vector element byadding a normally distributed random value with expect-ation zero and standard deviation � (the notation Ni(�; �)indicates that the random variable is sampled anew for eachvalue of the index i):x0i = xi + � �Ni(0; 1) (6)This raises the question of how to control the so-calledstep size � of equation (6), which is discussed in the nextsection.C. Self-adaptationIn [125] Schwefel introduced an endogenous mechanismfor step size control by incorporating these parameters intothe representation in order to facilitate the evolutionaryself-adaptation of these parameters by applying evolution-ary operators to the object variables and the strategy para-meters for mutation at the same time, i.e., searching thespace of solutions and strategy parameters simultaneously.This way, a suitable adjustment and diversity of muta-tion parameters should be provided under arbitrary cir-cumstances.More formally, an individual ~a = (~x; ~�) consists of objectvariables ~x 2 IRn and strategy parameters ~� 2 IRn+. Themutation operator works by adding a normally distributedrandom vector ~z 2 IRn with zi � N (0; �2i ) (i.e., the com-ponents of ~z are normally distributed with expectation zeroand variance �2i ).The e�ect of mutation is now de�ned as:�0i = �i � exp(� 0 �N (0; 1) + � �Ni(0; 1)) (7)x0i = xi + �0i �Ni(0; 1) ; (8)where � 0 / (p2n)�1 and � / (p2pn)�1.This mutation scheme, which is most frequently used inevolution strategies, is schematically depicted (for n = 2) inthe middle of Figure 2. The locations of equal probabilitydensity for descendants are concentric hyperellipses (justone is depicted in Figure 2) around the parental midpoint.

In the case considered here, i.e., up to n variances, butno covariances, the axes of the hyperellipses are congruentwith the coordinate axes.Two modi�cations of this scheme have to be mentioned:a simpli�ed version uses just one step size parameter forall of the object variables. In this case the hyperellipsesare reduced to hyperspheres, as depicted in the left partof Figure 2. A more elaborate correlated mutation schemeallows for the rotation of hyperellipses, as shown in theright part of Figure 2. This mechanism aims at a betteradaptation to the topology of the objective function (fordetails see [79]).
x* x* x*Fig. 2. Two-dimensional contour plot of the e�ect of the mutationoperator in case of self-adaptation of a single step-size (left), ofn step-sizes (middle) and of covariances (right). x� denotes theoptimizer. The ellipses represent one line of equal probability toplace an o�spring that is generated by mutation from the par-ent individual located at the center of the ellipses. Five sampleindividuals are shown in each of the plots.The settings for the learning rates � and � 0 are recom-mended as upper bounds for the choice of these parameters(see [126], pp. 167{168), but one should have in mind that,depending on the particular topological characteristics ofthe objective function, the optimal setting of these para-meters might di�er from the values proposed. For the caseof one self-adaptable step size, however, Beyer has recentlytheoretically shown that, for the sphere model (a quad-ratic bowl), the setting �0 / 1=pn is the optimal choice,maximizing the convergence velocity [127].The amount of information included into the individu-als by means of the self-adaptation principle increases fromthe simple case of one standard deviation up to the order ofn2 additional parameters, which reects an enormous de-gree of freedom for the internal models of the individuals.This growing degree of freedom often enhances the globalsearch capabilities of the algorithm at the cost of the ex-pense in computation time, and it also reects a shift fromthe precise adaptation of a few strategy parameters (asin case of one step size) to the exploitation of a large di-versity of strategy parameters. In case of correlated muta-tions, Rudolph [128] has shown that an approximation ofthe Hessian could be computed with an upper bound of� + � = (n2 + 3n + 4)=2 on the population size, but thetypical population sizes � = 15, � = 100, independently ofn, are certainly not su�cient to achieve this.The choice of a logarithmic normal distribution for themodi�cation of the standard deviations �i is presentlyalso acknowledged in evolutionary programming literature[129], [130], [131]. Extensive empirical investigations indic-



6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, MAY 1997ate some advantage of this scheme over the original additiveself-adaptation mechanism introduced independently (butabout 20 years later than in evolution strategies) in evolu-tionary programming [132] where�0i = �i � (1 + � �N (0; 1)) (9)(with a setting of � � 0:2 [131]). Recent preliminary invest-igations indicate, however, that this becomes reversed whennoisy objective functions are considered, where the addit-ive mechanism seems to outperform multiplicative modi�c-ations [133].A study by Gehlhaar and Fogel [134] also indicates thatthe order of the modi�cations of xi and �i has a strongimpact on the e�ectiveness of self-adaptation: It appearsimportant to mutate the standard deviations �rst and touse the mutated standard deviations for the modi�cationof object variables. As the authors point out in that study,the reversed mechanism might su�er from generating o�-spring that have useful object variable vectors but poorstrategy parameter vectors because these have not beenused to determine the position of the o�spring itself.More work needs to be performed, however, to achieveany clear understanding of the general advantages or dis-advantages of one self-adaptation scheme compared to theother mechanisms. A recent theoretical study by Beyerpresents a �rst step towards this goal [127]. In this work,the author shows that the self-adaptation principle worksfor a variety of di�erent probability density functions forthe modi�cation of the step size, i.e., it is an extremely ro-bust mechanism. Moreover, [127] clari�es that equation (9)is obtained from the corresponding equation for evolutionstrategies with one self-adaptable step size by Taylor ex-pansion breaking o� after the linear term, such that bothmethods behave equivalently for small settings of the learn-ing rates � and �, when � = �. This prediction was con-�rmed perfectly by an experiment reported in [135].Apart from the early work by Scha�er and Morishima[37], self-adaptation has only recently been introduced ingenetic algorithms as a mechanism for evolving the para-meters of variation operators. In [37], punctuated crossoverwas o�ered as a method for adapting both the number andposition of crossover points for a multi-point crossover op-erator in canonical genetic algorithms. Although this ap-proach seemed promising, the operator has not been usedwidely. A simpler approach towards self-adapting the cros-sover operator was presented by Spears [136], who allowedindividuals to choose between 2-point crossover and uni-form crossover by means of a self-adaptable operator choicebit attached to the representation of individuals. The res-ults indicated that, in case of crossover operators, ratherthan adapting to the single best operator for a given prob-lem, the mechanism seems to bene�t from the existing di-versity of operators available for crossover.Concerning the mutation operator in genetic algorithms,some e�ort to facilitate self-adaptation of the mutation ratehas been presented by Smith and Fogarty [123], based onearlier work by B�ack [137]. These approaches incorporatethe mutation rate pm 2 [0; 1] into the representation of

individuals and allow for mutation and recombination ofthe mutation rate in the same way as the vector of binaryvariables is evolved. The results reported in [123] demon-strate that the mechanism yields a signi�cant improvementin performance of a canonical genetic algorithm on the testfunctions used.D. RecombinationThe variation operators of canonical genetic algorithms,mutation and recombination, are typically applied witha strong emphasis on recombination. The standard al-gorithm performs a so-called one-point crossover, wheretwo individuals are chosen randomly from the population,a position in the bitstrings is randomly determined as thecrossover point, and an o�spring is generated by concat-enating the left substring of one parent and the right sub-string of the other parent. Numerous extensions of this op-erator, such as increasing the number of crossover points[138], uniform crossover (each bit is chosen randomly fromthe corresponding parental bits) [139], and others havebeen proposed, but similar to evolution strategies no gen-erally useful recipe for the choice of a recombination op-erator can be given. The theoretical analysis of recom-bination is still to a large extent an open problem. Re-cent work on multi-parent recombination, where more thantwo individuals participate in generating a single o�springindividual, clari�es that this generalization of recombin-ation might yield a performance improvement in manyapplication examples [140], [141], [142]. Unlike evolutionstrategies, where it is either utilized for the creation ofall members of the intermediate population (the defaultcase) or not at all, the recombination operator in geneticalgorithms is typically applied with a certain probabilitypc, and commonly proposed settings of the crossover prob-ability are pc = 0:6 [13] and pc 2 [0:75; 0:95] [118].In evolution strategies recombination is incorporatedinto the main loop of the algorithm as the �rst operator(see algorithm 1) and generates a new intermediate popu-lation of � individuals by �-fold application to the parentpopulation, creating one individual per application from %(1 � % � �) individuals. Normally, % = 2 or % = � (so-called global recombination) are chosen. The recombina-tion types for object variables and strategy parameters inevolution strategies often di�er from each other, and typ-ical examples are discrete recombination (random choices ofsingle variables from parents, comparable to uniform cros-sover in genetic algorithms) and intermediary recombina-tion (often arithmetic averaging, but other variants such asgeometrical crossover [143] are also possible). For furtherdetails on these operators, see [79].The advantages or disadvantages of recombination for aparticular objective function can hardly be assessed in ad-vance, and certainly no generally useful setting of recom-bination operators (such as the discrete recombination ofobject variables and global intermediary of strategy para-meters as we have claimed in [79], pp. 82{83) exists. Re-cently, Kursawe has impressively demonstrated that, usingan inappropriate setting of the recombination operator, the



B�ACK, HAMMEL, AND SCHWEFEL: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE 7(15,100)-evolution strategy with n self-adaptable variancesmight even diverge on a sphere model for n = 100 [144].Kursawe shows that the appropriate choice of the recom-bination operator not only depends on the objective func-tion topology, but also on the dimension of the objectivefunction and the number of strategy parameters incorpor-ated into the individuals. Only recently, Rechenberg [46]and Beyer [142] presented �rst results concerning the con-vergence velocity analysis of global recombination in caseof the sphere model. These results clarify that, for usingone (rather than n as in Kursawe's experiment) optimallychosen standard deviation �, a �-fold speedup is achievedby both recombination variants. Beyer's interpretation ofthe results, however, is somewhat surprising because it doesnot put down the success of this operator on the existenceof building blocks which are usefully rearranged in an o�-spring individual, but rather explains it as a genetic repairof the harmful parts of mutation.Concerning evolutionary programming, a rash statementbased on the common understanding of the contendingstructures as individuals would be to claim that evolu-tionary programming simply does not use recombination.Rather than focusing on the mechanism of sexual recom-bination, however, Fogel [145] argues that one may examineand simulate its functional e�ect and correspondingly in-terpret a string of symbols as a reproducing population orspecies, thus making recombination a non-issue (refer to[145] for philosophical reasons underlining this choice).E. SelectionUnlike the variation operators which work on the geneticrepresentation, the selection operator is based solely on the�tness values of the individuals.In genetic algorithms selection is typically implemen-ted as a probabilistic operator, using the relative �tnessp(~ai) = f(~ai)=P�j=1 f(~aj) to determine the selection prob-ability of an individual ~ai (proportional selection). Thismethod requires positive �tness values and a maximizationtask, so that scaling functions are often utilized to trans-form the �tness values accordingly (see e.g. [18], pp. 124).Rather than using absolute �tness values, rank-based selec-tion methods utilize the indices of individuals when orderedaccording to �tness values to calculate the correspondingselection probabilities. Linear [146] as well as nonlinear [82,p. 60] mappings have been proposed for this type of sele-tion operator. Tournament selection [147] works by takinga random uniform sample of a certain size q > 1 from thepopulation, selecting the best of these q individuals to sur-vive for the next generation, and repeating the process untilthe new population is �lled. This method gains increasingpopularity because it is easy to implement, computation-ally e�cient, and allows for �ne-tuning the selective pres-sure by increasing or decreasing the tournament size q. Foran overview of selection methods and a characterization oftheir selective pressure in terms of numerical measures, thereader should consult [148], [149]. While most of these se-lection operators have been introduced in the frameworkof a generational genetic algorithm, they can also be used

in combination with the steady-state and generation gapmethods outlined in section III.The (�; �)-evolution-strategy uses a deterministic selec-tion scheme. The notation (�; �) indicates that � par-ents create � > � o�spring by means of recombinationand mutation, and the best � o�spring individuals are de-terministically selected to replace the parents (in this case,Q = ; in algorithm 1). Notice that this mechanism al-lows that the best member of the population at genera-tion t+ 1 might perform worse than the best individual atgeneration t, i.e., the method is not elitist , thus allowingthe strategy to accept temporary deteriorations that mighthelp to leave the region of attraction of a local optimumandreach a better optimum. In contrast, the (� + �)-strategyselects the � survivors from the union of parents and o�-spring, such that a monotonic course of evolution is guaran-teed (Q = P (t) in algorithm 1). Due to recommendationsby Schwefel, however, the (�; �)-strategy is preferred overthe (�+�)-strategy, although recent experimental �ndingsseem to indicate that the latter performs as well as or bet-ter than the (�; �)-strategy in many practical cases [134].It should also be noted that both schemes can be inter-preted as instances of the general (�; �; �)-strategy, where1 � � �1 denotes the maximumlife span (in generations)of an individual. For � = 1, the selection method yieldsthe (�; �)-strategy, while it turns into the (�+ �)-strategyfor � =1 [54].A minor di�erence between evolutionary programmingand evolution strategies consists in the choice of a prob-abilistic variant of (� + �)-selection in evolutionary pro-gramming, where each solution out of o�spring and parentindividuals is evaluated against q > 1 (typically, q � 10)other randomly chosen solutions from the union of parentand o�spring individuals (Q = P (t) in algorithm 1). Foreach comparison, a \win" is assigned if an individual's scoreis better or equal to that of its opponent, and the � indi-viduals with the greatest number of wins are retained to beparents of the next generation. As shown in [79, pp. 96{99],this selection method is a probabilistic version of (� + �)-selection which becomes more and more deterministic asthe number q of competitors is increased. Whether or nota probabilistic selection scheme should be preferable overa deterministic scheme remains an open question.Evolutionary algorithms can easily be ported to par-allel computer architectures [150], [151]. Since the indi-viduals can be modi�ed and, most importantly, evaluatedindependently of each other, we should expect a speed-up scaling linear with the number of processing units pas long as p does not exceed the population size �. Butselection operates on the whole population so this oper-ator eventually slows down the overall performance, espe-cially for massively parallel architectures where p � �.This observation motivated the development of parallel al-gorithms using local selection within subpopulations like inmigration models [152], [53] or within small neighborhoodsof spatially arranged individuals like in di�usion models[153], [154], [155], [156] (also called cellular evolutionary al-gorithms [157], [158], [159]). It can be observed that local



8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, MAY 1997selection techniques not only yield a considerable speed-upon parallel architectures but also improve the robustnessof the algorithms [160], [116], [46].F. Other Evolutionary Algorithm VariantsAlthough it is impossible to present a thorough overviewof all variants of evolutionary computation here, it seemsappropriate to explicitly mention order-based genetic al-gorithms [18], [82], classi�er systems [161], [162], and ge-netic programming [163], [81], [31], [70] as branches of ge-netic algorithms that have developed into their own direc-tions of research and application. The following overviewis restricted to a brief statement of their domain of applic-ation and some literature references:� Order-based genetic algorithms were proposed forsearching the space of permutations � : f1; : : : ; ng !f1; : : : ; ng directly rather than using complex decodingfunctions for mapping binary strings to permutationsand preserving feasible permutations under mutationand crossover (as proposed in [164]). They applyspecialized recombination (such as order crossover orpartially matched crossover) and mutation operators(such as random exchanges of two elements of thepermutation) which preserve permutations (see [82,chapter 10] for an overview).� Classi�er systems use an evolutionary algorithm tosearch the space of production rules (often encoded bystrings over a ternary alphabet, but also sometimesusing symbolic rules [165]) of a learning system capableof induction and generalization [18, chapter 6], [166],[161], [167]. Typically, the Michigan approach andthe Pittsburgh approach are distinguished according towhether an individual corresponds with a single rule ofthe rule-based system (Michigan) or with a completerule base (Pittsburgh).� Genetic programming applies evolutionary search tothe space of tree structures which may be interpretedas computer programs in a language suitable to modi-�cation by mutation and recombination. The domin-ant approach to genetic programming uses (a subsetof) LISP programs (S-expressions) as genotype space[163], [31], but other programming languages includingmachine code are also used (see e.g. [168], [81], [70]).Throughout this section we made the attempt to com-pare the constituents of evolutionary algorithms in terms oftheir canonical forms. But in practice the borders betweenthese approaches are much more uid. We can observea steady evolution in this �eld by modifying (mutating),(re)combining, and validating (evaluating) the current ap-proaches, permanently improving the population of evolu-tionary algorithms.V. ApplicationsPractical application problems in �elds as diverse as en-gineering, natural sciences, economics, and business (tomention only some of the most prominent representatives)often exhibit a number of characteristics that prevent thestraightforward application of standard instances of evol-

utionary algorithms. Typical problems encountered whendeveloping an evolutionary algorithm for a practical applic-ation include the following:1. A suitable representation and corresponding operat-ors need to be developed when the canonical repres-entation is di�erent from binary strings or real-valuedvectors.2. Various constraints need to be taken into accountby means of a suitable method (ranging from penaltyfunctions to repair algorithms, constraint-preservingoperators, and decoders; see [169] for an overview).3. Expert knowledge about the problem needs to be in-corporated into the representation and the operatorsin order to guide the search process and increase itsconvergence velocity | without running into the trap,however, to get confused and misled by expert beliefsand habits which might not correspond with the bestsolutions.4. An objective function needs to be developed, often incooperation with experts from the particular applica-tion �eld.5. The parameters of the evolutionary algorithmneed tobe set (or tuned), and the feasibility of the approachneeds to be assessed by comparing the results to ex-pert solutions (used so far) or, if applicable, solutionsobtained by other algorithms.Most of these topics require experience with evolution-ary algorithms as well as cooperation between the applic-ation's expert and the evolutionary algorithm expert, andonly few general results are available to guide the design ofthe algorithm (e.g., representation-independent recombin-ation and mutation operators [170], [171], the requirementthat small changes by mutation occur more frequently thanlarge ones [172], [48], and a quanti�cation of the selectivepressure imposed by the most commonly used selection op-erators [149]). Nevertheless, evolutionary algorithms oftenyield excellent results when applied to complex optimiza-tion problems where other methods are either not applic-able or turn out be unsatisfactory (a variety of examplescan be found in [80]).Important practical problem classes where evolutionaryalgorithms yield solutions of high quality include engin-eering design applications involving continuous paramet-ers (e.g., for the design of aircraft [173], [174], structuralmechanics problems based on two-dimensional shape rep-resentations [175], electromagnetic systems [176], and mo-bile manipulators [177], [178]), discrete parameters (e.g.,for multiplierless digital �lter optimization [179], the designof a linear collider [180], or nuclear reactor fuel arrange-ment optimization [181]), and mixed-integer representa-tions (e.g., for the design of survivable networks [182] andoptical multilayer systems [115]). Combinatorial optimiz-ation problems with a straightforward binary representa-tion of solutions have also been treated successfully withcanonical genetic algorithms and their derivatives (e.g., setpartitioning and its application to airline crew scheduling[183], knapsack problems [184], [185], and others [186]).Relevant applications to combinatorial problems utilizing



B�ACK, HAMMEL, AND SCHWEFEL: EVOLUTIONARY COMPUTATION: COMMENTS ON THE HISTORY AND CURRENT STATE 9a permutation representation of solutions are also foundin the domains of scheduling (e.g., production scheduling[187] and related problems [188]), routing (e.g. of vehicles[189] or telephone calls [190]), and packing (e.g. of palletson a truck [191]).The existing range of successful applications is extremelybroad, thus by far preventing an exhaustive overview |the list of �elds and example applications should be takenas a hint for further reading rather than a representat-ive overview. Some of the most challenging applicationswith a large pro�t potential are found in the �eld of bio-chemical drug design, where evolutionary algorithms havegained remarkable interest and success in the past few yearsas an optimization procedure to support protein engineer-ing [134], [192], [193], [194]. Also �nance and businessprovide a promising �eld of pro�table applications [195],but of course few details are published about this work(see e.g. [196]). In fact, the relation between evolutionaryalgorithms and economics has found increasing interest inthe past few years and is now widely seen as a promisingmodeling approach for agents acting in a complex, uncer-tain situation [197].In concluding this section, we refer to the research �eld ofcomputational intelligence (see section VI for details) andthe applications of evolutionary computation to the othermain �elds of computational intelligence, namely fuzzy lo-gic and neural networks. An overview of the utilization ofgenetic algorithms to train and construct neural networksis given in [198], and of course other variants of evolution-ary algorithms can also be used for this task (see e.g. [199]for an evolutionary programming, [200] for an evolutionstrategy example, and [97], [201] for genetic algorithm ex-amples). Similarly, both the rule base and membershipfunctions of fuzzy systems can be optimized by evolution-ary algorithms, typically yielding improvements of the per-formance of the fuzzy system (e.g. [202], [203], [204], [205],[206]). The interaction of computational intelligence tech-niques and hybridization with other methods such as expertsystems and local optimization techniques certainly opensa new direction of research towards hybrid systems thatexhibit problem solving capabilities approaching those ofnaturally intelligent systems in the future. Evolutionaryalgorithms, seen as a technique to evolve machine intelli-gence (see [5]), are one of the mandatory prerequisites forachieving this goal by means of algorithmic principles thatare already working quite successfully in natural evolution[207]. VI. Summary and OutlookTo summarize, the current state of evolutionary compu-tation research can be characterized as follows:� The basic concepts have been developed more than35 years ago, but it took almost two decades for theirpotential to be recognized by a larger audience.� Application-oriented research in evolutionary compu-tation is quite successful and almost dominates the�eld (if we consider the majority of papers). Onlyfew potential application domains could be identi�ed,

if any, where evolutionary algorithms have not beentested so far. In many cases they have been used toproduce good, if not superior, results.� In contrast, the theoretical foundations are to someextent still weak. To say it more pithy: \We knowthat they work, but we do not know why." As a con-sequence, inexperienced users fall into the same trapsrepeatedly, since there are only few rules of thumbfor the design and parameterization of evolutionaryalgorithms.A constructive approach for the synthesis of evolution-ary algorithms, i.e. the choice or design of the repres-entations, variation operators, and selection mechan-isms is needed. But �rst investigations pointing inthe direction of design principles for representation-independent operators are encouraging [171], as well,as is the work on complex non-standard representa-tions such as in the �eld of genetic programming.� Likewise, the �eld still lacks a sound formal charac-terization of the application domain and the limits ofevolutionary computation. This requires future e�ortsin the �eld of complexity theory.There exists a strong relationship between evolutionarycomputation and some other techniques, e.g. fuzzy logicand neural networks, usually regarded as elements of ar-ti�cial intelligence. Following Bezdek [208], their maincommon characteristic lies in their numerical knowledgerepresentation, which di�erentiates them from traditionalsymbolic arti�cial intelligence. Bezdek suggested the termcomputational intelligence for this special branch of arti�-cial intelligence with the following characteristics1:1. Numerical knowledge representation.2. Adaptability.3. Fault tolerance.4. Processing speed comparable to human cognition pro-cesses.5. Error rate optimality (e.g. with respect to a Bayesianestimate of the probability of a certain error on futuredata).We regard computational intelligence as one of the mostinnovative research directions in connection with evolution-ary computation, since we may expect that e�cient, ro-bust, and easy-to-use solutions to complex real-world prob-lems will be developed on the basis of these complementarytechniques. In this �eld, we expect an impetus from theinterdisciplinary cooperation, e.g., techniques for tightlycoupling evolutionary and problem domain heuristics, moreelaborate techniques for self-adaptation, as well as an im-portant step towards machine intelligence.Finally, it should be pointed out that we are far from us-ing all potentially helpful features of evolution within evol-utionary algorithms. Comparing natural evolution and thealgorithms discussed here, we can immediately identify alist of important di�erences, which all might be exploitedto obtain more robust search algorithms and a better un-derstanding of natural evolution:1The term \computational intelligence" was originally coined byCercone and McCalla [209].



10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, MAY 1997� Natural evolution works under dynamically changingenvironmental conditions, with nonstationary optimaand even changing optimization criteria, and the in-dividuals themselves are also changing the structureof the adaptive landscape during adaptation [210]. Inevolutionary algorithms, environmental conditions areoften static, but non-elitist variants are able to dealwith changing environments. It is certainly worth-while, however, to consider a more exible life spanconcept for individuals in evolutionary algorithmsthan just the extremes of a maximum life span of onegeneration (as in a (�; �)-strategy) and of an unlim-ited life span (as in an elitist strategy), by introducingan aging parameter as in the (�; �; �)-strategy [54].� The long-term goal of evolution consists of the main-tenance of evolvability of a population [95], guaranteedby mutation and a preservation of diversity within thepopulation (the termmeliorization describes this moreappropriately than optimization or adaptation does).In contrast, evolutionary algorithms often aim at �nd-ing a precise solution and converging to this solution.� In natural evolution, many criteria need to be metat the same time, while most evolutionary algorithmsare designed for single �tness criteria (see [211] foran overview of the existing attempts to apply evol-utionary algorithms to multiobjective optimization).The concepts of diploidy or polyploidy , combined withdominance and recessivity [50] as well as the idea ofintroducing two sexes with di�erent selection criteriamight be helpful for such problems [212], [213].� Natural evolution neither assumes global knowledge(about all �tness values of all individuals) nor a gen-erational synchronization, while many evolutionary al-gorithms still identify an iteration of the algorithmwith one complete generation update. Fine-grainedasynchronously parallel variants of evolutionary al-gorithms, introducing local neighborhoods for recom-bination and selection and a time-space organizationlike in cellular automata [157], [158], [159] representan attempt to overcome these restrictions.� The co-evolution of species such as in predator-preyinteractions implies that the adaptive landscape of in-dividuals of one species changes as members of theother species make their adaptive moves [214]. Boththe work on competitive �tness evaluation presentedin [215] and the co-evolution of separate populations[216], [217] present successful approaches to incorpor-ate the aspect of mutual interaction of di�erent adapt-ive landscapes into evolutionary algorithms. As clari-�ed by the work of Kau�man [214], however, we arejust beginning to explore the dynamics of co-evolvingsystems and to exploit the principle for practical prob-lem solving and evolutionary simulation.� The genotype-phenotype mapping in nature, realizedby the genetic code as well as the epigenetic apparatus(i.e., the biochemical processes facilitating the devel-opment and di�erentiation of an individual's cells intoorgans and systems), has evolved over time, while the
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