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Abstract— Evolutionary computation has started to re-
ceive significant attention during the last decade, although
the origins can be traced back to the late 1950s. This art-
icle surveys the history as well as the current state of this
rapidly growing field. We describe the purpose, the gen-
eral structure and the working principles of different ap-
proaches, including genetic algorithms (GA) (with links to ge-
netic programming (GP) and classifier systems (CS)), evolution
strategies (ES), and evolutionary programming (EP), by analysis
and comparison of their most important constituents (i.e.,
representations, variation operators, reproduction and se-
lection mechanism). Finally, we give a brief overview on the
manifold of application domains, although this necessarily
must remain incomplete.

Keywords— Genetic algorithms, evolutionary program-
ming, evolution strategies, genetic programming, classifier
systems, evolutionary computation.

I. EvOLUTIONARY COMPUTATION:
RooTs AND PURPOSE

HIS first issue of the IEEE Transactions on Evolution-

ary Computation marks an important point in the his-
tory of the rapidly growing field of evolutionary computa-
tion, and we are glad to participate in this event. In pre-
paration for this summary, we strove to provide a compre-
hensive review of both the history and the state-of-the-art
in the field for both the novice and the expert in evolution-
ary computation. The number of excellent publications
currently available in this field required strong selections
of the material to be presented here. These selections are
necessarily subjective and we regret any significant omis-
sions.

Although the origins of evolutionary computation can be
traced back to the late 1950s (see e.g. the influencing works
of Bremermann [1], Friedberg [2], [3], Box [4] and oth-
ers), the field remained relatively unknown to the broader
scientific community for almost three decades. This was
largely due to the lack of available powerful computer plat-
forms at that time, but also due to some methodological
shortcomings of those early approaches (see e.g. Fogel [5,
p. 103)).

The fundamental work of Holland [6], Rechenberg [7],
Schwefel [8] and Fogel [9] served to slowly change this pic-
ture during the 1970s and we currently observe a remark-
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able and steady (still exponential) increase in the number
of publications (see e.g. the bibliography [10]) and confer-
ences 1n this field, a clear demonstration of the scientific as
well as economic relevance of this subject matter.

But what are the benefits of evolutionary computation
(compared to other approaches) which may justify the ef-
fort invested in this area? We argue that the most sig-
nificant advantage of using evolutionary search lies in the
gain of flexibility and adaptability to the task at hand, in
combination with robust performance (although this de-
pends on the problem class) and global search character-
istics. In fact, evolutionary computation should be under-
stood as a general adaptable concept for problem solving,
especially well suited for solving difficult optimization prob-
lems, rather than a collection of related and ready-to-use
algorithms.

The majority of current implementations of evolutionary
algorithms descend from three strongly related but inde-
pendently developed approaches: genetic algorithms, evol-
uttonary programming, and evolution strategies.

Genetic algorithms, introduced by Holland [6], [11], [12]
and subsequently studied by De Jong [13], [14], [15], [16],
Goldberg [17], [18], [19], [20], [21], and others such as Davis
[22], Eshelman [23], [24], Forrest [25], Grefenstette [26],
[27], [28], [29], Koza [30], [31], Mitchell [32], Riolo [33], [34],
Schaffer [35], [36], [37], to name only a few, have been ori-
ginally proposed as a general model of adaptive processes,
but by far the largest application of the techniques is in
the domain of optimization [15], [16]. Since this is true for
all three of the main-stream algorithms presented in this
paper we will discuss their capabilities and performance
mainly as optimization strategies.

Evolutionary programming, introduced by Fogel [9], [38]
and extended in Burgin [39], [40], Atmar [41], Fogel [42],
[43], [44], and others, was originally offered as an attempt
to create artificial intelligence. The approach was to evolve
finite state machines (FSM) to predict events on the basis
of former observations. An FSM is an abstract machine
which transforms a sequence of input symbols into a se-
quence of output symbols. The transformation depends on
a finite set of states and a finite set of state transition rules.
The performance of an FSM with respect to its environ-
ment might then be measured on the bases of the machine’s
prediction capability, i.e., by comparing each output sym-
bol with the next input symbol and measuring the worth
of a prediction by some payoff function.

Evolution strategies as developed by Rechenberg [45],
[46] and Schwefel [47], [48] and extended by Herdy [49],
Kursawe [50], Ostermeier [51], [52], Rudolph [53], Schwe-
fel [54], and others, were initially designed with the goal



of solving difficult discrete and continuous, mainly experi-
mental [55], parameter optimization problems.

During the 1980s, advances in computer performance en-
abled the application of evolutionary algorithms to solve
difficult real-world optimization problems, and the solu-
tions received a broader audience. In addition, begin-
ning in 1985, international conferences on the techniques
were offered ([56], [57], [58], [59], [60], [61] mainly focus-
ing on genetic algorithms, [62], [63], [64], [65], [66] with
an early emphasis on evolutionary programming, [67], [68],
[69] as small workshops on theoretical aspects of genetic
algorithms, [70] as a genetic programming conference, [71],
[72], [73], [74] with the general theme of problem solving
methods gleaned from nature, and [75], [76], [77], [78] with
the general topic of evolutionary computation). But some-
what surprisingly, the researchers in the various disciplines
of evolutionary computation remained isolated from each
other until the meetings in the early 1990s [59], [63], [71].

The remainder of this paper is intended as an overview
of the current state of the field. We cannot claim that
this overview is close to complete. As good starting points
for further studies we recommend [79], [80], [22], [5], [18],
[81], [31], [82], [32], [48]. In addition moderated mail-
ing lists (e.g. GA-List-Request@ATC.NRL.NAVY .MIL,
EP-List-Request@magenta.me.fau.edu) and newsgroups
(e.g. comp.ai.genetic) allow for keeping track of current
events and discussions in the field.

In the next section we describe the application domain
of evolutionary algorithms and contrast them with the tra-
ditional approach of mathematical programming.

IT. OPTIMIZATION, EVOLUTIONARY COMPUTATION, AND
MATHEMATICAL PROGRAMMING

In general, an optimization problem requires finding a
setting ¥ € M of free parameters of the system under con-
sideration, such that a certain quality criterion f: M — IR
(typically called the objective function) is maximized (or,
equivalently, minimized):

(1)

The objective function might be given by real-world sys-
tems of arbitrary complexity. The solution to the global
optimization problem (1) requires finding a vector #* such
that Vi € M . f(Z) < f(&*) = f*. Characteristics such
as multimodality, 1.e., the existence of several local mazima
7' with

f(Z) — max

Je>0:VZeM : p(@,@)<e = f(&) < f(&) (2
(where p denotes a distance measure on M), constraints,
i.e., restrictions on the set M by functions g; : M — IR
such that the set of feasible solutions F© C M is only a
subset of the domain of the variables:
F={FeM]yg(F) >0V}, (3)
and other factors, such as large dimensionality, strong non-
linearities, non-differentiability and noisy and time-varying

objective functions, frequently lead to difficult if not un-
solvable optimization tasks (see [83, p. 6]). But even in
the latter case, the identification of an improvement of the
currently known best solution through optimization is often
already a big success for practical problems, and in many
cases evolutionary algorithms provide an efficient and ef-
fective method to achieve this.

Optimization problems occur in many technical, eco-
nomic, and scientific projects, like cost-, time- and
risk-minimization or quality-, profit- and efficiency-
maximization [10], [22] (see also [80, part G]). Thus, the
development of general strategies is of great value.

In real-world situations the objective function f and the
constraints g; are often not analytically treatable or are
even not given in closed form, e.g., if the function definition
is based on a simulation model [84], [85].

The traditional approach in such cases is to develop a
formal model that resembles the original functions close
enough but is solvable by means of traditional mathem-
atical methods such as linear and nonlinear programming.
This approach most often requires simplifications of the ori-
ginal problem formulation. Thus, an important aspect of
mathematical programming lies in the design of the formal
model.

No doubt, this approach has proven to be very successful
in many applications but has several drawbacks which mo-
tivated the search for novel approaches, where evolutionary
computation is one of the most promising directions. The
most severe problem is that, due to oversimplifications, the
computed solutions do not solve the original problem. Such
problems, e.g. in the case of simulation models, are then
often considered unsolvable.

The fundamental difference in the evolutionary compu-
tation approach is to adapt the method to the problem at
hand. In our opinion, evolutionary algorithms should not
be considered as off-the-peg, ready-to-use algorithms but
rather as a general concept which can be tailored to most of
the real-world applications that often are beyond solution
by means of traditional methods. Once a successful EC-
framework has been developed it can be incrementally ad-
apted to the problem under consideration [86], to changes
of the requirements of the project, to modifications of the
model and to the change of hardware resources.

III. THE STRUCTURE OF AN
EVOLUTIONARY ALGORITHM

Evolutionary algorithms mimic the process of natural
evolution, the driving process for the emergence of complex
and well adapted organic structures. To put it succinctly
and with strong simplifications, evolution is the result of
the interplay between the creation of new genetic inform-
ation and its evaluation and selection. A single individual
of a population is affected by other individuals of the pop-
ulation (e.g., by food competition, predators, and mating),
as well as by the environment (e.g., by food supply and
climate). The better an individual performs under these
conditions the greater is the chance for the individual to
live for a longer while and generate offspring, which in turn



inherit the (disturbed) parental genetic information. Over
the course of evolution, this leads to a penetration of the
population with the genetic information of individuals of
above-average fitness. The non-deterministic nature of re-
production leads to a permanent production of novel ge-
netic information and therefore to the creation of differing
offspring (see [87], [79], [5] for more details).

This neo-Darwinian model of organic evolution is reflec-
ted by the structure of the general evolutionary algorithm:

Algorithm 1:
t:=0;
initialize P(¢);
evaluate P(1);

while not terminate do
P'(t) := variation(P(t));

evaluate(P'(1));
P(t+ 1) := select(P'(t) UQ);
t=t+1;

od

In this algorithm, P(¢) denotes a population of y indi-
viduals at generation ¢. ) 1s a special set of individuals
that might be considered for selection, e.g., @ = P(¢) (but
@ = 0 is possible as well). An offspring population P’(t)
of size A is generated by means of variation operators such
as recombination and / or mutation (but others such as
inversion [11, pp. 106-109] are also possible) from the pop-
ulation P(t). The offspring individuals are then evaluated
by calculating the objective function values f(Z}) for each
of the solutions &, represented by individuals in P’'(¢), and
selection based on the fitness values is performed to drive
the process toward better solutions. It should be noted
that A = 1 is possible, thus including so-called steady-
state selection schemes [88], [89] if used in combination
with @ = P(t). Furthermore, by choosing 1 < A < p
an arbitray value of the generation gap [90] is adjustable,
such that the transition between strictly generational and
steady-state variants of the algorithm is also taken into ac-
count by the formulation offered here. It should also be
noted that A > p, i.e., a reproduction surplus, is the nor-
mal case in nature.

IV. DESIGNING AN EVOLUTIONARY ALGORITHM

As mentioned, at least three variants of evolutionary
algorithms have to be distinguished: genetic algorithms,
evolutionary programming and evolution strategies. From
these (“canonical”) approaches innumerable variants have
been derived. Their main differences lie in:

o The representation of individuals.

o The design of the variation operators (mutation

and/or recombination).

o The selection / reproduction mechanism.

In most real-world applications the search space is
defined by a set of objects, e.g. processing units, pumps,
heaters and coolers of a chemical plant, each of which have
different parameters such as energy consumption, capacity,
etc. Those parameters which are subject to optimization
constitute the so-called phenotype space. On the other

hand the genetic operators often work on abstract mathem-
atical objects like binary strings, the genotype space. Ob-
viously, a mapping or coding function between the pheno-
type and genotype space is required. Figure 1 sketches the
situation (see also [5, p. 38-43]).

selection
phenotype space,

search space M

P(t+1)

decoding function h’

genetic
operators

genotype space,
genetic
representation

Fig. 1. The relation of genotype space and phenotype space after
Fogel [5, p. 39].

In general, two different approaches can be followed. The
first is to choose one of the standard algorithms and to
design a decoding function according to the requirements
of the algorithm. The second suggests designing the rep-
resentation as close as possible to the characteristics of the
phenotype space almost avoiding the need for a decoding
function.

Many empirical and theoretical results are available for
the standard instances of evolutionary algorithms, which
is clearly an important advantage of the first approach, es-
pecially with regard to the reuse and parameter setting of
operators. On the other hand, a complex coding function
may introduce additional nonlinearities and other math-
ematical difficulties which can hinder the search process
substantially [79, p. 221-227][82, p. 97].

There is no general answer to the question of which one of
the two approaches mentioned above to follow for a specific
project, but many practical applications have shown that
the best solutions could be found after imposing substantial
modifications to the standard algorithms [86]. We think
that most practitioners prefer natural, problem-related rep-
resentations. Michalewicz [82, p. 4] offers:

“It seems that a ‘natural’ representation of a
potential solution for a given problem plus a fam-
ily of applicable ‘genetic’ operators might be quite
useful in the approximation of solutions of many
problems, and this nature-modeled approach ...
is a promising direction for problem solving in
general.”

Furthermore,
gorithms, i.e. combinations of evolutionary search heurist-
ics and traditional as well as knowledge-based search tech-

many researchers also use hybrid al-



niques [22, p. 56] [91], [92].

It should be emphasized that all this becomes possible
because the requirements for the application of evolution-
ary heuristics are so modest compared to most other search
techniques. In our opinion, this is one of the most import-
ant strengths of the evolutionary approach and one of the
reasons for the popularity evolutionary computation has
gained throughout the last decade.

A. The Representation

Surprisingly, despite the fact that the representation
problem, 1.e., the choice or design of a well-suited genetic
representation for the problem under consideration, has
been described by many researchers [82], [93], [94] only
few publications explicitly deal with this subject except
for specialized research directions such as genetic program-
ming [31], [95], [96] and the evolution of neural networks
[97], [98].

Canonical genetic algorithms use a binary representa-
tion of individuals as fixed-length strings over the alphabet
{0, 1} [11], such that they are well suited to handle pseudo-
boolean optimization problems of the form

FALL =~ R (4)

Sticking to the binary representation, genetic algorithms
often enforce the utilization of encoding and decoding func-
tions h : M — {0,1}¢ and A’ : {0,1}* — M that facilitate
mapping solutions £ € M to binary strings h(Z) € {0, 1}*
and vice versa, which sometimes requires rather complex
mappings h and h'. In case of continuous parameter optim-
ization problems, for instance, genetic algorithms typically
represent a real-valued vector ¥ € IR" by a binary string
7 € {0,1}* as follows: the binary string is logically divided
into n segments of equal length ¢ (i.e., £ = n-¢'), each seg-
ment is decoded to yield the corresponding integer value,
and the integer value is in turn linearly mapped to the in-
terval [u;, v;] C IR (corresponding with the ith segment of
the binary string) of real values [18].

The strong preference for using binary representations of
solutions in genetic algorithms is derived from schema the-
ory [11], which analyzes genetic algorithms in terms of their
expected schema sampling behavior under the assumption
that mutation and recombination are detrimental. The
term schema denotes a similarity template that repres-
ents a subset of {0,1}*, and the schema theorem of ge-
netic algorithms offers that the canonical genetic algorithm
provides a near-optimal sampling strategy (in terms of min-
imizing expected losses) for schemata by increasing the
number of well-performing, short (i.e., with small distance
between the leftmost and rightmost defined position), and
low-order (i.e., with few specified bits) schemata (so-called
building blocks) over subsequent generations (see [18] for
a more detailed introduction to the schema theorem). The
fundamental argument to justify the strong emphasis on
binary alphabets is derived from the fact that the num-
ber of schemata is maximized for a given finite number
of search points under a binary alphabet [18, pp. 40-41].
Consequently, the schema theory presently seems to favor

binary representations of solutions (but see [99] for an al-
ternative view, and [100] for a transfer of schema theory to
S-expression representations used in genetic programming).
Practical experience, as well as some theoretical hints re-
garding the binary encoding of continuous object variables
[101], [102], [103], [104], [105], however, indicate that the
binary representation has some disadvantages. The coding
function might introduce an additional multimodality, thus
making the combined objective function f = f' o h’ (where
f'+ M — IR) more complex than the original problem f’
was. In fact, the schema theory relies on approximations
[11, pp. 78-83] and the optimization criterion to minim-
ize the overall expected loss (corresponding to the sum
of all fitness values of all individuals ever sampled during
the evolution) rather than the criterion to maximize the
best fitness value ever found [15]. In concluding this brief
excursion into the theory of canonical genetic algorithms,
we would like to emphasize the recent work by Vose [106],
[107], [108], [109] and others [110], [111] on modeling ge-
netic algorithms by Markov chain theory. This approach
has already provided a remarkable insight into their conver-
gence properties and dynamical behavior and led to the de-
velopment of so-called executable models that facilitate the
direct simulation of genetic algorithms by Markov chains
for problems of sufficiently small dimension [112], [113].
In contrast to genetic algorithms, the representation in
evolution strategies and evolutionary programming is dir-
ectly based on real-valued vectors when dealing with con-
tinuous parameter optimization problems of the general

form
f MCR'— R (5)

Both methods have originally been developed and are also
used, however, for combinatorial optimization problems
[43], [42], [55]. Moreover, since many real-world prob-
lems have complex search spaces which cannot be mapped
“canonically” to one of the representations mentioned so
far, lots of strategy variants, e.g. for integer [114], mixed-
integer [115], structure optimization [116], [117] and others
[82, chapter 10], have been introduced in the literature, but
exhaustive comparative studies especially for non-standard
representations are still missing. The actual development
of the field is characterized by a progressing integration of
the different approaches, such that the utilization of the
common labels “genetic algorithm,” “evolution strategy,”
and “evolutionary programming” might be sometimes even
misleading.

B. Mutation

Of course, the design of variation operators has to obey
the mathematical properties of the chosen representation,
but there are still many degrees of freedom.

Mutation in genetic algorithms was introduced as a ded-
icated “background operator” of small importance (see
[11], pp. 109-111). Mutation works by inverting bits with
very small probability such as p,, = 0.001 [13], p, €
[0.005,0.01] [118], or p,, = 1/€ [119], [120]. Recent stud-
ies have impressively clarified, however, that much larger
mutation rates, decreasing over the course of evolution, are



often helpful with respect to the convergence reliability and
velocity of a genetic algorithm [101], [121], and that even
self-adaptive mutation rates are effective for pseudoboolean
problems [122], [123], [124].

Originally, mutation in evolutionary programming was
implemented as a random change (or multiple changes) of
the description of the finite state machines according to
five different modifications: change of an output symbol,
change of a state transition, addition of a state, deletion of
a state, or change of the initial state. The mutations were
typically performed with uniform probability, and the num-
ber of mutations for a single offspring was either fixed or
also chosen according to a probability distribution. Cur-
rently, the most frequently used mutation scheme as ap-
plied to real-valued representations is very similar to that
of evolution strategies.

In evolution strategies, the individuals consist of object
variables z; € IR (1 < i < n) and so-called strategy para-
meters which are discussed in the next section. Mutation
is then performed independently on each vector element by
adding a normally distributed random value with expect-
ation zero and standard deviation o (the notation N;(-,-)
indicates that the random variable is sampled anew for each
value of the index i):

i = mi+o-NJ(0,1) (6)

This raises the question of how to control the so-called
step size o of equation (6), which is discussed in the next
section.

C. Self-adaptation

In [125] Schwefel introduced an endogenous mechanism
for step size control by incorporating these parameters into
the representation in order to facilitate the evolutionary
self-adaptation of these parameters by applying evolution-
ary operators to the object variables and the strategy para-
meters for mutation at the same time, i.e., searching the
space of solutions and strategy parameters simultaneously.
This way, a suitable adjustment and diversity of muta-
tion parameters should be provided under arbitrary cir-
cumstances.

More formally, an individual @ = (#, &) consists of object
variables ¥ € IR" and strategy parameters ¢ € IR} . The
mutation operator works by adding a normally distributed
random vector Z € IR" with z; ~ N(0,0?) (i.e., the com-
ponents of 7 are normally distributed with expectation zero
and variance o).

The effect of mutation is now defined as:

a,

= o;-exp(7’ - N(0,1)+ 7 N;(0,1)) (7)
= l‘l—l—O';NZ(O,l) , (8)

where 7/ o (v/2n)"! and 7 o (v/2/n) " .

This mutation scheme, which 1s most frequently used in
evolution strategies, is schematically depicted (for n = 2)in
the middle of Figure 2. The locations of equal probability
density for descendants are concentric hyperellipses (just
one is depicted in Figure 2) around the parental midpoint.

3]
(SR

In the case considered here, i.e., up to n variances, but
no covariances, the axes of the hyperellipses are congruent
with the coordinate axes.

Two modifications of this scheme have to be mentioned:
a simplified version uses just one step size parameter for
all of the object variables. In this case the hyperellipses
are reduced to hyperspheres, as depicted in the left part
of Figure 2. A more elaborate correlated mutation scheme
allows for the rotation of hyperellipses, as shown in the
right part of Figure 2. This mechanism aims at a better
adaptation to the topology of the objective function (for
details see [79]).

Fig. 2. Two-dimensional contour plot of the effect of the mutation
operator in case of self-adaptation of a single step-size (left), of
n step-sizes (middle) and of covariances (right). z* denotes the
optimizer. The ellipses represent one line of equal probability to
place an offspring that is generated by mutation from the par-
ent individual located at the center of the ellipses. Five sample
individuals are shown in each of the plots.

The settings for the learning rates 7 and 7’ are recom-
mended as upper bounds for the choice of these parameters
(see [126], pp. 167-168), but one should have in mind that,
depending on the particular topological characteristics of
the objective function, the optimal setting of these para-
meters might differ from the values proposed. For the case
of one self-adaptable step size, however, Beyer has recently
theoretically shown that, for the sphere model (a quad-
ratic bowl), the setting 79 o< 1/4/n is the optimal choice,
maximizing the convergence velocity [127].

The amount of information included into the individu-
als by means of the self-adaptation principle increases from
the simple case of one standard deviation up to the order of
n? additional parameters, which reflects an enormous de-
gree of freedom for the internal models of the individuals.
This growing degree of freedom often enhances the global
search capabilities of the algorithm at the cost of the ex-
pense in computation time, and it also reflects a shift from
the precise adaptation of a few strategy parameters (as
in case of one step size) to the exploitation of a large di-
versity of strategy parameters. In case of correlated muta-
tions, Rudolph [128] has shown that an approximation of
the Hessian could be computed with an upper bound of
p+ X = (n? 4+ 3n+4)/2 on the population size, but the
typical population sizes g = 15, A = 100, independently of
n, are certainly not sufficient to achieve this.

The choice of a logarithmic normal distribution for the
modification of the standard deviations o; is presently
also acknowledged in evolutionary programming literature
[129], [130], [131]. Extensive empirical investigations indic-



ate some advantage of this scheme over the original additive
self-adaptation mechanism introduced independently (but
about 20 years later than in evolution strategies) in evolu-
tionary programming [132] where

ol =i (L+a-N(01)) (9)

(with a setting of o & 0.2 [131]). Recent preliminary invest-
igations indicate, however, that this becomes reversed when
noisy objective functions are considered, where the addit-
ive mechanism seems to outperform multiplicative modific-
ations [133].

A study by Gehlhaar and Fogel [134] also indicates that
the order of the modifications of z; and o; has a strong
impact on the effectiveness of self-adaptation: It appears
important to mutate the standard deviations first and to
use the mutated standard deviations for the modification
of object variables. As the authors point out in that study,
the reversed mechanism might suffer from generating off-
spring that have useful object variable vectors but poor
strategy parameter vectors because these have not been
used to determine the position of the offspring itself.

More work needs to be performed, however, to achieve
any clear understanding of the general advantages or dis-
advantages of one self-adaptation scheme compared to the
other mechanisms. A recent theoretical study by Beyer
presents a first step towards this goal [127]. In this work,
the author shows that the self-adaptation principle works
for a variety of different probability density functions for
the modification of the step size, i.e., it 1s an extremely ro-
bust mechanism. Moreover, [127] clarifies that equation (9)
is obtained from the corresponding equation for evolution
strategies with one self-adaptable step size by Taylor ex-
pansion breaking off after the linear term, such that both
methods behave equivalently for small settings of the learn-
ing rates 7 and «, when 7 = «. This prediction was con-
firmed perfectly by an experiment reported in [135].

Apart from the early work by Schaffer and Morishima
[37], self-adaptation has only recently been introduced in
genetic algorithms as a mechanism for evolving the para-
meters of variation operators. In [37], punciualed crossover
was offered as a method for adapting both the number and
position of crossover points for a multi-point crossover op-
erator in canonical genetic algorithms. Although this ap-
proach seemed promising, the operator has not been used
widely. A simpler approach towards self-adapting the cros-
sover operator was presented by Spears [136], who allowed
individuals to choose between 2-point crossover and uni-
form crossover by means of a self-adaptable operator choice
bit attached to the representation of individuals. The res-
ults indicated that, in case of crossover operators, rather
than adapting to the single best operator for a given prob-
lem, the mechanism seems to benefit from the existing di-
versity of operators available for crossover.

Concerning the mutation operator in genetic algorithms,
some effort to facilitate self-adaptation of the mutation rate
has been presented by Smith and Fogarty [123], based on
earlier work by Back [137]. These approaches incorporate
the mutation rate p,, € [0,1] into the representation of

individuals and allow for mutation and recombination of
the mutation rate in the same way as the vector of binary
variables is evolved. The results reported in [123] demon-
strate that the mechanism yields a significant improvement
in performance of a canonical genetic algorithm on the test
functions used.

D. Recombination

The variation operators of canonical genetic algorithms,
mutation and recombination, are typically applied with
a strong emphasis on recombination. The standard al-
gorithm performs a so-called one-point crossover, where
two individuals are chosen randomly from the population,
a position in the bitstrings is randomly determined as the
crossover point, and an offspring is generated by concat-
enating the left substring of one parent and the right sub-
string of the other parent. Numerous extensions of this op-
erator, such as increasing the number of crossover points
[138], uniform crossover (each bit is chosen randomly from
the corresponding parental bits) [139], and others have
been proposed, but similar to evolution strategies no gen-
erally useful recipe for the choice of a recombination op-
erator can be given. The theoretical analysis of recom-
bination is still to a large extent an open problem. Re-
cent work on multi-parent recombination, where more than
two individuals participate in generating a single offspring
individual, clarifies that this generalization of recombin-
ation might yield a performance improvement in many
application examples [140], [141], [142]. Unlike evolution
strategies, where 1t is either utilized for the creation of
all members of the intermediate population (the default
case) or not at all, the recombination operator in genetic
algorithms is typically applied with a certain probability
pe, and commonly proposed settings of the crossover prob-
ability are p. = 0.6 [13] and p. € [0.75,0.95] [118].

In evolution strategies recombination is incorporated
into the main loop of the algorithm as the first operator
(see algorithm 1) and generates a new intermediate popu-
lation of A individuals by A-fold application to the parent
population, creating one individual per application from g
(1 € ¢ < p) individuals. Normally, ¢ = 2 or ¢ = p (so-
called global recombination) are chosen. The recombina-
tion types for object variables and strategy parameters in
evolution strategies often differ from each other, and typ-
ical examples are discrete recombination (random choices of
single variables from parents, comparable to uniform cros-
sover in genetic algorithms) and intermediary recombina-
tion (often arithmetic averaging, but other variants such as
geometrical crossover [143] are also possible). For further
details on these operators, see [79].

The advantages or disadvantages of recombination for a
particular objective function can hardly be assessed in ad-
vance, and certainly no generally useful setting of recom-
bination operators (such as the discrete recombination of
object variables and global intermediary of strategy para-
meters as we have claimed in [79], pp. 82-83) exists. Re-
cently, Kursawe has impressively demonstrated that, using
an inappropriate setting of the recombination operator, the



(15,100)-evolution strategy with n self-adaptable variances
might even diverge on a sphere model for n = 100 [144].
Kursawe shows that the appropriate choice of the recom-
bination operator not only depends on the objective func-
tion topology, but also on the dimension of the objective
function and the number of strategy parameters incorpor-
ated into the individuals. Only recently, Rechenberg [46]
and Beyer [142] presented first results concerning the con-
vergence velocity analysis of global recombination in case
of the sphere model. These results clarify that, for using
one (rather than n as in Kursawe’s experiment) optimally
chosen standard deviation o, a p-fold speedup is achieved
by both recombination variants. Beyer’s interpretation of
the results, however, is somewhat surprising because it does
not put down the success of this operator on the existence
of building blocks which are usefully rearranged in an off-
spring individual, but rather explains it as a genetic repair
of the harmful parts of mutation.

Concerning evolutionary programming, a rash statement
based on the common understanding of the contending
structures as individuals would be to claim that evolu-
tionary programming simply does not use recombination.
Rather than focusing on the mechanism of sexual recom-
bination, however, Fogel [145] argues that one may examine
and simulate its functional effect and correspondingly in-
terpret a string of symbols as a reproducing population or
species, thus making recombination a non-issue (refer to
[145] for philosophical reasons underlining this choice).

E. Selection

Unlike the variation operators which work on the genetic
representation, the selection operator is based solely on the
fitness values of the individuals.

In genetic algorithms selection is typically implemen-
ted as a probabilistic operator, using the relative fitness
pld;) = f(d;)/ Zle f(@;) to determine the selection prob-
ability of an individual @; (proportional selection). This
method requires positive fitness values and a maximization
task, so that scaling functions are often utilized to trans-
form the fitness values accordingly (see e.g. [18], pp. 124).
Rather than using absolute fitness values, rank-based selec-
tion methods utilize the indices of individuals when ordered
according to fitness values to calculate the corresponding
selection probabilities. Linear [146] as well as nonlinear [82,
p. 60] mappings have been proposed for this type of sele-
tion operator. Tournament selection [147] works by taking
a random uniform sample of a certain size ¢ > 1 from the
population, selecting the best of these ¢ individuals to sur-
vive for the next generation, and repeating the process until
the new population is filled. This method gains increasing
popularity because it is easy to implement, computation-
ally efficient, and allows for fine-tuning the selective pres-
sure by increasing or decreasing the tournament size ¢q. For
an overview of selection methods and a characterization of
their selective pressure in terms of numerical measures, the
reader should consult [148], [149]. While most of these se-
lection operators have been introduced in the framework
of a generational genetic algorithm, they can also be used

in combination with the steady-state and generation gap
methods outlined in section III.

The (p, A)-evolution-strategy uses a deterministic selec-
tion scheme. The notation (x, A) indicates that p par-
ents create A > p offspring by means of recombination
and mutation, and the best p offspring individuals are de-
terministically selected to replace the parents (in this case,
@ = 0 in algorithm 1). Notice that this mechanism al-
lows that the best member of the population at genera-
tion ¢ 4+ 1 might perform worse than the best individual at
generation ¢, i.e., the method is not elitist, thus allowing
the strategy to accept temporary deteriorations that might
help to leave the region of attraction of a local optimum and
reach a better optimum. In contrast, the (y + A)-strategy
selects the p survivors from the union of parents and off-
spring, such that a monotonic course of evolution is guaran-
teed (@ = P() in algorithm 1). Due to recommendations
by Schwefel, however, the (1, A)-strategy is preferred over
the (p 4 A)-strategy, although recent experimental findings
seem to indicate that the latter performs as well as or bet-
ter than the (p, A)-strategy in many practical cases [134].
It should also be noted that both schemes can be inter-
preted as instances of the general (u, &, A)-strategy, where
1 < k < 00 denotes the maximum life span (in generations)
of an individual. For k = 1, the selection method yields
the (u, A)-strategy, while it turns into the (p + A)-strategy
for k = oo [b4].

A minor difference between evolutionary programming
and evolution strategies consists in the choice of a prob-
abilistic variant of (u + A)-selection in evolutionary pro-
gramming, where each solution out of offspring and parent
individuals is evaluated against ¢ > 1 (typically, ¢ < 10)
other randomly chosen solutions from the union of parent
and offspring individuals (@ = P(?) in algorithm 1). For
each comparison, a “win” is assigned if an individual’s score
is better or equal to that of its opponent, and the p indi-
viduals with the greatest number of wins are retained to be
parents of the next generation. As shown in [79, pp. 96-99],
this selection method is a probabilistic version of (y + A)-
selection which becomes more and more deterministic as
the number ¢ of competitors is increased. Whether or not
a probabilistic selection scheme should be preferable over
a deterministic scheme remains an open question.

Evolutionary algorithms can easily be ported to par-
allel computer architectures [150], [151]. Since the indi-
viduals can be modified and, most importantly, evaluated
independently of each other, we should expect a speed-
up scaling linear with the number of processing units p
as long as p does not exceed the population size pu. But
selection operates on the whole population so this oper-
ator eventually slows down the overall performance, espe-
cially for massively parallel architectures where p > pu.
This observation motivated the development of parallel al-
gorithms using local selection within subpopulations like in
migration models [152], [63] or within small neighborhoods
of spatially arranged individuals like in diffusion models
[153], [154], [155], [156] (also called cellular evolutionary al-
gorithms [157], [158], [159]). Tt can be observed that local



selection techniques not only yield a considerable speed-up
on parallel architectures but also improve the robustness

of the algorithms [160], [116], [46].

F. Other Evolutionary Algorithm Variants

Although it is impossible to present a thorough overview
of all variants of evolutionary computation here, it seems
appropriate to explicitly mention order-based genetic al-
gorithms [18], [82], classifier systems [161], [162], and ge-
netic programming [163], [81], [31], [70] as branches of ge-
netic algorithms that have developed into their own direc-
tions of research and application. The following overview
1s restricted to a brief statement of their domain of applic-
ation and some literature references:

o Order-based genetic algorithms were proposed for

searching the space of permutations = : {1,....,n} —
{1, ..., n} directly rather than using complex decoding
functions for mapping binary strings to permutations
and preserving feasible permutations under mutation
and crossover (as proposed in [164]). They apply
specialized recombination (such as order crossover or
partially matched crossover) and mutation operators
(such as random exchanges of two elements of the
permutation) which preserve permutations (see [82,
chapter 10] for an overview).

o Classifier systems use an evolutionary algorithm to
search the space of production rules (often encoded by
strings over a ternary alphabet, but also sometimes
using symbolic rules [165]) of a learning system capable
of induction and generalization [18, chapter 6], [166],
[161], [167]. Typically, the Michigan approach and
the Pittsburgh approach are distinguished according to
whether an individual corresponds with a single rule of
the rule-based system (Michigan) or with a complete
rule base (Pittsburgh).

o Genetic programming applies evolutionary search to
the space of tree structures which may be interpreted
as computer programs in a language suitable to modi-
fication by mutation and recombination. The domin-
ant approach to genetic programming uses (a subset
of) LISP programs (S-expressions) as genotype space
[163], [31], but other programminglanguages including
machine code are also used (see e.g. [168], [81], [70]).

Throughout this section we made the attempt to com-
pare the constituents of evolutionary algorithms in terms of
their canonical forms. But in practice the borders between
these approaches are much more fluid. We can observe
a steady evolution in this field by modifying (mutating),
(re)combining, and validating (evaluating) the current ap-
proaches, permanently improving the population of evolu-
tionary algorithms.

V. APPLICATIONS

Practical application problems in fields as diverse as en-
gineering, natural sciences, economics, and business (to
mention only some of the most prominent representatives)
often exhibit a number of characteristics that prevent the
straightforward application of standard instances of evol-

utionary algorithms. Typical problems encountered when
developing an evolutionary algorithm for a practical applic-
ation include the following:

1. A suitable representation and corresponding operat-
ors need to be developed when the canonical repres-
entation is different from binary strings or real-valued
vectors.

2. Various constraints need to be taken into account
by means of a suitable method (ranging from penalty
functions to repair algorithms, constraint-preserving
operators, and decoders; see [169] for an overview).

3. Expert knowledge about the problem needs to be in-
corporated into the representation and the operators
in order to guide the search process and increase its
convergence velocity — without running into the trap,
however, to get confused and misled by expert beliefs
and habits which might not correspond with the best
solutions.

4. An objective function needs to be developed, often in
cooperation with experts from the particular applica-
tion field.

5. The parameters of the evolutionary algorithm need to
be set (or tuned), and the feasibility of the approach
needs to be assessed by comparing the results to ex-
pert solutions (used so far) or, if applicable, solutions
obtained by other algorithms.

Most of these topics require experience with evolution-
ary algorithms as well as cooperation between the applic-
ation’s expert and the evolutionary algorithm expert, and
only few general results are available to guide the design of
the algorithm (e.g., representation-independent recombin-
ation and mutation operators [170], [171], the requirement
that small changes by mutation occur more frequently than
large ones [172], [48], and a quantification of the selective
pressure imposed by the most commonly used selection op-
erators [149]). Nevertheless, evolutionary algorithms often
yield excellent results when applied to complex optimiza-
tion problems where other methods are either not applic-
able or turn out be unsatisfactory (a variety of examples
can be found in [80]).

Important practical problem classes where evolutionary
algorithms yield solutions of high quality include engin-
eering design applications involving continuous paramet-
ers (e.g., for the design of aircraft [173], [174], structural
mechanics problems based on two-dimensional shape rep-
resentations [175], electromagnetic systems [176], and mo-
bile manipulators [177], [178]), discrete parameters (e.g.,
for multiplierless digital filter optimization [179], the design
of a linear collider [180], or nuclear reactor fuel arrange-
ment optimization [181]), and mixed-integer representa-
tions (e.g., for the design of survivable networks [182] and
optical multilayer systems [115]). Combinatorial optimiz-
ation problems with a straightforward binary representa-
tion of solutions have also been treated successfully with
canonical genetic algorithms and their derivatives (e.g., set
partitioning and its application to airline crew scheduling
[183], knapsack problems [184], [185], and others [186]).

Relevant applications to combinatorial problems utilizing



a permutation representation of solutions are also found
in the domains of scheduling (e.g., production scheduling
[187] and related problems [188]), routing (e.g. of vehicles
[189] or telephone calls [190]), and packing (e.g. of pallets
on a truck [191]).

The existing range of successful applications is extremely
broad, thus by far preventing an exhaustive overview —
the list of fields and example applications should be taken
as a hint for further reading rather than a representat-
ive overview. Some of the most challenging applications
with a large profit potential are found in the field of bio-
chemical drug design, where evolutionary algorithms have
gained remarkable interest and success in the past few years
as an optimization procedure to support protein engineer-
ing [134], [192], [193], [194]. Also finance and business
provide a promising field of profitable applications [195],
but of course few details are published about this work
(see e.g. [196]). In fact, the relation between evolutionary
algorithms and economics has found increasing interest in
the past few years and is now widely seen as a promising
modeling approach for agents acting in a complex, uncer-
tain situation [197].

In concluding this section, we refer to the research field of
computational intelligence (see section VI for details) and
the applications of evolutionary computation to the other
main fields of computational intelligence, namely fuzzy lo-
gic and neural networks. An overview of the utilization of
genetic algorithms to train and construct neural networks
is given in [198], and of course other variants of evolution-
ary algorithms can also be used for this task (see e.g. [199]
for an evolutionary programming, [200] for an evolution
strategy example, and [97], [201] for genetic algorithm ex-
amples). Similarly, both the rule base and membership
functions of fuzzy systems can be optimized by evolution-
ary algorithms, typically yielding improvements of the per-
formance of the fuzzy system (e.g. [202], [203], [204], [205],
[206]). The interaction of computational intelligence tech-
niques and hybridization with other methods such as expert
systems and local optimization techniques certainly opens
a new direction of research towards hybrid systems that
exhibit problem solving capabilities approaching those of
naturally intelligent systems in the future. Evolutionary
algorithms, seen as a technique to evolve machine intelli-
gence (see [5]), are one of the mandatory prerequisites for
achieving this goal by means of algorithmic principles that
are already working quite successfully in natural evolution

[207].

VI. SUMMARY AND OUTLOOK

To summarize, the current state of evolutionary compu-

tation research can be characterized as follows:

o The basic concepts have been developed more than
35 years ago, but i1t took almost two decades for their
potential to be recognized by a larger audience.

o Application-oriented research in evolutionary compu-
tation is quite successful and almost dominates the
field (if we consider the majority of papers). Only
few potential application domains could be identified,

if any, where evolutionary algorithms have not been
tested so far. In many cases they have been used to
produce good, if not superior, results.

o In contrast, the theoretical foundations are to some

extent still weak. To say it more pithy: “We know
that they work, but we do not know why.” As a con-
sequence, inexperienced users fall into the same traps
repeatedly, since there are only few rules of thumb
for the design and parameterization of evolutionary
algorithms.
A constructive approach for the synthesis of evolution-
ary algorithms, i.e. the choice or design of the repres-
entations, variation operators, and selection mechan-
isms is needed. But first investigations pointing in
the direction of design principles for representation-
independent operators are encouraging [171], as well,
as 1s the work on complex non-standard representa-
tions such as in the field of genetic programming.

o Likewise, the field still lacks a sound formal charac-
terization of the application domain and the limits of
evolutionary computation. This requires future efforts
in the field of complexity theory.

There exists a strong relationship between evolutionary
computation and some other techniques, e.g. fuzzy logic
and neural networks, usually regarded as elements of ar-
tificial intelligence. Following Bezdek [208], their main
common characteristic lies in their numerical knowledge
representation, which differentiates them from traditional
symbolic artificial intelligence. Bezdek suggested the term
computational intelligence for this special branch of artifi-
cial intelligence with the following characteristics':

1. Numerical knowledge representation.

2. Adaptability.

3. Fault tolerance.

4. Processing speed comparable to human cognition pro-

cesses.

5. Error rate optimality (e.g. with respect to a Bayesian
estimate of the probability of a certain error on future
data).

We regard computational intelligence as one of the most
innovative research directions in connection with evolution-
ary computation, since we may expect that efficient, ro-
bust, and easy-to-use solutions to complex real-world prob-
lems will be developed on the basis of these complementary
techniques. In this field, we expect an impetus from the
interdisciplinary cooperation, e.g., techniques for tightly
coupling evolutionary and problem domain heuristics, more
elaborate techniques for self-adaptation, as well as an im-
portant step towards machine intelligence.

Finally, it should be pointed out that we are far from us-
ing all potentially helpful features of evolution within evol-
utionary algorithms. Comparing natural evolution and the
algorithms discussed here, we can immediately identify a
list of important differences, which all might be exploited
to obtain more robust search algorithms and a better un-
derstanding of natural evolution:

1The term “computational intelligence” was originally coined by
Cercone and McCalla [209].



Natural evolution works under dynamically changing
environmental conditions, with nonstationary optima
and even changing optimization criteria, and the in-
dividuals themselves are also changing the structure
of the adaptive landscape during adaptation [210]. In
evolutionary algorithms, environmental conditions are
often static, but non-elitist variants are able to deal
with changing environments. It is certainly worth-
while, however, to consider a more flexible life span
concept for individuals in evolutionary algorithms
than just the extremes of a maximum life span of one
generation (as in a (u, A)-strategy) and of an unlim-
ited life span (as in an elitist strategy), by introducing
an aging parameter as in the (y, &, A)-strategy [54].
The long-term goal of evolution consists of the main-
tenance of evolvabilily of a population [95], guaranteed
by mutation and a preservation of diversity within the
population (the term meliorization describes this more
appropriately than optimization or adaptation does).
In contrast, evolutionary algorithms often aim at find-
ing a precise solution and converging to this solution.
In natural evolution, many criteria need to be met
at the same time, while most evolutionary algorithms
are designed for single fitness criteria (see [211] for
an overview of the existing attempts to apply evol-
utionary algorithms to multiobjective optimization).
The concepts of diplotdy or polyplotdy, combined with
dominance and recessivity [50] as well as the idea of
introducing two sexes with different selection criteria
might be helpful for such problems [212], [213].
Natural evolution neither assumes global knowledge
(about all fitness values of all individuals) nor a gen-
erational synchronization, while many evolutionary al-
gorithms still identify an iteration of the algorithm
with one complete generation update. Fine-grained
asynchronously parallel variants of evolutionary al-
gorithms, introducing local neighborhoods for recom-
bination and selection and a time-space organization
like in cellular automata [157], [158], [159] represent
an attempt to overcome these restrictions.

The co-evolution of species such as in predator-prey
interactions implies that the adaptive landscape of in-
dividuals of one species changes as members of the
other species make their adaptive moves [214]. Both
the work on competitive fitness evaluation presented
in [215] and the co-evolution of separate populations
[216], [217] present successful approaches to incorpor-
ate the aspect of mutual interaction of different adapt-
ive landscapes into evolutionary algorithms. As clari-
fied by the work of Kauffman [214], however, we are
just beginning to explore the dynamics of co-evolving
systems and to exploit the principle for practical prob-
lem solving and evolutionary simulation.

The genotype-phenotype mapping in nature, realized
by the genetic code as well as the epigenetic apparatus
(i.e., the biochemical processes facilitating the devel-
opment and differentiation of an individual’s cells into
organs and systems), has evolved over time, while the

mapping is usually fixed in evolutionary algorithms
(dynamic parameter encoding as presented in [218]
being a notable exception). An evolutionary self-
adaptation of the genotype-phenotype mapping might
be an interesting way to make the search more flexible,
starting with a coarse-grained, volume-oriented search
and focusing on promising regions of the search space
as the evolution proceeds.

o Other topics, such as multi-cellularity and ontogeny
of individuals, up to the development of their own
brains (individual learning, such as accounted for
by the Baldwin effect in evolution [219]), are usu-
ally not modeled in evolutionary algorithms. The
self-adaptation of strategy parameters is just a first
step into this direction, realizing the idea that each
individual might have its own internal strategy to
deal with its environment. This strategy might be
more complex than the simple mutation parameters
presently taken into account by evolution strategies
and evolutionary programming.

With all this in mind, we are convinced that we are just
beginning to understand and to exploit the full potential
of evolutionary computation. Concerning basic research
as well as practical applications to challenging industrial
problems, evolutionary algorithms offer a wide range of
promising further investigations, and it will be exciting to
observe the future development of the field.
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