
Copyright 2002, Intel Corporation, All rights reserved.

Range Queries over DHTs

Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shenker

IRB-TR-03-009

June, 2003

DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. INTEL AND
THE AUTHORS OF THIS DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT. THE
PROVISION OF THIS DOCUMENT TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

Range Queries over DHTs

Sylvia Ratnasamy, Joseph M. Hellerstein, Scott Shenker

Abstract

Distributed Hash Tables (DHTs) are scalable peer-to-peer sys-
tems that support exact match lookups. This paper describes the
construction and use of aPrefix Hash Tree (PHT) – a distributed
data structure that supports range queries over DHTs. PHTs
use the hash-table interface of DHTs to construct a search tree
that is efficient (insertions/lookups take����� ��� ���� DHT
lookups, where D is the data domain being indexed) and ro-
bust (the failure of any given node in the search tree does not
affect the availability of data stored at other nodes in the PHT).

1 Introduction

Distributed Hash Tables [7, 2, 6, 5] are scalable P2P systems
that support functionality similar to that of a hash table. There
is one basic operation in DHT systems,lookup(key), which
returns the identity (e.g., the IP address) of the node storing
the object with that key thus enabling nodes to insert and re-
trieve data items based on their key. DHTs are thus analogous
to hash indexes, providing only exact-match lookups. An open
question has been whether range queries can be supported in
as graceful and elegant a distributed fashion as DHTs support
exact match queries. In this paper, we propose implementing
range queriesover a DHT via a trie-based scheme, with the
added twist that a bucket in the trie is stored at the DHT node
obtained by hashing its corresponding prefix. This hash-based
assignment of trie buckets to DHT nodes lends the PHT a num-
ber of performance advantages relative to a more straightfor-
ward implementation of a distributed trie in which each node
in the trie holds an explicit pointer to its children. Specifically,
(1) accessing a PHT vertex take O(��� ��� ���� DHT lookups
where� is the data domain being indexed, (2) a PHT is robust
in that the failure of a given node does not affect the availability
of any other nodes in the trie and finally, (3) a PHT avoids over-
loading the nodes at the higher levels of the trie by not requiring
that all trie traversals start at the root and recurse down. Finally,
PHTs build entirely on top of the DHTlookup() interface and
are hence agnostic to the particular choice of underlying DHT
routing algorithm.

2 Prefix Hash Trees

At the abstract level, a PHT is a trie1 in which every vertex cor-
responds to a distinct prefix of the data domain being indexed.2

More specifically, every vertex in the tree has an associated pre-
fix label that is determined as follows: given a vertex with label
l, its left and right child vertices are labeledl0 and l1 respec-
tively. The root of the tree is labeled with the attribute name
and all downstream vertices are labeled recursively as above.

A data item is stored at the PHT node with the longest prefix
match between the node label and the item to be stored. A
node stores upto� data items; when this threshold is exceeded,
the node “splits” into its two child vertices and the data items
it stores are appropriately partitioned (based on their prefixes)
between its children. In other words, the prefixes of the leaf
nodes in the PHT form auniversal prefix set3 and a data item
is inserted at the PHT leaf node whose label is a prefix of the
item. Note thus that data items are stored only at the leaf nodes
in the PHT and the PHT itself grows dynamically with data
insertions. Hence while the worst case depth of the PHT is
��� ��� (where D is the data domain being indexed), in practice,
the depth and width of the PHT will grow dynamically based on
the distribution of inserted values.

For scalability, this logical PHT structure is distributed across
the nodes in a DHT. The key idea behind PHTs is to achieve
this distribution byhashing the prefix labels of PHT vertices
over the DHT node identifier space; using the DHT lookup op-
eration, a PHT vertex with labell is thus assigned to the node
with identifier closest toHASH(l). In short, PHT vertices are as-
signed to DHT nodes by consistent hashing of PHT labels over
the node identifier space.

This hash-based assignment of the trie vertices to DHT nodes
means that one can directly “jump” toany vertex in the trie via
a single DHT lookup which offers three key advantages relative
to traditional trees where accessing a vertex requires tracing the
path from the root of the tree recursively down to the desired
vertex:

� Given a data item of��� ��� bits, we can locate its as-

1A trie is a multi-way retrieval tree used for storing strings over an
alphabet in which there is one node for every common prefix and all
nodes that share a common prefix hang off the node corresponding to
the common prefix.

2For simplicity, we describe PHTs as being binary tries however
our discussion extends naturally to higher bases.

3A set of prefixes is a universal prefix set if and only if for any
infinite binary sequence� there is exactly one element in the set which
is a prefix of�.

1

sociated PHT leaf node through a binary search over the
��� ��� possible prefix labels corresponding to the item.
Thus, a given data item can be inserted into (retrieved
from) the PHT through a sequence of����� ��� ���� DHT
lookups.4

� In contrast to typical trees, the failure of a PHT node does
not affect the availability of nodes in the subtree rooted at
the failed node.

� Because accesses to individual nodes need not traverse
through the root, PHTs avoid creating a bottleneck at the
root of the PHT.

Range Queries using PHTs: A number of techniques can be
used to perform a range query over the items stored in a PHT.
Some example techniques include:

� locating the PHT node corresponding to the longest com-
mon prefix in the range and then performing a parallel
traversal of its subtree to retrieve all the desired items.

� parallelize the query by dividing the range into a number
of sub-ranges that can then be retrieved as above.

In addition, a number of simple performance optimization
could be used to improve search performance. For example:

� Require every PHT leaf node to hold a pointer to the leaf
node to its right (with wrap-around) effectively forming a
link list of PHT leaf nodes. Now a range query could pro-
ceed by locating the PHT node corresponding to the lowest
value in the range and traversing the link list to retrieve the
required values.

� Record the “shape” of the entire PHT tree at a well defined
DHT location (for example, at the DHT node correspond-
ing to HASH(attribute-name/shape/)) by having leaf nodes reg-
ister at this location. A range query might then proceed
by first retrieving the shape of the PHT which would re-
veal the exact set of PHT leaf nodes to be accessed for
the range query. Note, that this performance optimization
could also speed up data insertions.

� Have every PHT node propogate hints, such as the depth
of its subtree and/or the number of data items stored in its
subtree, up to its parent. This allows any internal node in
the PHT to immediately direct queries to the appropriate
leaf nodes in its subtree.

3 Open Issues and Related Work

This paper offered only a high-level description of the PHT data
structure. Much work remains – for example, the benefit and

4Note that the search time could be further reduced by parallelizing
these lookups in various ways although at the cost of some redundant
lookups.

cost of the different range query techniques and performance
optimizations should be evaluated and issues with concurrency
control should be addressed. An apparent issue with PHTs is
that the search complexity is in the size of the domain, not the
number of data items being indexed. More work is probably
required to refine this technique for skewed datasets over large
domains. Finally, while it seems clear that a PHT could quite
easily support a number of operations such as sorting, finding
the max/min/average over a data setetc., other operations such
as multi-dimensional range queries appear more involved. Un-
derstanding the nature and scope of operations that one could
efficiently support using a PHT is a topic of ongoing research.

Our PHT proposal is reminiscent of Litwin’s Trie Hashing [4],
but has an added advantage that the “memory addresses” where
buckets of the trie are stored are in fact the DHT keys obtained
by hashing the corresponding prefixes. Alternative schemes
have been proposed as well, including a DHT-based range-
caching scheme [3], and a technique specifically for the CAN
DHT based on space-filling curves [1].

4 Acknowledgments

The authors would like to thank Richard Karp, Sriram Ramab-
hadran, Mehul Shah and members of the PIER research group
for taking the time to discuss the ideas presented here. In par-
ticular, Mehul and Sriram proposed some of the performance
optimizations we describe.

5 REFERENCES
[1] A NDRZEJAK, A., AND XU, Z. Scalable, efficient range queries for grid

information services. InProceedings of the second IEEE Internation
Conference on Peer-to-peer Computing (P2P2002) (Sweden, Sept. 2002).

[2] DRUSCHEL, P.,AND ROWSTRON, A. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. InProceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001)W (Nov 2001).

[3] GUPTA, A., AGRAWAL, D., AND ABBADI , A. E. Approximate range
selection queries in peer-to-peer systems. InProceedings of the first
Biennial Conference on Innovative Data Systems Research (2002).

[4] L ITWIN , W. Trie hashing. InProceedings of SIGMOD (May 1981),
pp. 19–29.

[5] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SHENKER, S. A scalable content-addressable network. InProc. ACM
SIGCOMM (San Diego, CA, August 2001), pp. 161–172.

[6] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN , H. Chord: A scalable peer-to-peer lookup service for
internet applications. InProceedings of the ACM SIGCOMM ’01
Conference (San Diego, California, August 2001).

[7] ZHAO, B. Y., KUBIATOWICZ, J.,AND JOSEPH, A. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Tech. Rep.
UCB/CSD-01-1141, University of California at Berkeley, Computer
Science Department, 2001.

2

