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Abstract. Aspects have emerged as a powerful tool in the design andageve
ment of systems, allowing for the encapsulation of prognamsformations. The
dynamic semantics of aspects is typically specified by dpmeto an underly-
ing object-oriented language via a compiler transfornratitown asweaving
This treatment is unsatisfactory for several reasonstlithis semantics vio-
lates basic modularity principles of object-oriented pasgming. Secondly, the
converse translation from object-oriented programs ima@spect language has
a simple canonical flavor. Taken together, these obsensuggest that aspects
are worthy of study as primitive computational abstradiontheir own right. In
this paper, we describe an aspect calculus and its opeahemantics. The cal-
culus is rich enough to encompass many of the features ofieaspect-oriented
frameworks that do not involve reflection. The independesicdiption of the dy-
namic semantics of aspects enables us to specify the auesscof a weaving
algorithm. We formalize weaving as a translation from thpeas calculus to a
class-based object calculus, and prove its soundness.

1 Introduction

In this paper we give the dynamic semantics for an aspedeblsnguage and prove
the correctness of weaving with respect to that semantics.

Aspects: A Short Introduction.Aspects have emerged as a powerful tool in the de-
sign and development of systems [4, 14,19, 16, 15, 2]. Wenbeih a short example

to introduce the basic vocabulary of aspect-oriented @nogning and illustrate the un-
derlying issues. Although our examples throughout the papecouched in terms of
Aspect) http://wuw.aspect].org), our study is more general in scope.

Suppose that is a class realizing a useful library. Suppose further say Wwe are
interested in timing information about a methedo () in L. The following AspectJ
code addresses this situation. It is noteworthy and ingfieatf the power of the aspect
framework that

— the profiling code is localized in the following aspect,
— the existing client and library source code is left untowttand
— the responsibility for profiling alfoo () calls resides with the AspectJ compiler.

aspect TimingMethodInvocation {
Timer timer = new Timer();
void around(): call (void L.foo()) {
timer.start(); proceed(); timer.stop;
System.out.println(timer.getTime());
3
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This aspect is intended to trap all invocationgée () in L. An aspect magdvisemeth-
ods, causing additional code to be executed whenever a thetliterest is called. The
set of interesting methods is specified usingoéntcut herecall (void L.foo()).
The advice itself is a sequence of commands. The exampleats@ad advice. The
intended execution semantics is as follows: a cafide() invokes the code associated
with the advice; in the example, the timer is started. Theeullythg foo () method is
invoked when control reachegoceed (). Upon termination ofoo (), control returns
to the advice; in the example, the timer is stopped and thpsetatime displayed on the
screen.

In many aspect-based languages, the intended executi@nsesis realized by a
compile-time process callegeaving Because the advice is attached toadl point-
cutin the example, the weaving algorithm replaces each calbto() with a call to
the advice; it alters the client code, leaving the libraryntouched. In this light, it is
not surprising that dispatch of call pointcuts is based acttmpile-time typef the
receiver offoo ().

The converse effect is achieved usingeatecution pointcutOur example can be al-
tered to use execution pointcuts by replaciagl (void L.foo()) with execution
(void L.foo()). In this case the weaving algorithm alters the library, Ieguvthe
client untouched. Dispatch of execution pointcuts is bametheruntime typeof the
receiver offoo ().

In general, there may be several pieces of advice attachadrtethod, and there-
fore there must be an ordering on advice which determinesitter of execution. In
AspectJ, for example, the textual order of declarationsedu

Advice may also take parameters, and these parameters mpasked on to the
next piece of advice vigroceed. In particular, in both call and execution advice one
can define a binder fotarget, the object receiving the message. In call advice, one
can additionally bindthis, the object sending the message.

Aspects interfere with OO reasoninyluch of the power in aspect-oriented program-
ming lies in the ability to intercept method calls. This powowever, comes at the
price of breaking object-oriented encapsulation and tlsaring that it allows. As a
simple example, consider the following declarations:

class C { void foo(){..} }
class D extends C { }

In an object-oriented language, this definition is indigtirshable from the following:

class C { void foo(){..} }
class D extends C { void foo(){ super.foo(); } }

The following aspect, however, distinguishes them:

aspect SpotInheritance {
void around(): execution (void D.foo()) {
System.out.println("aspect in action");

3
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In the first declaration, the execution advice cannot atitgelf to foo in D, sinceD does
not declare the method,; it inherits it. It cannot attachlfitsgher toC, since the advice
is intended foD alone. The effect of the aspect is seen only in the secon@micn
wherefoo () is redeclared, albeit trivially.

Unfortunately, interference with object-oriented reasgrdoes not stop there. As a
second example, consider that behavioral changes causespbygts need not be inher-
ited down the class hierarchy. The following aspect distislges objects of type that
are not also of type:

aspect OnlySuperclass {
void around(): (void execution(C.foo()))
&& !(void execution(D.foo())) {
System.out.println("aspect in action");

3

These examples indicate that one cannot naively extendtebjented reasoning to
aspect-oriented programs.

Our aims: Reductionism and a specification for weavir@ur approach to understand-
ing aspect-oriented programming is based on an aspectlgsldive have attempted
to define the essential features of an aspect-oriented égggleaving many pragmatic
programming constructs out. To begin with, we do not incltideaspect container in
our language, taking advice to be primitive. In addition,stdy onlyaround advice.
Some other forms of advice can be derived. For example, A3pedudeshefore ad-
vice, which executes just before a method is callaskt'ore () {C; }” can be encoded
as “around () {C; proceed();}". We also define a simple logic to describe pointcuts,
built up from the call and execution primitives describedad Aspect-oriented lan-
guages such as AspectJ have a rich collection of pointawdkiding ones that rely on
reflection. While many forms of pointcuts can be encoded inlaaguage, we do not
address reflection. In this paper, we also focus strictly ymadhics, avoiding issues
related to the static semantics and type checking.

Perhaps more important than providing a core calculus, dbiece-level semantics
for aspects provides a specification for the weaving algoritRather than using trans-
formation to define the semantics, we are able to provethectnes®f the weaving
transformation; we prove that woven programs (where aleatsphave been removed)
perform computation exactly as specified by the originakasprogram.

In one respect, our aspect calculus is richer than statieailven languages such as
AspectJ, allowing for the the dynamic addition of advice tamning program. Clearly,
programs that dynamically load advice affecting existifegses cannot be woven stat-
ically. We define a notion ofveavability which excludes such programs, and prove the
correctness of weaving with respect to weavable prograrys on

The rest of this paperWe define a class-based language in Section 2. The clasd-base
language is the foundation for the aspect-based languagelirced in Section 3. In
Section 4 we describe the weaving algorithm, which trapslarograms in the aspect-
based languages into the class-based language. Sectair$thie correctness theorem;
all proofs can be found in the full version of the paper. Weatode with a survey of
related work.
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2 A Class-based Language

In this section, we describe an untyped class-based laeglragontrast to untyped ob-
ject calculi, our language includes a primitive notiorctdss This approach simplifies
the later discussion of aspects, whose advice is boundseedarather than objects.

Previous work on class-based languages has concentratieshelations from class-
based languages into polymorphiecalculi [5] or to object-based languages such as
the ¢-calculus [1]. For example, this is the technique used inngithe semantics of
LOOM [6], PolyTOIL [7] and Moby [11]. There is less literaion providing a direct
semantics for class-based languages; notable exceptieriseatherweight Java [12]
and Java[9]. Our semantics is heavily influenced by Featherweighé,Jaut is for a
multi-threaded language of mutable objects rather thamglesithreaded language of
immutable objects; in addition, we do not address issuegoédcity or of translating
away inner classes [13].

NOTATION. For any metavariable we writeX for ordered sequences 8§, andx for
unordered sequencesxs.

A programP has the form{D I H), whereD is a set of declarations attlis a set of
heap allocated threads and objects. A class declaratlass‘t<: d {...m(x) {C}..}"
must indicate the supercladand a set of method declarations. Fields are not declared
since the language is untyped. The superclass relatiomnsrtated in the undeclared
class ‘Object”. An object declaration, §bj 0:c{...f =v...}” must indicate the actual
class of the object and the values of the fields. A thread det@a, “thrd p{ S}" names
a controlling objecp and a stacls, which contains a sequence of commands to perform.
If a thread is executing a method on behalf of objecthenp will be the controlling
object. We include the controlling object only for compdiip with the aspect-based
language; it is not used here.

The dynamic semantics of the class-based language is bedes a transformation
of programs:

PP

Let us consider a few examples. As a simple example of a comjha values of
fields in objects can be retrieved by dereferencing the heap.

objo:cq{..f=v..} . objo:cq{..f=v..}
thrd p{let x=o0.f; } thrd p{let x=v; }

Symmetrically, a field in an object can be set to store a neweval

objo:cq{..f=u..} . objo:cq{..f=v..}
thrd p{seto.f=v; } thrd p{}

Threads may include “nested” class declarations that addd dynamically:

classc<:d {...}

thrd p{newclassc<:d {..}; } thrd p{ }
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Table 1 Class-Based Syntax

a,..,2 Name C,B:= Command
P,Q :=(DFH) Program new D; New Class
— ] new H; New Heap Element
D,E :=classc<:d{M} Declaration return v; Return
M :=m) {C} Method let X=V; Value
H,G = Heap Element let x=0.m(V) ; Dynamic Message
objo:c{F} Object let x=0.C::m(V) ; Static Message
thrd o S} Thread let x=0.f; Get Field
Fo—fzy Field seto.f=v; Set Field
ST = Call Stack
c Current Frame
let x=0{S};C Pushed Frame

The most important reduction rules, however, are thoselwmwg method invocation.

In a dynamically dispatched message, we first look up the mymgype of the object.

Next, we move up the superclass chain till we find a class winerenethod is actually
defined. Finally, once we have discovered the class whema#tleod is defined, reduc-
tion proceeds via a standard substitution of parameterthéomethod, instantiating of
this with the actual receiver of the method.

class d<: Object {...m(x) {B}...} class d<: Object {..m(x) {B}...}
classc<:d {...} classc<:d {...}

objo:c{..} ™ objo:c{..}

thrd p{o.m(v); } thrd p{ B[%/this, x| }

We include statically dispatched messages to encode sagealls. In class which
extendd, “super.m(V) ;" is encoded this.d:: m(V) ;".

2.1 Syntax

The syntax is given in Table 1. In definitions and examplesyite “_" to stand for an
element of any syntactic category that is not of interest.

Lower-case lettera—z range over a set of namebject”, “ this”, “target” and
“proceed” are reserved names. Although all names are drawn from dessef, our
use of names is disciplined to improve readability. We asefor class named; for
field namesm for method namesy—q for object reference namesz for variables;
v for values (object references or variables)b for advice. Advice is discussed in the
following section, where we will also assume a fixed totalesrdn namesy < m. We
may write a collection of names aq,&" to indicate thata is ordered before any of the
names ira.
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Table 2 Reduction

(Le-THIS) _
D>classc<: - {M,m {C}}
D+ body(c:m) = (0 C

(Rc-LET)

(D FH ,thrdq{S})

— (D' H', thrd g{ S })

(D FH . thrd p{let x=a{S };C})
— (D'~ H', thrd p{let x=q{ S };C})

(LC-SUPER) _
D>classc<:d{M}
MZmO { )

D F body(d:: m) = (X )C
DF body(c::m) = (X )C

(Re-VALUE)

(D H, thrd p{let x=v; C})
— (DFH, thrd p{C[% })

(Rc-RETURN) (Rc-GARBAGE)
(I§ F H:, thrd p{ let x=q{ return v; B}; C}) (Ii +H, thrd p{ return v;C})
— (DFH,thrd p{let x=v;C}) — (DFH)
(Rc-DYN-MSG)
H >objo:c{_} (Re-DEC)

D - body(c:m) = (B

domains o andE are disjoint

(D%H thrd p{ let x=0.m(V) ;C})
— (D FH, thrd p{ let x=0{ B[%whis, %% };C})

(Rc-STC-MSG)

D+ body(c:m) = (0 B

(D H, thrd p{new E;C})
— (D, EFH, thrd p{C})
(Rc-HEAP) _ _
domains ofH andG are disjoint

(D H, thrd p{let x=0.c::m(V) ; C})
— (D FH, thrd p{ let x=0{ B[%tnis, %] } ; C})
(Rc-GET)
H > objo:c{F,f=v}
(D H, thrd p{let x=0.f;C})
— (DFH,thrd p{let x=v;C})

(Rc-SET)

(D}—H thrd p{newG (o3))
— (DFH,G,thrd p{C})

(D%H obj 0: c{F f=u},thrd p{setof =v;C})

— (DFH,objo:c{F,f=v},thrd p{C})

We define the notion obound namédor method declarations and command se-
qguences. The method declaratian(X) {C} binds X andthis, the scope i<. The
class declarationrew class c<: d {M }; C" binds c, with scopel\/l andC. The object
declaration tew obj 0:c {F};C" binds o, with scopeF and C. Eachlet-command
sequencelét x=...;C”, binds x, with scopeC. Command sequences associate to the
right, so ‘C; C, Cg” should be read C;(C; C3)”; the scope of variables bound &y
includesC, andCs. Note that there are no binders for method or field names;$halu
semantics requires a static typing system, which we pufpthg@void here. We iden-
tify programs up to renaming of bound names and define sub’etité["/x] as usual.
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2.2 Dynamic semantics

Computation proceeds by executing the command sequenuizsresd in threads. Com-
mands may include declaration of classesw D;” or heap elementsrew H;”. The
value stored in an object field can be retrievéet k=0.f;” and set %eto.f =v;".
Method calls may be dispatched using the dynamic type oflifeco“let x=0.m(V) ;”

or a statically chosen typéet x=0.c::m(V) ;.

A pushed frame let x=p{ S};C" successfully terminates in a return command
which removes the remainder & leavingC to execute; fet x=p{return v;B};C”
reduces to et x=v; C", which is then further reduced via substitution 8]%«". A top
level return ‘thrd p{ return v; é}” causes the thread to be garbage collected.

The reductionrule® — P’ are given in Table 2. The rulégc-LET), (Rc-RETURN)
and (Rc-GARBAGE) deal with pushed frames. The rulec-vALUE) allows returned
values to be substituted through for the variables to whirgy tare bound. The rules
(Rc-DEC) and (Rc-HEAP) allow threads to create new classes, objects and threads.
These rules require alpha-renaming to make the domairsmlispllowing generation
of new class, object and thread names. The r(kesGET) and(Rc-SET) allow for the
manipulation of fields.

The rules(Rc-DYN-MSG) and (Rc-STC-MSG) perform beta reduction on method
calls; in the dynamic case, the method is determined by th@bdass of the objed;
in the static case, the method is determined by the annataétitod callc:: m. These
rules use an auxiliary relation for method lookup ¥ body(c::m) = (%) C, also de-
fined in Table 2. The ruléLc-THIS) allows for a method body to be retrieved from the
class which declares it, where@s.-suPER specifies that if a method is not declared in
a class, then the superclass should be checked. Notedtigtiefines a partial function.

3 An Aspect-based Language

The move from a class-based language to an aspect-basedtmigvolves three new
pieces of syntax: aspect declarations, advised methaslaradbroceed calls.

An aspect declaration,av a(X) : @ {é}” has three essential components. The
namea allows references to the aspect from elsewhere in the pnogrhe command
sequencé€ speciesvhatto execute and the pointcgispecifiesvhen A pointcut spec-
ifies the set of methods that are affected by this aspect;dtlympointcuts are presented
as elements of the boolean algebra whose atoms are exepuofitouts,exec(c:: m),
and call pointcutsgall (c::m). _

An advised method callét x=0.m[a; b] (V) ;” specifies a sea of call advice and
a setb of execution advice. For simplicity, we assume that theeefiged total ordering
on the names of advice (< m) which determines the execution order; we do not allow
declarations of advice precedence. The adviceaatsdb determine the semantics of
advised method calls; the method namés an annotation required only to define the
weaving function for call advice in the Section 4.

The final new command islét x=proceed (V) ;” which is intended to appear in
the body of advice. This command plays a crucial role in therafional semantics as
sketched below.
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Due to the presence of call advice, we must know the staticlddsd) type of an
object reference, in addition to its dynamic (actual) typleus, in the aspect language,
each dynamically dispatched method c#tx=0:c.m(V) ;” must be annotated with
a static typec. We follow AspectJ in ignoring call advice feuper calls, here modeled
by statically dispatched messages. We could easily adajsemoantics to execute call
advice on static messages as well. _

In the aspect language, classes have the fatmss'c<: d {...m[a; bl ...}". There
are no commands directly associated with classes, ralieratre indirectly associated
using the advice sesandb. Method bodies in class declarations would be redundant,
as demonstrated below.

Let us first consider a few examples. Given a method call inatbmect-oriented
calculus, we first lookup the call and execution advice dased with the method to
build an advised method call. Call advice lookup is basederdeclared type, whereas
execution advice lookup is based on the actual type.

adva(..):call(c:m) {..} adva(..):call(cz:m) {..}
adv b(...) :exec(du=m) {...} N advb(...) :exec(d:=m) {...}
objo:d{..} objo:d{..}

thrd p{o:c.m(v); } thrd p{o.m[a; bl (v);}

Now, consider an advised message where the call advics hgtriempty:

adva(x):..{C} . adva(x):..{C}
thrd p{o.m [a; bl(v); } thrd p{ é[p/this,o/target,o‘mm; b]/proceed,"/x]}

Reduction proceeds as follows: First, we choose the aspeaptdcute, in this case
Next, the aspect declaration is looked up to extract thecadiidy, in this cas8.
Finally, some substitutions are performed. In additionhte formal parametershis
is bound to the sender of the messag@andtarget is bound to the recipierd. Most
significantly,proceed is bound to a new advised method call, referencing the renmain
aspects, in this cagem [0; b]. Using the substitution oproceed, the semantics walks
through the advice given in the call advice set, then thecadgiven in the execution
advice set, using global order on aspect names to determ@uegence within each
of the two sets. Iproceed does not occur in an advice body, then subsequent advice
is ignored. On the other hand, if a name occurs in both thearall execution advice
sets, the advice body may be executed twice. An advised mhetdbwith no advice is
treated as an error; it cannot reduce.

The encoding of the class-based language into the aspealusprovides insight
into the operational semantics of the aspect calculus. fEmsiation must account for
the fact that methods in the aspect calculus do not have atiyoehdoodies. Write
“cbl_c_m’ to identify a fresh name generated from class nanmaad method namm.
Given a method definitionctass d<: ¢ {...m(%) {C}...}” create the advice:

classd<:c{..m[0; cbl_d_m] ...}
adv cbl_d_m(X) :exec(d::m) { C[Poedsuper.m] }

For this encoding to work, it must be the case thatig a subclass af, then the name
cbl_d_mprecedesbl_c_min the advice ordering. Thus, the first aspect pulled out ef th
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Table 3 Aspect-Based Syntax

D.E = .. Declaration C,B:= .. Command

adva(X) :¢{C} Advice let X=0:C.M(V) ; Dynamic Message
M - ma: b] Method let x=0.mla; bl (V) ; Advised Message

' let X=proceed (V) ; Proceed

L =cum La.bel Replace the dynamic message syntax from Table 1
o = Pointcut

false False

-Q Negation

ovy Disjunction

call(L) Call

exec(L) Execution

aspect list is the closest definitionmfin the class hierarchy. Finally, note that method
bodies in a class-based language do not comt@iteed; thusproceed can be used to
encode calls teuper. If no such calls exist, then subsequent advice is not egdcut

3.1 Syntax

In Table 3 we extend the grammar for declarations and commaeglace the grammar
for method declarations, and define a new grammar for padisitdine method declara-
tion “m[a; b]” no longer includes a command sequence, but rather two Sathice;
the idea is thaais executed by thealler (call advice) b is executed by theallee(ex-
ecution advice). The advice declaratiorety adv a(X) : 9 {B}; C” bindsa, with scope
B andC, and also bindg, this andtarget, with scopeB.

Pointcuts are used to indicate the set of methods to whicicadtiould be attached.
A point cut @ allows one to specify a calling point&ll(c::m)”, an execution point
“exec(c::m)”, or a combination thereof. The full set of boolean connexgican prove
useful, given that point cuts apply not only to the specifieds, but to all subclasses
as well; negation can be used to change this.

An advised method calllét x=0.m[a; b] (V) ;” indicates the collections of call
advicea and execution advick yet to be performed; the method nammgs ignored.
Source programs need not contain advised method callgrratlvised method calls
are included because they arise during the dynamics of anagir An advised call
with no advice fet x=0.m[0 ; 0] (V) ;" is unable to reduce. The proceed command
“let x=proceed (V) ;” causes control to advance to the next named advice, where th
global order on names (< m) is used to determine which advice is next.

3.2 Dynamic Semantics

The semantics of pointcuts is defined in Table 4. We wride-“c: m € execadyp)”
when pointcutp applies to the execution of methadin classc, and similarly for call
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Table 4 Semantics of Pointcuts

(S-TRANS)

(S-EXTENDS) (S-REFLEX) DFc<d
D>classc<:d{_} DFd<«e
DFc<:d Dic<:c Drcce
(PC-EXEC) (PC-CALL)
DFc<:d DFc<:d
D F c::me execadyexec(d::m)) D F c:me callady(call (d::m))
(PC-ENOT) (PC-EORL) (PC-EORR)
DF L ¢ execadyo) D F L € execadyg) DF L € execadyy)
DF L € execady—q) D F L € execadyoV ) DF L € execady@V )
(Pc-cNoT) (PC-CORL) (PC-CORR)
DF L ¢ calladyo) D F L € callad¢) DF L € calladyy)
DF L € callady—¢) DL € callady @V y) DF L € callady @V )

pointcuts. The definition relies on a notion of subtypiy c<: d”, given in the same
table. Note that these definitions ignore the advice setadgtby methods.

The semantics of aspect programs is defined in Table 5. Rétheuse the seman-
tics of pointcuts directly, the rules for method invocati®a -DYN-MSG) and(Ra-STC-
MSG), rely on the advice sets declared by methods. We do this tdatewealistic ad-
vice lookup, which should be be based on the class hieratohgarlhe more naive ap-
proach would require that each method dispatch lock allelvi the heap; our seman-
tics is intended to be efficiently implementable. Wri2 i advicdc:: m) = [a; b]” if
a (resp.h) is the call advicergsp.execution advice) declared forin c. The definition
is also given in Table 5. The rul@ »-TOP) is required to ensure thdR,-DYN-MSG)
always succeeds in looking up execution advice, even if tathadm is not defined.
This is required for consistency with the woven program, seteall advice is executed
even if the objecb does not exist. Note thgR,-DYN-MSG) looks up the call and ex-
ecution advice at different types. The r§ke,-ADv-MSG1) describes the reduction of
execution advice. The rulg&,-ADV-MsG2) describes the reduction of call advice.

Clearly, the advice that appears in a method declaratiort rigonsistent with
that which is attached to a pointcut. We formalize this itibu ascoherencend define
a functionclosewhich creates coherent declaration sets. To maintain eolcet the
rule for inner declarationér,-DEC) usescloseto saturate the declaration set with new
classes and advice.

DEFINITION 1 (COHERENCH. A collection of geclaration§ is coherenf(resp.semi-
cohereny if wheneverD 5 adv b():@{_} andD > classc<: _{..m[a; @] ...} then

b € a iff (resp. impIies)Ii F c:me callady )
andb € @ iff (resp. implies)D I~ c:: m € execady)
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Table 5 Aspect-Based Reduction

Include all rules from Table 2, excefkc-DEC), (Rc-DYN-MSG) and(Rc-STC-MSG).

(La-TOP) (La-SUPER) _

D I- advicg Object::m) = [0 ; 0] D - advicgd::m) = [a; b]

(La-THIS) MZImQ {-}

69c|assc<:_{l\ﬁ,m[§;5]} D>classc<:d{M}

D+ advicdc::m) = [a; b] D F advicgc:m) = [a; b]
(Ra-DEC)

domains oD andE are disjoint
(D H, thrd p{new E; C})
—> (clos€D, E) - H, thrd p{C})

(EA—DYN—MSG)
H > objo:d{_}
D i advicgc:m) = [a; _]
D+ advicdd::m) = [_; b]
(D H, thrd p{let x=0:c.m(v) ; C})
— (D F H, thrd p{let x=0.m[a; b] (V) ;C})
(BA-STC-MSG) _
D+ advicdc::m) = [_; b]
(D H, thrd p{let x=0.c:z:m(V) ;C})
— (DF H, thrd p{let x=0.m[0; b] (V) ;C})

(Ra-ADV-MSG1)
D>advb(X):_{B -
> adv (_X) {B} _ ] b<b
(DFH, thrd p{let x=0.m[0; b,b] (V) ;C})
- (D FH, thrd p{ let X=O{ B[o/this.,o'mm;b]/proceed,v/i'(} },é})

(BA—ADV—MSGZ)
D>adva(X):-{B}
(D H, thrd p{let x=0.m[a,a; b] (V) ;C})

- ([_) F H_, thrd p{ let x=p{ B[p/this.,o/target,o'm[a; b7]/proceed,\7/3'<} } H é})

a<a

11
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DEFINITION 2 (CLOSE). We define the function clogB), which saturates class dec-
larations with advice:

(C-FIX)

D is coherent
clos€D) =D
(c-cALL)

D>adva():@{-}

Dk c:me callad@) _
D=E,classc<:d{M, m[a; b] }

clos€D) = closgE, classc<: d {M, m[a; b, b] })

(C-EXEC)

D>3advb():9{-}

D I c::m e execadyy) _
D=E,classc<:d{M, m[a; b] }

closgD) = closgE, classc<: d {M, m[a, a; b] })

LEMMA 1 (CLOSE). If D is semi-coherent, theziosgD) is coherent.
LEMMA 2 (COHERENCEPRESERVATION). Coherence is preserved by reduction.

Note that any program where each class declaration is takemthe class-based lan-
guage is semi-coherent by construction.

4 Weaving

The weaving algorithm translates aspect-based progratognmegrams in the class-
based language. The algorithm is not novel, being closelgaieal on that used by
AspectJ. Rather our contribution is that we have developsgegification of the cor-

rectness onyweaving algorithm.

Our goal is to show that the weaving algorithm preservessitiams made by the
source aspect program. We achieve this up to a trivial rengran methods+) de-
fined below. Corectness is formalized by demanding thatdhevfing diagram can be
completed.

weave weave
—— Q P———Q
| = | |
P P weave |
—_— ~

We also expect that a woven program not have spurious newvetieds. This is formal-
ized by demanding that the following diagram can be comglete

weave weave

P:>Q P:>Q
, , weave ,
Q P ~ Q



A Calculus of Untyped Aspect-Oriented Programs 13

4.1 Weaving as Macro Expansion

In order to motivate the ideas, we first describe a macro+esipa approach to weav-
ing, limiting our attention to execution pointcuts. Redhlat weaving is intended as
a compile-time process. Thus, the weaving process worksutfr the entire program
text. The effect of the weaving process will be to change wettalls to incorporate all
of the aspects advising the method.

ReadD I- weavé:) as the weaving of program fragmef} in the context of decla-
rationsD. The heart of the macro expansion approach to weaving iotlwving rule.
The body of a method is determined by selecting the body ofitsieadvice named in
the advice list. The rule is applied again, after substiythe remaining advice through
for proceed. Note that in the case that the adviceliss empty, then any calls troceed
will be blocked in the consequent.

D >advb®:_{C}

D+ weavd) = C' _

— - —— b#0
D+ weavéml[0; b,b]) = m(x) {C'}

This treatment directly captures the idea from the dynamimantics that a call to
proceed is a call to the succeeding aspect in the aspect list.

This implementation of weaving is not useful in practicednese it is not guaranteed
to terminate. Since weaving is intended to occur at compiie tnon-termination is a
bad thing.

4.2 Weaving by Introducing New Methods

We now describe a practical weaving algorithm which mimiccn expansion using
run-time method invocation. Our algorithm closely follothsit of AspectJ. Intuitively,
given a methodn affected by advica, we create an auxiliary method for each suffix of
the lista. Call advised methods are placed in the class of the callegr@as execution
advised methods are placed in the class of the callee.

We begin with an example in the aspect language, showingetthgction of a dy-
namically dispatched message. Consider the followingadlatibns:

obj p:Main {}

class Main{m[0; ma]l }

adv ma() :exec(Main::m) {letx=o0:c.m() ;return (); }
objo:c{}

classc{ml[ca; cbl}

adv ca() :call(czim) {let y=proceed () jreturn (); }

adv cb() :exec(c::m) {return (); }
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In the presence of these declarations, we can observe thwiiod reductions:

thrd p{letx=0:c.m(); }
(Ra-DYN-MSG) —> thrd p{letx=0.m[ca; cb]1();}
(Ra-ADV-MSG2) —> thrd p{let x=p{lety=0.m[0; cb] O ;return O; };}
(Ra-ADV-MSGL) —> thrd p{let x=p{lety=o{return (); };return O; }; }
(RA-RETURN) —> thrd p{let x=p{lety=();return (); };}
(Ra-VAL) —> thrd p{let x=p{return ();};}
(RA-RETURN) —> thrd p{letx=();}
(Ra-VAL) —> thrd p{}

Weaving the declarations produces:

obj p:Main {}
class Main{ m() {skip;let x=this.call_ca_m (o) ;return ();}
exec_ma () {skip;let x=this.call_ca_m (o) ;return (); }
call_ca_m(z) {lety=z.m() ;return (); }}
objo:c{}
classc{m() {return O;}
exec_cb () {return (); }}

Here “skip; C” is defined as fet x=x;C", where x does not appear free iB. The
resulting class-based reductions are as follows:

thrd p{skip;let x=p.call_.ca_m (o) ; }
(Rc-VAL) — thrd p{letx=p.call_ca_m (o) ; }
(Rc-DYN-MSG) — thrd p{let x=p{lety=0.m();return O; };}
(Rc-DYN-MSG) — thrd p{let x=p{lety=o{return (); };return O); }; }
(Rc-RETURN) — thrd p{let x=p{lety=();return O;};}
(Rc-VAL) — thrd p{let x=p{return (); };}
(Rc-RETURN) — thrd p{letx=(); }
(Rc-VAL) — thrd p{}

It is worth noting several things in this example. First, thethodexec_ma is in-
troduced intoMain, corresponding to the execution advicerarin Main. In addition,
call_ca_m is introduced intdVlain andexec_cb is introduced inta, corresponding to call
and execution advice an in c. Second, note that itall_ca_m, the call toproceed has
been replaced with a dynamically dispatched calhgrsent to the extra parameter
Since woven call advice is not defined in the target objetd'ss; the target object must
be passed using this additional parameter. Finally, naegtatuitous use ofskip;”;
the extra reduction is required to match the advice lookep G,-DYN-MSG) in the
aspect language.

The definition of weaving is split over two tables. Table 6eggithe rules for han-
dling execution advice; Table 7 gives the rules for handtialj advice. The definition
proceeds by structural induction on program fragments.dfarity, we use different
names when weaving different syntactic categoriesavefor programswdecfor dec-
larations,wheapfor heapsywmthfor methods, anevstackfor stacks. Each of these is a
total function on the respective domains.
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Table 6 Execution Advice Weaving

(W-PROG)

closgD) - wdedclosgD)) = D’
closgD) - wheagH) = H’

weavéD + H) = (D' + H')

(W-ADVICE)
DFwdedadv _():_{_})=0

(w-CLASS)

D - wmth(M) = M’

(W-OBJECT)
D+ wheafobj 0:c{F}) =objo:c{F}

(W-THREAD)

D+ wstackp{S}) = (M ; S)

D+ wdedclassc<:d{M}) =classc<:d {M'}

(w-METHOD)

D I genExecMtlib) = M

M 3 exec_b(%) {C}

D ~wmth(m[a; b]) =M, m(x) {C}

(GEN-EXEC)

D3advh(X):_{C}

D - wstacKthis{ C[this-m[0: DYy oceed] }) = (M’ ; C')

D - genExecMtifh') = M

D + wheagthrd p{S}) = thrd p{S'}

D I genExecMtlfb) = M, M’, exec_b(%) {C'}

(W-LET)

D+ wstacKq{S}) = (M ; S)

D - wstackp{C}) = (M"; C")

D - wstacKp{ let x={ S};C})
=(M,M'; letx=q{S };C")

(w-DEC)

closgD, E) - wdeqclosgE)
1))

El
M; C)

)

closgD,E) - wstackp{ C

(w-DYN-MSG1)
D - advicgc:m) = [0; ]
D wstackp{C}) = (M ; C')

)
)

D - wstack p{ let x=0:c.m(¥) ;C
= (M ; skip;let x=0.m(V) ; C'

(W-sTC-MSG) _
D+ wstackp{C}) = (M ; C')

D - wstackp{new E;C}) = (M; new E';C') D wstackp{let x=0.c:m(V);C})
= (M; skip;let x=0.czm(V) ;C')
(w-HEAP) _ _
Dr-wheagH) =H" (W-ADV-MSGL) 3
D Fwstackp{C}) = (M ; C') D+ wstackp{C}) = (M ; C')
D - wstacKp{new H;C}) = (M; new H';C') D - wstackp{ let x=0.m[0; bl (V) ;C})
= (M; let x=0.exec_b(V) ;C')

(W-OTHER)

no other command rules applies
D Fwstackp{C}) = (M ; C')
D+ wstackp{BC}) = (M; BC)

(W-NONE)

D+ wstackKp{}) = (0; 0)
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Table 7 Call Advice Weaving

(W-DYN-MSG2)

D - advicgc:m) = [a; .1

D + genCallMt{m; a) = M

D - wstackp{C}) = (M ; C)

_ - a0
D - wstacKp{ let x=0:c.m(¥) ;C})

= (M, M'; skip;let x=p.call_.am(o,v);C')
(W-ADV-MSG2) _
D + genCallMt{m; a) = M
D Fwstackp{C}) = (M'; C'

wstackp{C}) = ( ) 540

D - wstackp{ let x=0.m[a; -1 () ;C})

= (M, M'; let x=p.call_am(o,v);C')
(EEN—CALLl)
Qaadva(i):_{é} 3
DF WStaCKthiS{ é[ytarget,y'n}/proceed} }) = (M’ ) é’)
D + genCallMt{m; a) = M’, call_am(y,%) {C'}
(EEN—CALLZ)
D >adva(:_{C} B B
D+ WStaCKthiS{ é[y/target,this'm[a; m/proceed} }) = (M’ y é’) a=aa
D+ genCallMt{m; @) = M’, call_am(y,%) {C'} 740

The resulting of weaving is a class-based program withoytaaivice declaration;
thus (w-ADVICE) returns the empty set. Instegdy-CLASS) specifies that in a class
declaration, the method bodies must be woven. This in tuises{w-METHOD) to be
applied to each method in the class. The result of weavingthadenis a method suite
with a new method generated for each suffix of the aspectffistting m. The names
of the new methods are based on the declared advice; rougbbking, the method
exec_b handles the advice ligt

The rule(GEN-EXEC) specifies that the body of the newly created method is given
by the advice associated with the first aspect in the list) Wit proceed bound to the
method corresponding to the rest of the ligtEN-EXEC) generates the methods one
at a time, substituting fogroceed, in each, the progressively smaller advice set. Infor-
mally, this definition can be viewed as performing the maexpanded code described
in previous subsection inside of the newly created methatyb®dhus, in effect, the
actual expansion is postponed to runtime.

The commands in a method are woven as stacks with contrailijectthis; the
controlling object is used only when weaving call advice.a¥fag the commands in
(GEN-EXEC) may produce call advised metholE. In the end, all of the collected
methods are added back into the class u$imgiETHOD) and(W-CLASS).
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The rules for commands themselves are mostly straightfiatvidote however, that
(w-DYN-MSG1) and(w-STG-MSG) introduce an extra reduction, corresponding to ad-
vice lookup. Also note thatw-ADV-MSG1) substitutegxec_b for m[0; b].

The extension to call pointcuts is given in Table 7. Recait the call aspects asso-
ciated with a message are determined by the static type aflijeet. Apart from this
difference, the weaving process for call advised metHod®YN-MsG2) follows the
structure enunciated for execution advice. One differesiaads out, however; rather
than sending a message to the tagetall advised methods remain with the senpler
passingo as an additional parameter.

This extra parameter is substituted frarget when weaving the advice body in
(W-GEN-CALL 1) and (W-GEN-CALL 2), giving the call advice access to the target ob-
ject. Note in(w-GEN-CALL2) thatthis.m[a; 0] is substituted through fogroceed,
which is later converted tthis.call_a_m by (W-ADV-MSG2).

Note that if a subclass inherits a method it also inheritsaeociated call advice.

5 The Correctness of Weaving

Weaving is not correct for all programs. In particular weayidoes not support the
dynamic loading of advice that affects existing classethoalgh it is admissible to
load classes that are affected by existing advice. Becaesallaw for the weaving
of running threads — not something typically allowed in agdanguages — we also
must make a few other sanity requirements. In particularegeire that the controlling
object of all threads must be defined, and that all advisedagesn([_; _] in a thread
with controlling objectp should arise because some method defined in the class of
p is declared to send a messagenoln addition, we require that programs contain
no dangling references; along with the other requiremehis,ensures that all of the
required methods have been generated. We formalize thiesgdns in the following
notion ofweavability

DEFINITION 3 (WEAVABILITY ). We defineD; H; i+ weavablé.) on stacks in Ta-
ble 8. Extend the definition to programs and advice declamatas follows:
D;H;bn(H) - weavabl¢D) )
D;H; bn(H) - weavabléH) D; H; n,X,this, target - weavabléthis{ C})
weavabl¢D + H) D; H; N+ weavabléadv a(x) :_ {C})

Extend the definition to all other program constructs horharally using conjunction.
LEMMA 3. Weavability is preserved by reduction.

Even given weavability, our definition of weaving is not guéxact with respect
to the reduction semantics. As seen in the example in thes&dton, in the aspect
language a dynamic message is converted to an advised raessate reduction. The
names generated by weaving these are different in the casthére is no call advice.
The discrepancy cannot be handled during weaving, sincbsthef execution advice
cannot be determined statically. We therefore must worlouprelation that equates
with exec_b in the appropriate circumstances.
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Table 8 Weavability of Stacks

To simplify the definition we write “wheggp(H)” for * D F wheagH)", and “wdeg(E)” for
“D + wdedE)". Also, “write bn(H)” for the set of object names bound by heidp

(we-DEC)

wheags(H) = wheag,osqg o) (H) 3
closgwdegy (D), wdegosqp, o) (Clos€D’)))

= Wgegm@p, (closgD, D' )) (WC-HEAP
closgD, D'); H; n+ weavabl¢p{ C}) D; H,H';n,bn(H') - weavablép{ C})
D;H;n+ weavabl¢p{ new D';C}) D; H; i weavablép{ new H'; C})
(WC-ADV-MSG)
H>objo:c{_}
H > objp:d{_}
wdegos¢p) (cIose{D)) F body(c:: exec_ b) defined (WC-LET)
wdecdose(D (closgD)) - body(d:: call_am) defined D; H; it weavabléo{ S})
D; H; n,x+ weavabl¢p{ C}) D; H; n,x+ weavablé¢p{ C})
D; H;n+ weavablép{let x=0.m[a; b] (V) ;C}) D; H; i weavablép{ let x=0{ S}; C})
(WC-DYN-MSG) (WC-OTHERL)
oen no other let rule applies
D; H; n,x+ weavabl¢p{ C}) D; H; f,x+ weavablép{ C})
D; H; n+ weavablé¢p{ let x=0:c.m(¥) ;C}) D; H; it weavablép{let x=...;C})
(wWC-STC-MSG) (WC-OTHER2)
oen no other command rule applies
D; H;n,x+ weavabl¢p{ C}) D; H; n,x+ weavabl¢p{ C})
D; H; i+ weavablép{let x=0.c::m(V) ;C}) D;H; N+ weavabl¢p{BC})

DEerFINITION 4 (NAME EQUIVALENCE). Let ~ be the equivalence on class-based
commands generated by:

H Sobjo:d{-}

D I advicdd:m) = [_; b]

D; HE let x=0.m(V) ; ~ let x=0.exec_b(V) ;

D + advicdc:m) = [_; b]

D; HF let x=0.c::m(V) ; ~ let Xx=0.exec_b(V) ;

C is not a method call
D;HFC~C

Extend the definition to all other program constructs horhaally using conjunction.
LetP = (D H) andP' = (D' + H'). We write P ~ P when D; H+ P ~ P’ and
D;HFP~P.

THEOREM1. Suppose that an aspect-based program P is coherent and Weaaad
that P - P'. Then there exists somé,Quch thaiveavéP) — Q' and Q ~ weavéP').
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Suppose that an aspect-based program P is coherent and bieaaad thatveavéP)
— Q. Then there exists somé Buch that P> P' and P ~ weavdQ').

6 Related work

We refer the reader to the October 2001 issue of CACM for a gelmmsive survey and
references to the range of approaches and applications Bf M@re, we restrict our-
selves to the several recent efforts to formalize and pesichple conceptual models
of some features of aspect-oriented languages.

There are several efforts focused largely on weaving andtkerstanding of point-
cuts. For example, The Aspect SandBox [10] provides a tdstbexperiment with
weaving strategies. Wand, Kiczales, and Dutchyn [21], gienotational semantics
for a mini-language that embodies the key features of dyagoin points, pointcut des-
ignators, and advice. R. Douence and O. Motelet and M. Stiffjaescribe a domain-
specific language for the definition of crosscuts and skefutotype implementation
in Java which has been systematically derived from the laggudefinition. H. Ma-
suhara, Kiczales and Dutchyn [17] present a semanticsdb@sapilation framework
for an aspect-oriented programming language. Using pas&uation, the framework
studies which aspects can be woven in at compile time andhadigpatches must be
executed at run-time.

In contrast to this line of research, our aim has been to devah independent
specificatiorof weaving. We have taken the point of view that the operatisamantics
of the aspect language validates a given implementatioreafimg. In this sense, our
approach is complementary to this body of work. One mighesay that a suitable
mixture of these ideas could resultin a model of a real-Kfeext-oriented programming
language.

The research closest to the spirit of our paper is the corntiand independent
work of Walker, Zdancewic and Ligatti [20]. This paper stesla powerful core calculus
of aspects, not including subtyping, where both advice amtpoints are first class
entities that can be created and manipulated at runtimeh®wore hand, their paper
proves a type soundness theorem for a calculus with featuaeare not available in our
core calculus. On the other hand, their study focuses onabe af execution pointcuts
by assuming that the source code of the advised method islaleafor transformation.

From a more foundational viewpoint, Meuter [18] describei@wof aspects as
monads. In this view, the weaver then becomes a lifter tosfram programs through
different monads. Andrews [3] views aspects in a procegskahic context. Both these
papers can be viewed as attempts to translate aspectshetdi@meworks. In contrast,
our work follows the line of research into object calculi ahéir adaptations to partic-
ular programming languages such as Java. In this spiritiudysispects as a primitive
computational entity in their own right.
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