
Distributed Embedded Real-Time Systems for Education - TTcar

C. V. Madritsch
Real-Time Systems and Computer Science

Carinthia Tech Institute
Europastrasse 4, Villach, 9524, Austria

Phone: +43 4242 90500 2127 Fax: +43 4242 90500 2110 E-mail: cm@cti.ac.at

Distributed Embedded Real-Time Systems are becoming
more important in the industrial sector. Applications in the
field of automotive, aerospace and industrial control require
a deep understanding of system design, implementation as
well as validation and verification. These requirements need
to be fulfilled during the education of future engineers. The
Carinthia Tech Institute (CTI), department of Real-Time
Systems (RTS), uses real-world applications like a model-
sized car to teach the fundamental principles of Real-Time
Systems design.

I. INTRODUCTION

Safety critical applications, like Flight Control Systems
(FCS) or X-by-Wire Systems (e.g. brake-by-wire) require
a new kind of design methodology. The main difference
between these systems is that they need to be distributed in
order to guarantee independence in the case of a fault [1].
Therefore reliable communication systems are needed to
interconnect the distributed parts of the system. This
design approach is totally different from the classic
centralized systems design approach. Engineers need to
develop a holistic view of the application and break it into
its distributed parts. The planning of message delivery,
task activation and redundancy management needs to be
done before the actual system implementation begins.

CTI has developed a model-sized car (see Fig. 1.) to
teach this design and implementation methodology to
undergraduate students. The model-sized car (Time-
Triggered Car – TTcar) consists of up to eleven
independent hardware nodes which are interconnected
using the fault-tolerant communication system TTP. The
whole functionality is distributed among these nodes and
all used components have been developed by students. The
design flow, based upon tools like Matlab, Simulink and
TTPtools, has also been setup by students and is exercised
during the Real-Time Systems lecture.

The distribution of this paper is as follows: Chapter II
explains the basic functionality of the TTcar. The main
focus is on core components like drive and steering.
Chapter III describes the mechanical and electrical
construction as well as the used algorithms for drive and
steering. Chapter IV focuses on the communication system
TTP which interconnects the used hardware nodes. First it
describes the basic principles of TTP. Finally it describes
how the message schedule of the TTcar has been
generated. Chapter V shows the design flow which needs
to be executed by students. At the beginning is describes
the overall system architecture and the partitioning into
subsystems, tasks and hardware nodes. This chapter also
gives a brief explanation of the used tools. Chapter VI
finally concludes this paper.

Fig. 1. Time Triggered Car - TTcar

II. ATTRIBUTES AND FUNCTIONS

The reason behind constructing the TTcar was that
students in the area of Real-Time Systems are able to work
on a real world functional model of a distributed real-time
system. It not only gives an example how to plan and
develop such systems but also shows the principles of X-
by-Wire applications. Industrial partners like Magna Steyr
(Graz, Austria) or TTTech (Vienna, Austria) are partly
using the same algorithms, concepts and technology as we
use in the TTcar.

The basic functionality of the TTcar can be divided into
two parts: initialization and startup (1) and normal
operation (2). During initialization and startup, all
hardware nodes perform a self test. If this self test is
successful the communication system starts. If necessary,
initialization routines need to be executed in order to align
the wheels or to reach predefined setup positions.

During normal operation the TTcar can be controlled
either via a stand-alone remote control (RC) unit or a PC
using a serial interface connection. The RC unit has also
been developed by students and can be used to visualize
the TTcar status messages. The PC can be used as a
development, test and monitoring platform. The low level
functionality in normal operation mode is that each wheel
can be driven and steered independently. On a higher level
of abstraction, attributes like four-wheel steering, parallel
steering, tank steering, velocity dependent steering or
geometrically correct drive are available. Those modes can
be selected using the RC unit or the development PC and
affect the behavior of the TTcar immediately.

III. MECHANICAL AND ELECTRICAL

CONSTRUCTION

Some mechanical components (e.g. wheel suspension,

wheels) have been available on the model-sized car
market. Other parts (e.g. chassis) have been constructed
and assembled by our students [2].

The electrical construction includes power supply,
sensors and actuators and the hardware nodes.
Furthermore a remote control system has been included.
The power supply has been realized using two NiMH
battery packs. One battery pack supplies the sensors, the
RC systems and the hardware nodes. The second battery
pack is responsible for the power supply of the actuators.
Incremental encoders have been used to measure the
steering angle and the RPM of the wheels. An analog
potentiometer measures the zero alignment of the wheels
and an ultrasonic sensor measures the distance to
obstacles. Eight 15W brushless DC-motors (including
motor drivers and gearbox unit) have been used to control
the steering and drive functionality of the TTcar. The
hardware nodes (see Fig. 2. TTcar Hardware Node) consist
of a Microchip PIC16F877 microcontroller, an oscillator,
the physical layer and interface to the TTP communication
system and the interface to the sensors and actuators.
Furthermore a PID-based digital motion control unit
(LM629) has been used in order to perform position and
velocity control.

Fig. 2. TTcar Hardware Node

The remote control system has been realized using

standard components for transparent RS232 - RC - RS232
communication. One Hardware node is equipped with an
additional RS232 interface. Fig. 3. gives an overview
about the overall structure of the TTcar including all
nodes, their purpose and the wiring of the TTP
communication system.

Fig. 3. TTcar Node Structure

The data received at the RC interface of the TTcar
includes the steering and drive mode, the desired velocity
and the desired steering angle of the car in total. This
information is distributed to all nodes. Each node
calculates its part (e.g. Node 1 Steer Front Left calculates
the new desired value for the Front Left steering motor)
and applies it to the corresponding actuator. Furthermore
each node sends the actual value of its sensor (e.g. Node 1
Steer Front Left reads the incremental encoder value and
converts it into steering angle units) to the RC node. The
RC node transmits all sensor information to the PC or a
stand-alone RC unit.

IV. TTP COMMUNICATION

A time-triggered system based on TTP provides both
fault-tolerance for safety applications, such as brake-by-
wire, and flexibility for on-line diagnosis. Furthermore
erroneous components within a TTA system cannot affect
other components [3]. All protocol tasks in TTP are
executed according to an a priori known schedule. The
TTP provides the required global base. Bus access is
realized using Time Division Multiple Access (TDMA).
Therefore nodes cannot interfere with each other. TTP can
be implemented as a bus or as a multi-star on different
physical layers (e.g. fiber optics or wire). Data
transmission rates are not limited by the protocol. TTP has
a very high data efficiency of approximately 85%

The TTP message schedule used for the TTcar includes
sensor and actuator information, control commands and
general status information. One round within the TTcar
TTP schedule has a period of 10msec. Fig. 4. is an
example message schedule consisting of four nodes and
two communication rounds.

Fig. 4. TTP Schedule

The TTP schedule is stored on each communicating

node and by using the global time base, each node is able
to recognize the send and receive frames on the
communication media.

V. DESIGN FLOW

In a distributed system, the overall system functionality

(e.g. brake-by-wire) is divided into several subsystems
(e.g. pedal-sensing subsystem, brake-force calculation
subsystem, and wheel-speed sensing subsystem). To
feature composability and fault-tolerance, the interface
between the subsystems needs to be specified in both the
time- and value-domain.

At system level, a system integrator (e.g. an automotive
company) defines the subsystem functions and specifies

the communication interfaces in the time- and value-
domain precisely. At the subsystem level, the component
supplier retains complete control over all hardware and
software design decisions as long as they comply with
these interfaces.

This Two-Level Design Approach is supported by a
tool-chain (e.g. TTPtools) which allows the seamless
development and integration of different subsystems into
one distributed system.

In Fig. 5. the upper half reflects the role of the system
integrator. The cluster-design is the process of partitioning
a system into several independent subsystems and defining
the interfaces among each other. The result of the cluster-
design process is a cluster-design database. The cluster-
design process can be done using the tool TTPplan.

Fig. 5. TTcar Design Flow

The lower half of Fig. 5. represents the role of the

component supplier. At the node-design, individual
subsystems are partitioned into software-tasks and the
corresponding messages between each other are defined.
The results of the node-design are the configuration
information for the node’s real-time operating system (e.g.
TTPos), the automatic generated source-code for the fault
tolerance layer (e.g. OSEKtime compliant FTcom layer)
and a node-design database. This node-design process can
be done using the tool TTPbuild.

Due to changing system requirements and
specifications, it is occasionally necessary to repeat the
development process in order to achieve the system
constraints. Also, if the system has to be timely optimized,
an iterative approach, which basically repeats the cluster-
and node-design, is applicable.

In some industries (e.g. automotive or aerospace) a
model based design approach is used to design, develop,
and implement embedded systems. Therefore it is
necessary that the tools in use can be applied at a very
early stage of the system design. Fig. 6. shows, how the
TTPtools can be used in the case of a model based design.

Fig. 6. Model Based Design Flow

TTPmatlink is a Matlab/Simulink blockset, which

enables a behavioral simulation of the distributed system
in the time- and value-domain. It partitions the system into
subsystems and it partitions these subsystems into tasks.
Furthermore, it defines the messages between the
subsystems and the tasks. The TTcar consists of eight
subsystems, 23 tasks, and 11 nodes.

IV. CONCLUSION

The TTcar was designed and constructed three years ago

and has been used ever since as a demonstration and
development environment for undergraduate students. The
good feedback of companies, which employ our graduates,
tells us, that the acquired knowledge and skills in the filed
of RTS is state of the art and relevant for a variety of R&D
engineering positions.

REFERENCES
 [1] M. Ley, C. Madritsch, Distributed Embedded Safety

Critical Real-Time Systems, Design and Verification
Aspects on the Example of the Time Triggered
Architecture, 39th International Conference on
Microelektronics, Devices and Materials MIDEM03,
Proceedings p51-62, ISBN 961-91023-1-2, Slovenia,
October 2003

[2] C. Madritsch, Projektorientierte Ausbildung im Bereich
der Echtzeitsysteme an der Fachhochschule Technikum
Kärnten, Informationstagung Mikroelektronik (ME 2003),
Wien, Österreich, Oktober 2003

[3] C. Madritsch, Automated Fault-Injection for Distributed
Real-Time Systems, NI-WEEK 2004, Austin TX, USA,
2004

