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Distributed Embedded Real-Time Systems are becoming 
more important in the industrial sector. Applications in the 
field of automotive, aerospace and industrial control require 
a deep understanding of system design, implementation as 
well as validation and verification. These requirements need 
to be fulfilled during the education of future engineers. The 
Carinthia Tech Institute (CTI), department of Real-Time 
Systems (RTS), uses real-world applications like a model-
sized car to teach the fundamental principles of Real-Time 
Systems design. 

 
 

I. INTRODUCTION 
 

Safety critical applications, like Flight Control Systems 
(FCS) or X-by-Wire Systems (e.g. brake-by-wire) require 
a new kind of design methodology. The main difference 
between these systems is that they need to be distributed in 
order to guarantee independence in the case of a fault [1]. 
Therefore reliable communication systems are needed to 
interconnect the distributed parts of the system. This 
design approach is totally different from the classic 
centralized systems design approach. Engineers need to 
develop a holistic view of the application and break it into 
its distributed parts. The planning of message delivery, 
task activation and redundancy management needs to be 
done before the actual system implementation begins. 

CTI has developed a model-sized car (see Fig. 1.) to 
teach this design and implementation methodology to 
undergraduate students. The model-sized car (Time-
Triggered Car – TTcar) consists of up to eleven 
independent hardware nodes which are interconnected 
using the fault-tolerant communication system TTP. The 
whole functionality is distributed among these nodes and 
all used components have been developed by students. The 
design flow, based upon tools like Matlab, Simulink and 
TTPtools, has also been setup by students and is exercised 
during the Real-Time Systems lecture. 

The distribution of this paper is as follows: Chapter II 
explains the basic functionality of the TTcar. The main 
focus is on core components like drive and steering. 
Chapter III describes the mechanical and electrical 
construction as well as the used algorithms for drive and 
steering. Chapter IV focuses on the communication system 
TTP which interconnects the used hardware nodes. First it 
describes the basic principles of TTP. Finally it describes 
how the message schedule of the TTcar has been 
generated. Chapter V shows the design flow which needs 
to be executed by students. At the beginning is describes 
the overall system architecture and the partitioning into 
subsystems, tasks and hardware nodes. This chapter also 
gives a brief explanation of the used tools. Chapter VI 
finally concludes this paper. 

 

 
Fig. 1. Time Triggered Car - TTcar 

 
 

II. ATTRIBUTES AND FUNCTIONS 
 

The reason behind constructing the TTcar was that 
students in the area of Real-Time Systems are able to work 
on a real world functional model of a distributed real-time 
system. It not only gives an example how to plan and 
develop such systems but also shows the principles of X-
by-Wire applications. Industrial partners like Magna Steyr 
(Graz, Austria) or TTTech (Vienna, Austria) are partly 
using the same algorithms, concepts and technology as we 
use in the TTcar. 

The basic functionality of the TTcar can be divided into 
two parts: initialization and startup (1) and normal 
operation (2). During initialization and startup, all 
hardware nodes perform a self test. If this self test is 
successful the communication system starts. If necessary, 
initialization routines need to be executed in order to align 
the wheels or to reach predefined setup positions.  

During normal operation the TTcar can be controlled 
either via a stand-alone remote control (RC) unit or a PC 
using a serial interface connection. The RC unit has also 
been developed by students and can be used to visualize 
the TTcar status messages. The PC can be used as a 
development, test and monitoring platform. The low level 
functionality in normal operation mode is that each wheel 
can be driven and steered independently. On a higher level 
of abstraction, attributes like four-wheel steering, parallel 
steering, tank steering, velocity dependent steering or 
geometrically correct drive are available. Those modes can 
be selected using the RC unit or the development PC and 
affect the behavior of the TTcar immediately. 

 



 
III. MECHANICAL AND ELECTRICAL 

CONSTRUCTION 
 
Some mechanical components (e.g. wheel suspension, 

wheels) have been available on the model-sized car 
market. Other parts (e.g. chassis) have been constructed 
and assembled by our students [2].  

The electrical construction includes power supply, 
sensors and actuators and the hardware nodes. 
Furthermore a remote control system has been included. 
The power supply has been realized using two NiMH 
battery packs. One battery pack supplies the sensors, the 
RC systems and the hardware nodes. The second battery 
pack is responsible for the power supply of the actuators. 
Incremental encoders have been used to measure the 
steering angle and the RPM of the wheels. An analog 
potentiometer measures the zero alignment of the wheels 
and an ultrasonic sensor measures the distance to 
obstacles. Eight 15W brushless DC-motors (including 
motor drivers and gearbox unit) have been used to control 
the steering and drive functionality of the TTcar. The 
hardware nodes (see Fig. 2. TTcar Hardware Node) consist 
of a Microchip PIC16F877 microcontroller, an oscillator, 
the physical layer and interface to the TTP communication 
system and the interface to the sensors and actuators. 
Furthermore a PID-based digital motion control unit 
(LM629) has been used in order to perform position and 
velocity control. 

 

 
Fig. 2. TTcar Hardware Node 

 
The remote control system has been realized using 

standard components for transparent RS232 - RC - RS232 
communication. One Hardware node is equipped with an 
additional RS232 interface. Fig. 3. gives an overview 
about the overall structure of the TTcar including all 
nodes, their purpose and the wiring of the TTP 
communication system. 

 
Fig. 3. TTcar Node Structure 

 

The data received at the RC interface of the TTcar 
includes the steering and drive mode, the desired velocity 
and the desired steering angle of the car in total. This 
information is distributed to all nodes. Each node 
calculates its part (e.g. Node 1 Steer Front Left calculates 
the new desired value for the Front Left steering motor) 
and applies it to the corresponding actuator. Furthermore 
each node sends the actual value of its sensor (e.g. Node 1 
Steer Front Left reads the incremental encoder value and 
converts it into steering angle units) to the RC node. The 
RC node transmits all sensor information to the PC or a 
stand-alone RC unit. 

 
 

IV. TTP COMMUNICATION 
 

A time-triggered system based on TTP provides both 
fault-tolerance for safety applications, such as brake-by-
wire, and flexibility for on-line diagnosis. Furthermore 
erroneous components within a TTA system cannot affect 
other components [3]. All protocol tasks in TTP are 
executed according to an a priori known schedule. The 
TTP provides the required global base. Bus access is 
realized using Time Division Multiple Access (TDMA). 
Therefore nodes cannot interfere with each other. TTP can 
be implemented as a bus or as a multi-star on different 
physical layers (e.g. fiber optics or wire). Data 
transmission rates are not limited by the protocol. TTP has 
a very high data efficiency of approximately 85% 

The TTP message schedule used for the TTcar includes 
sensor and actuator information, control commands and 
general status information. One round within the TTcar 
TTP schedule has a period of 10msec. Fig. 4. is an 
example message schedule consisting of four nodes and 
two communication rounds. 

 

 
Fig. 4. TTP Schedule 

 
The TTP schedule is stored on each communicating 

node and by using the global time base, each node is able 
to recognize the send and receive frames on the 
communication media. 

 
 

V. DESIGN FLOW 
 
In a distributed system, the overall system functionality 

(e.g. brake-by-wire) is divided into several subsystems 
(e.g. pedal-sensing subsystem, brake-force calculation 
subsystem, and wheel-speed sensing subsystem). To 
feature composability and fault-tolerance, the interface 
between the subsystems needs to be specified in both the 
time- and value-domain. 

At system level, a system integrator (e.g. an automotive 
company) defines the subsystem functions and specifies 



the communication interfaces in the time- and value-
domain precisely. At the subsystem level, the component 
supplier retains complete control over all hardware and 
software design decisions as long as they comply with 
these interfaces. 

This Two-Level Design Approach is supported by a 
tool-chain (e.g. TTPtools) which allows the seamless 
development and integration of different subsystems into 
one distributed system. 

In Fig. 5. the upper half reflects the role of the system 
integrator. The cluster-design is the process of partitioning 
a system into several independent subsystems and defining 
the interfaces among each other. The result of the cluster-
design process is a cluster-design database. The cluster-
design process can be done using the tool TTPplan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. TTcar Design Flow 
 
The lower half of Fig. 5. represents the role of the 

component supplier. At the node-design, individual 
subsystems are partitioned into software-tasks and the 
corresponding messages between each other are defined. 
The results of the node-design are the configuration 
information for the node’s real-time operating system (e.g. 
TTPos), the automatic generated source-code for the fault 
tolerance layer (e.g. OSEKtime compliant FTcom layer) 
and a node-design database. This node-design process can 
be done using the tool TTPbuild. 

Due to changing system requirements and 
specifications, it is occasionally necessary to repeat the 
development process in order to achieve the system 
constraints. Also, if the system has to be timely optimized, 
an iterative approach, which basically repeats the cluster- 
and node-design, is applicable. 

In some industries (e.g. automotive or aerospace) a 
model based design approach is used to design, develop, 
and implement embedded systems. Therefore it is 
necessary that the tools in use can be applied at a very 
early stage of the system design. Fig. 6. shows, how the 
TTPtools can be used in the case of a model based design. 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Model Based Design Flow 
 
TTPmatlink is a Matlab/Simulink blockset, which 

enables a behavioral simulation of the distributed system 
in the time- and value-domain. It partitions the system into 
subsystems and it partitions these subsystems into tasks. 
Furthermore, it defines the messages between the 
subsystems and the tasks. The TTcar consists of eight 
subsystems, 23 tasks, and 11 nodes. 

 
 

IV. CONCLUSION 
 
The TTcar was designed and constructed three years ago 

and has been used ever since as a demonstration and 
development environment for undergraduate students. The 
good feedback of companies, which employ our graduates, 
tells us, that the acquired knowledge and skills in the filed 
of RTS is state of the art and relevant for a variety of R&D 
engineering positions. 
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