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1 IntroductionAssociated to any real-valued function is a number called its spectral norm. Let us begin by sayingwhat it is.1.1 De�nitionsFor each z 2 f0; 1gn we de�ne �z : f�1;+1gn ! f�1;+1g by�z(x) = (�1) 14 (1�z1)(1�x1)+���+ 14 (1�zn)(1�xn) :These are the parity functions, and they form a basis for the vector space of boolean functions onthe n-cube. In other words, every boolean function f : f�1;+1gn ! f�1;+1g can be uniquelyexpressed as a linear combination of the parity functions. This linear combination is the Fourierseries of f . We will denote by bf (z) the coe�cient of �z in the Fourier series of f , so that this Fourierseries is f(x) =Pz2f�1;+1gn bf(z)�z(x). One can show that bf(z) = 2�nPx2f�1;+1gn f(x)�z(x). Thespectral norm of f , which we denote by L(f), is the sum of the absolute values of the coe�cientsin the Fourier series. That is, L(f) def= Pz2f�1;+1gn j bf(z)j.1.2 The ProblemSpectral techniques have many applications in which the spectral norm plays a key role. Oneexample is learning: we know that if L(f) is polynomially bounded then f is learnable (under theuniform distribution with membership queries) in polynomial time [KM]. Another example is inthe domain of threshold circuits (or neural nets): we know that if L(f) is polynomially boundedthen f can by computed by a threshold circuit of small depth [BS].To use such theorems, we need to �rst show that L(f) is small. So it is important to �nd waysof computing good upper bounds on the spectral norm, and thereby, in particular, identifying thefunctions which have polynomially bounded spectral norm.However, bounding the spectral norm seems to be a hard problem. This is perhaps not surprisingsince L(f) is, after all, a complex object: it is an exponential sized sum, each term of which is itselfan exponential sized sum, and estimating all the relevant quantities often de�es analysis, even forquite simple functions. But the consequence is that good upper bounds on L(f) are only knowneither for very simple functions (like parity, AND and OR) or for functions where one can computeL(f) exactly by exploiting a convenient inductive structure (like the comparison function [SB]).And so far there have been no general techniques to compute upper bounds: the approach used isto work directly from the de�nition.This paper presents a general technique to upper bound the spectral norm. Below we describethe technique and then some applications.1.3 Our SolutionThe key to our solution is to �nd a \language" for expressing one function f in terms of otherfunctions g1; : : : ; gm which has the property that there is an automatic way to derive a bound on2



L(f) from bounds on L(g1); : : : ; L(gm). Then by choosing g1; : : : ; gm to be functions for which weknow bounds on the spectral norm | these can be computed recursively if necessary | we can geta bound on L(f). The di�culty of course is in �nding a language which is su�ciently expressive andalso has the property that we can prove the necessary theorems which enable us to automaticallycombine bounds on L(g1); : : : ; L(gm) into a bound on L(f). As we will prove below, the languageof universal decision trees meets both criteria. Let us now make all this more precise and proceedto describe the main theorem.A universal decision tree over n variables is a (full) binary tree in which each node is labeledby a boolean function f�1;+1gn ! f�1;+1g. The function from f�1;+1gn to f�1;+1g which atree computes is de�ned as follows. On any input x 2 f�1;+1gn, we start at the root and executethe following procedure until we get an output. At an internal node labeled by g : f�1;+1gn !f�1;+1g we branch to the left if g(x) = �1 and to the right if g(x) = +1. At a leaf labeled byg : f�1;+1gn ! f�1;+1g we output g(x) as the value computed by the tree at this input x. Weidentify the decision tree with the function it computes and the nodes with the functions labelingthem, so that we can speak of the spectral norm L(T ) of a decision tree T or the spectral norm ofa node.It is crucial in this de�nition that we allow the nodes to compute any boolean function. Thismeans our \language" has maximal expressive power and the main theorem (which we now state)is of maximum generality.Theorem 1.1 (Main Theorem) Let T be a universal decision tree. ThenL(T ) � Pleaves l L(gl) Qancestors i of l 12 [L(gi) + 1]where gi is the function labeling node i of T .We will call Pleaves l L(gl)Qancestors i of l 12 [L(gi)+1] the weight of T . We note that this weight canbe (easily) computed given the spectral norms of the functions in the nodes of T .This main theorem is the \automatic" procedure we need. It shows how to combine bounds onthe norms of the nodes into a bound on the norm of the tree.The full technique should now be clear. If we want a bound on L(f), we express f as a decisiontree whose nodes compute functions whose norms we already have bounds on (and if bounds onthe norms of the nodes are not known, they can be obtained recursively). We then compute theweight of the tree. The main theorem says this is an upper bound on L(f). Part of the success ofthe technique depends, of course, on making the \right" choice of how to express f as a universaldecision tree, amongst the many possible ways the given function f can be expressed as a universaldecision tree. The examples in later sections will illustrate.How good is the bound given by our main theorem? Some indication is provided by the fact thatfor restricted classes of decision trees where bounds on L(T ) were known, the bounds our theoremyields are the same or better. In particular for parity decision trees (each internal node is labeledby a parity function �s and each of leaf is labeled +1 or �1) our theorem yields L(T ) � djT j=2ewhich is (a slight improvement of) what [KM] had already proved for this special case (jT j is thenumber of nodes in T ). We note however that parity decision trees are not themselves expressiveenough to serve as the basis for a general technique to bound spectral norms.3



1.4 ApplicationsOur main theorem has several applications to the design of e�cient learning algorithms.Learning DNF. We address the problem of learning DNF formulas [Va]. Linial, Mansour andNisan [LMN], Verbeurgt [Ve], and Furst, Jackson and Smith [FJS] consider (�; �;D) learning ofDNF formulas: after seeing a collection of examples of the target f drawn under distribution D, thealgorithm must output a hypothesis h which with probability at least 1�� satis�es Prx2RD[f(x) 6=h(x)] � �. The �rst two works present quasi-polynomial (in n; ��1; lg ��1) time algorithms forthis task when D is the uniform distribution, and the last generalizes to mutually-independentdistributions. To date, no polynomial time algorithm for learning (general) DNF is known.An often studied special case is k-DNF, where the number of literals per term is at most k.Here we will consider a di�erent type of restriction. We allow any number of literals per term, butask that the number of terms be small.The model we consider in this paper is that of learning under the uniform distribution given theability to make membership queries. More precisely, a learning algorithm receives as input 1n; � > 0and � > 0, and is allowed to query the target function f : f�1;+1gn ! f�1;+1g. It is required tooutput a hypothesis h which with probability at least 1� � satis�es Prx2Rf�1;+1gn [f(x) 6= h(x)] ��. The running time of the algorithm is measured in terms of n; ��1 and lg ��1 (in particular,polynomial time means polynomial in these quantities). For a more formal description of themodel we refer the reader to Section 6.1.Theorem 1.2 The class of DNF formulas which have O(logn) terms is learnable in polynomialtime.More generally, we show that a k-term DNF formula is learnable in time polynomial in n; 2k; ��1,and lg ��1.Independently of this work, Blum and Rudich [BR] present an algorithm which uses membershipand equivalence queries to (exactly) learn a k-clause DNF formula in time polynomial in n and 2k.Learning Decision Trees. We present a general result about learning decision trees.Theorem 1.3 If a class of (universal) decision trees has polynomially bounded weight then it islearnable in polynomial time.Several special cases of this theorem are of interest. See Section 6.1 for details on these applications.All of the above learning results are obtained by using our main theorem to bound the spectralnorm of the class of functions in question and then applying the learning algorithm of [KM].Minimizing the depth of neural nets. Threshold circuits (or neural nets) are circuits whosegates are linear threshold functions (see Section 6.4 for full de�nitions). The depth of the circuitis an important measure of e�ciency, and much work in the area has concentrated on depth4



minimization [HMPST, Br, BS, SB]. Spectral theory has provided an important tool for this taskwith a theorem which says that functions of polynomially bounded spectral norm have depth twothreshold circuits [BS]. Combining this with our main theorem yields a novel tool.Theorem 1.4 If a boolean function is expressible as a universal decision tree of polynomiallybounded weight then it is computable by a depth two threshold circuit.Moreover, in the design of a neural net it is often the case that one needs to combine simplefunctions into a more complex circuit. The above theorem is particularly suited to this type ofapplication, since it automatically provides a way to get small depth circuits for combinations ofsimple functions.We note that the theorem of [BS], and in consequence ours, are non-constructive.The results of this paper appeared previously in [Be1] and [Be2].2 Preliminaries\Boolean" for us means �1 valued. A function f : f�1;+1gn ! R is boolean if its range is f�1;+1g.The sign of x 2 R, denoted sign (x), is �1 if x < 0, unde�ned if x = 0, and +1 if x > 0. The signof ff�1;+1gn ! R, denoted sign (f) is the map de�ned by x 7! sign (f(x)).We identify a string z 2 f�1;+1gn with the set f i : zi = �1 g. With this convention, we applyset-theoretic notation to strings, using expressions like \i 2 z" or \y4 z" (4 is the symmetricdi�erence) where y; z 2 f�1;+1gn and 1 � i � n.We de�ne the inner product of f; g : f�1;+1gn ! R byhf; gi = 2�nPx2f�1;+1gn f(x)g(x) :Note that hf; gi = E[fg] where the expectation is over the uniform distribution on the inputs. Thenorm associated to this inner product is kfk = qhf; fi :The parity functions are the functions �z : f�1;+1gn ! f�1;+1g de�ned for z 2 f�1;+1gn by�z(x) = (�1) 14 (1�z1)(1�x1)+���+ 14 (1�zn)(1�xn). That is, �z(x) is �1 if the number of indices i at whichzi = xi = �1 is odd, and 1 otherwise. It is well known that f�zgz2f�1;+1gn is an orthonormal basisfor the vector space of real valued functions on f�1;+1gn (the orthonormality is with respect tothe inner product de�ned above). A useful property of the parity functions is that �a�b = �a4 b.Now suppose f : f�1;+1gn ! R. Thenf = P z2f�1;+1gn bf(z)�zwhere bf(z) = hf; �zi = 2�nPx2f�1;+1gn f(x)�z(x). This (unique) expansion of f in terms ofthe parity basis is its Fourier series . The Fourier coe�cients of f are the real numbers bf (z)5



( z 2 f�1;+1gn). The sequence of Fourier coe�cients is also called the spectrum of f .y TheFourier transform is the operator F de�ned by F(f) = bf . This operator is linear: F(af + bg) =aF(f) + bF(g) for real a; b and functions f; g : f�1;+1gn ! R. The spectral norm (or just norm)of f is L(f) def= P z2f�1;+1gn j bf(z)j :In the context of norms, \small" means polynomially bounded (as a function of n) and \large"means not small. Parseval's identityP z2f�1;+1gn bf (z)2 = kfk2follows directly from the orthonormality of the basis. It follows that if f is boolean thenPz2f�1;+1gn bf(z)2 = 1. A consequence of this last fact is the followingProposition 2.1 L(f) � 2n=2 for any boolean function f : f�1;+1gn ! f�1;+1g.3 Main TheoremHere we present our general technique for upper bounding the spectral norm of a universal decisiontree.De�nition 3.1 A universal decision tree with input length n is a (full) binary treey in which eachnode is labeled by a function from f�1;+1gn to f�1;+1g.Note that we do not restrict the functions labeling the nodes: any boolean function is allowed.T computes (or de�nes) a function from f�1;+1gn to f�1;+1g in a natural way which wenow describe. Suppose x 2 f�1;+1gn. The value of T (x) is obtained by repeating the followingprocedure, starting at the root, until an output is obtained:� If the current position is an internal node, then branch to the left if g(x) = �1 and to the rightif g(x) = +1, where g is the function labeling this internal node.� If the current position is a leaf, then output g(x) where g is the function labeling this leaf.We identify the decision tree with the function it computes and the nodes with the functions labelingthem, so that we can speak of the spectral norm L(T ) of a universal decision tree T or the spectralnorm of a node. jT j will denote the number of nodes in T .In order to formulate our main theorem we �rst need some de�nitions. Indeed, most of thework here lies in making the correct de�nitions and once this is done the main theorem will followquite easily.We assign to each function a number which we will call its degree. The degrees of the constituentnodes will enable us to measure the spectral norm of a decision tree. The de�nition itself is verysimple:y Some intuition about the Fourier coe�cients may be gathered by observing that bf(z) = Pr[f(x) = �z(x)] �Pr[f(x) 6= �z(x)], the probabilities being over a random choice of the input x.y By this we mean that every node has either two children or no children.6



g�������	�1 @@@R+1AAAAA����� T+1����� AAAAAT�1Figure 1: The decision tree TDe�nition 3.2 The degree of g : f�1;+1gn ! f�1;+1g is deg (g) def= 12 [L(g) + 1].So the degrees are, strictly speaking, the spectral norms themselves: it is just more convenient to\translate" slightly. Note that L(g) � 1 for any boolean g. So 1 is also the minimal degree of anyboolean function.We will assign to each decision tree a weight which is computed as a function of the spectralnorms (or, more precisely, the degrees) of its constituent nodes.De�nition 3.3 The weight w(T ) of a universal decision tree T is de�ned by induction as follows:� If jT j = 1 then we let w(T ) = L(g), where g is the function labeling the root of T .� If jT j � 3 then we let w(T ) = deg (g)[w(T�1) + w(T+1)], where g is the function labeling theroot of T , and T�1 and T+1 are the left and right subtrees of T respectively (cf. Figure 1).Unraveling the recursion, we can see that the weight of a tree can be computed as follows. First,for each leaf l, multiply the spectral norm of the function gl labeling this leaf by the product of thedegrees of the functions labeling the ancestors of l (the ancestors of l are the nodes on the pathfrom l to the root, but excluding l). Now sum these quantities over all leaves l. Thereby we obtainthe expression quoted in Section 1.3. For future reference, let us state this as a Proposition.Proposition 3.4 Let T be a universal decision tree. Thenw(T ) = Pleaves l L(gl) Qancestors i of l deg(gi) ;where gi is the function labeling node i.Proof: By induction.We need a couple of (easy) lemmas before we can prove the main theorem. The �rst says thatmultiplying a function f by a parity function does not change its spectral norm.Lemma 3.5 L(f�s) = L(f) for any function f .Proof: Recall that s4 z = (s [ z) � (s \ z) is the symmetric di�erence of s; z 2 f�1;+1gn. Wehave df�s(z) = 2�nPx f(x)�s(x)�z(x)= 2�nPx f(x)�s4 z(x)= bf(s4 z) :7



The lemma follows from the fact that the map z 7! s4 z is a permutation of f�1;+1gn.The next lemma shows how to bound the spectral norm of sums and products of functions in termsof the spectral norms of these functions.Lemma 3.6 Suppose f; g : f�1;+1gn ! R. Then(1) L(f + g) � L(f) + L(g)(2) L(fg) � L(f)L(g).Proof: Using the linearity of the Fourier transform and the triangle inequality we haveL(f + g) = P z jdf+g(z)j= P z j bf(z) + bg(z)j� P z �j bf(z)j+ jbg(z)j�= L(f) + L(g) :This establishes (1). To prove (2), set az = bg(z). Then making use of (1) we haveL(fg) = L(f �P z az�z)= L(P z azf�z)� P z L(azf�z)= P z jaz jL(f�z) :But by Lemma 3.5 this equalsP z jaz jL(f) = L(f)P z jaz j = L(f)L(g)as desired.We are now ready to present the main theorem. It is very simply stated: it says that the spectralnorm of a decision tree is at most its weight.Theorem 3.7 (Main Theorem) L(T ) � w(T ) for any universal decision tree T .Proof: The proof is by induction (on the structure of the tree). For the base case of T consisting ofa single node labeled by g we have L(T ) = L(g) = w(T ). Now suppose T has � 3 nodes. Let g bethe function labeling the root of T , and let T�1 and T+1 be its left and right subtrees respectively(cf. Figure 1). Observe thatT (x) = 12 [1� g(x)]T�1(x) + 12 [1 + g(x)]T+1(x) :That is, T = 12T�1+ 12T+1� 12gT�1+ 12gT+1. Applying Lemma 3.6 (1) we get that L(T ) is at mostL(12T�1) + L(12T+1) + L(�12gT�1) + L(12gT+1) :8



g : f�1;+1gn ! f�1;+1g L(g) deg (g)Parity: �s (s 2 f�1;+1gn) 1 1Conjunction of literals: Vi2s~xi (s 2 f�1;+1gn) � 3 � 2Disjunction of literals: Wi2s~xi (s 2 f�1;+1gn) � 3 � 2Comparison O(n) O(n)(Each output bit of) Addition O(n) O(n)Figure 2: Spectral Norms and Degrees of some well known functionsBy Lemma 3.6 (2), this is at most12L(T�1) + 12L(T+1) + 12L(g)L(T�1) + 12L(g)L(T+1)= 12 [L(g) + 1]L(T�1) + 12 [L(g) + 1]L(T+1)= deg (g) [L(T�1) + L(T+1)] :But by induction L(T�1) � w(T�1) and L(T+1) � w(T+1) so the above is � deg (g)[w(T�1)+w(T+1)]which by de�nition is w(T ). This concludes the induction.4 Degrees of boolean functionsTo use the main theorem we need to be able to compute weights. And to compute weights we needto know the degrees of the functions involved. So it is worth developing some understanding of thedegrees of boolean functions. Below we study the degrees of some well known boolean functions.We will use the facts developed here in later sections. We begin by observing that the parityfunctions are exactly those of minimal degree.Proposition 4.1 Suppose g is boolean. Then deg (g) = 1 if and only if L(g) = 1 if and only ifg = ��s for some s.Proof: It is clear that deg (g) = 1 if and only if L(g) = 1, and it is also clear that L(g) = 1 ifg = ��s. To complete the proof it su�ces to show that if L(g) = 1 then g = ��s for some s. Sosuppose L(g) = 1. Then for any x we have1 = jg(x)j= jP z bg(z)�z(x)j� P z jbg(z)�z(x)j= L(g)= 1 ; 9



and thus jPz bg(z)�z(x)j = Pz jbg(z)�z(x)j. It follows that for each x either bg(z)�z(x) � 0 for allz or bg(z)�z(x) � 0 for all z. Moreover the former happens when g(x) = 1 and the latter wheng(x) = �1, because g(x) =Pz bg(z)�z(x). So �xing any z such that bg(z) 6= 0 (at least one such mustexist) we can conclude that sign (bg(z)) = �z(x) if g(x) = 1 and sign (bg(z)) = ��z(x) if g(x) = �1.But this is true for all x, and thus g is either �z or ��z.Next we consider conjunctions Vi2s~xi and disjunctions Wi2s~xi of literals over arbitrary subsetss 2 f�1;+1gn of the variables (recall that we identify s 2 f�1;+1gn with f i : si = �1 g). Theliteral ~x is either x or �x. As usual we are taking the outputs to be �1 (�1 is true and 1 is false). Onecan show that L(Vi2s~xi); L(Wi2s~xi) � 3. So deg (Vi2s~xi); deg (Wi2s~xi) � 2 (note that the bound isindependent of the number of literals in the clause). So these functions are just a step higher thanparity in the degree hierarchy.Let us now consider arithmetic functions. The comparison function Cn : f�1;+1gn ! f�1;+1gis de�ned for even n by Cn(xy) = 1 if x � y and �1 otherwise, where x; y 2 f�1;+1gn=2 areidenti�ed with the integers 12Pn=2i=1(1 � xi)2n2�i and 12Pn=2i=1(1 � yi)2n2�i respectively. It is wellknown (cf. [SB]) that L(Cn) = n2 + 1. Similarly, each output bit of the addition function can beshown to have degree O(n).These facts are summarized in Figure 2.5 Special classes of decision treesMost important applications of the main theorem are derived by looking at some subset of the classof universal decision trees. It is convenient to have the following terminology.De�nition 5.1 Let B be a set of boolean functions. A decision tree over basis B is a universaldecision tree all of whose nodes compute functions in B.For example, parity decision trees are decision trees over the basis consisting of f��sgs2f�1;+1gnwhose leaves are labeled by constants (1 and �1). More generally, we may consider decision treesover the basis of parity, Vi2s~xi, and Wi2s~xi functions. We note that w(T ) = djT j=2e for any paritydecision tree T (cf. Proposition 3.4 and Proposition 4.1). Thus the main theorem implies thatL(T ) � djT j=2e for any parity decision tree T (cf. [KM]).6 ApplicationsOne of the main tasks in computational learning theory is to identify which functions are e�cientlylearnable. Our main theorem provides a tool to enlarge the class of functions known to be e�cientlylearnable.6.1 PreliminariesThe model we consider is that of learning boolean functions with high probability given the abilityto query the target. More precisely, the learning algorithm receives as input 1n; �; � and, as an10



oracle, the function f : f�1;+1gn ! f�1;+1g which it is trying to learn. Its output is (anencoding of) a hypothesis h : f�1;+1gn ! f�1;+1g. The running time of the learning algorithmis measured in terms of n; ��1 and log ��1 (in particular, polynomial time means polynomial inthese quantities). We say that A learns a class C of boolean functions if the output h of A on input1n; �; � satis�es Errh(f) � � with probability � 1� �, for every f : f�1;+1gn ! f�1;+1g from Cand every n and �; � > 0. Here Errh(f) def= Pr[f(x) 6= h(x)] (the probability is over a random choiceof x 2 f�1;+1gn) is the error of the hypothesis h with respect to the target f and the probabilityis over the coin tosses of A.We say that l: N ! N is a bound on the spectral norm of a class of functions C if L(f) � l(n)for all f : f�1;+1gn ! f�1;+1g in C. The main result we will exploit is the following.Theorem 6.1 [KM] A class of boolean functions is learnable in time polynomial in l(n); n; ��1 andlg ��1, where l is a bound on the spectral norm of the class.6.2 Learning DNFA DNF formula is a disjunction C1 _ : : :_ Ck of terms C1; : : :Ck where each term is a conjunct ofliterals: Cj = Vi2sj ~xi for some sj 2 f�1;+1gn.Theorem 6.2 The class of O(logn)-term DNF formulas is learnable in polynomial time.Proof: It su�ces to show that the class of k-term DNF formulas has spectral norm at most2O(k). To do this, we \simulate" the DNF formula C1 _ : : :_ Ck by a decision tree over the basisfVi2s~xi : s 2 f�1;+1gn g, and then bound the spectral norm of the decision tree.The decision tree is de�ned (inductively) as follows. If k = 1 it consists of a single node computingC1. Otherwise, the root computes C1 and its left son is a leaf labeled \�1" while its right son isthe root of a tree computing C2 _ : : : _ Ck. (In other words, our tree is just the \decision list"corresponding to the formula). We recall (cf. Figure 2) that the spectral norm of a Vi2s~xi is atmost 3 and the degree of a Vi2s~xi is at most 2. By Proposition 3.4, the weight of the tree is thenat most 3 � 2k�1 +Pk�1i=1 2i = 2O(k). So by the main theorem, the spectral norm of this tree is atmost 2O(k). That is, L(C1 _ : : :_ Ck) � 2O(k).More generally, we have shown that the class of k-clause DNF formulas is learnable in time poly-nomial in n; 2k; ��1, and lg ��1.We note that the 2O(k) bound on the spectral norm of a k-clause DNF formula that we gotby applying our main theorem is essentially optimal. To see this, observe that the DNF formula(x1^x2)_ : : :_(x2k�1^x2k) has spectral norm � 2
(k). In particular this means that for DNF witha super-logarithmic number of clauses one may not be able to prove polynomial time learnabilitywith these same techniques.6.3 Learning Decision TreesThe original motivation of the learning algorithm of [KM] was to learn parity decision trees withpolynomially many nodes. We can extend this to learn many larger classes of decision trees.11



Theorem 6.3 Let C be a class of universal decision trees with polynomially bounded weight. ThenC is learnable in polynomial time.Proof: Follows directly from our Main Theorem and Theorem 6.1.For example, let C be a class of decision trees over the basis f �s;Vi2s~xi;Wi2s~xi : s 2 f�1;+1gn gwith the property that the number of Vi2s~xi or Wi2s~xi nodes on any root to leaf path is at mostO(logn). Then C is learnable in polynomial time. This follows from Theorem 6.3 once we note that(by Proposition 3.4 and the fact that deg (�s) = 1 and deg (Vi2s~xi); deg (Wi2s~xi) � 2) the weight ispolynomially bounded in this case. Similarly we can allow comparison nodes (a constant numberper root to leaf path) or other kinds of nodes in appropriate proportion to their degree, and stillmaintain polynomial time learnability.6.4 Neural NetsWe say that f is a linear threshold function if there exist polynomially bounded integer weightsw0; w1; : : : ; wn such that f(x) = sign (w0 +Pni=1wixi)A threshold circuit (or neural net) is a circuit in which every gate computes a linear thresholdfunction. The class of boolean function computable by depth d, polynomial sized threshold circuitsis usually denoted cLTd.Spectral theory has provided an important tool for proving the existence of small depth thresholdcircuits. Bruck and Smolensky [BS] have shown that if a boolean function has polynomially boundedspectral norm then it is computable by a depth two threshold circuit. This theorem (and extensionsof it) are exploited in [BS, SB] to prove that many functions (comparison and addition are examples)are in cLT2. By combining the result of [BS] with our main theorem we get a new method of provingthe existence of small depth threshold circuits:Theorem 6.4 If a boolean function is expressible as a universal decision tree of polynomiallybounded weight then it is computable by a depth two threshold circuit.In the design of a neural net it is often the case that one needs to combine simple functions into amore complex circuit. Our main theorem is particularly suited to this type of application, since itautomatically provides a way to get small depth circuits for combinations of simple functions.7 ExtensionsFurst, Jackson and Smith [FJS] introduce the notion of mutually independent distributions andshow how to extend the spectral techniques of Linial, Mansour and Nisan [LMN] (used for learningDNF under the uniform distribution) to the case of mutually independent distributions. Ourtechniques and results can be similarly extended to the case of mutually independent distributions.We discuss these extensions brie
y here. For more details the reader is referred to [Be1].A probability distribution q : f�1;+1gn ! [0; 1] is mutually independent if the random vari-ables x1; : : : ; xn are independent. Given a mutually independent distribution q one can de�ne, with12



respect to q, an inner product, an orthonormal basis, and �nally a Fourier series for every function.We will denote by Lq(f) the spectral norm of f under the Fourier series given by mutually inde-pendent distribution q. We call it the q-spectral norm. The exact de�nitions of these quantitiesare not necessary here; for these the reader is referred to [FJS].To state the extension of our main theorem to the q-framework we need to rede�ne the degree.The rest will follow.De�nition 7.1 Let q be a mutually independent distribution. The q-degree of g : f�1;+1gn !f�1;+1g is de�ned to be the least positive real number d with the property that Lq(fg) � (2d �1)Lq(f) for all f : f�1;+1gn ! f�1;+1g. We denote the q-degree of g by deg q(g).Note that when q is the uniform distribution this de�nition of the degree coincides with the onein Section 3. To see this, let d be the least positive real number with the property that L(fg) �(2d � 1)L(f) for all f : f�1;+1gn ! f�1;+1g. Setting f to be a parity function and usingLemma 3.5 we get 2d � 1 � L(g). But for any f : f�1;+1gn ! f�1;+1g, Lemma 3.6 (2) saysthat L(fg) � L(f)L(g) and so 2d� 1 � L(g). Together these imply d = 12 [L(g) + 1] = deg (g), asclaimed. However we do not know whether or not deg q(g) = 12 [Lq(g) + 1] in general.The q-weight of a decision tree can be de�ned just like in De�nition 3.3, except that we woulduse the q-spectral norm and q-degree in place of the spectral norm and degree respectively. Wedenote the q-weight of a decision tree T by wq(T ). The main theorem then generalizes in thenatural way.Theorem 7.2 Let q be a mutually independent distribution. Then Lq(T ) � wq(T ) for any universaldecision tree T .We omit the proof which is identical to that of Theorem 3.7.It was observed in [Be1] that the learning algorithm of [KM] also extends to the case of mutuallyindependent distributions. Thus in combination with Theorem 7.2 we have another tool for learningunder mutually independent distributions.AcknowledgementsI thank Marek Karpinski and Ron Rivest for helpful discussions.Work done while the author was at MIT.References[Be1] M. Bellare. The Spectral Norm of Finite Functions. MIT Laboratory for ComputerScience Technical Report MIT/LCS/TR-495 , February 1991.[Be2] M. Bellare. A Technique for Upper Bounding the Spectral Norm with Applicationsto Learning. Proceedings of the Fifth Annual Workshop on Computational LearningTheory , ACM, 1992. 13
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