Appears in Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
(COLT), 1992.

A Technique for Upper Bounding the Spectral Norm

with Applications to Learning

Mr1HIR BELLARE*

December 26, 1992

Abstract

We present a general technique to upper bound the spectral norm of an arbitrary function.
At the heart of our technique is a theorem which shows how to obtain an upper bound on the
spectral norm of a decision tree given the spectral norms of the functions in the nodes of this
tree. The theorem applies to trees whose nodes may compute any boolean functions.

Applications are to the design of efficient learning algorithms and the construction of small
depth threshold circuits (or neural nets). In particular, we present polynomial time algorithms
for learning O(logn) term DNF formulas and various classes of decision trees, all under the
uniform distribution with membership queries.

* Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500
Gilman Drive, La Jolla, CA 92093. E-mail: mihir@cs.ucsd.edu

1 Introduction

Associated to any real-valued function is a number called its spectral norm. Let us begin by saying
what it is.

1.1 Definitions

For each z € {0,1}" we define x, : {—1,+1}" — {—1,4+1} by
Xal(a) = (=L)ptm)ime) bt iz

These are the parity functions, and they form a basis for the vector space of boolean functions on
the n-cube. In other words, every boolean function f : {—1,+1}" — {—1,+1} can be uniquely
expressed as a linear combination of the parity functions. This linear combination is the Fourier

~

series of f. We will denote by f(z) the coefficient of x. in the Fourier series of f, so that this Fourier

series is f(2) = X .eq1 413n f(2)X2(z). One can show that f(z) = 27" Ywef-1,413 f(@)Xz(2). The
spectral norm of f, which we denote by L(f), is the sum of the absolute values of the coefficients

in the Fourier series. That is, L(f) def D oee{—1,41}n 1F(2)].

1.2 The Problem

Spectral techniques have many applications in which the spectral norm plays a key role. One
example is learning: we know that if L(f) is polynomially bounded then f is learnable (under the
uniform distribution with membership queries) in polynomial time [KM]. Another example is in
the domain of threshold circuits (or neural nets): we know that if L(f) is polynomially bounded
then f can by computed by a threshold circuit of small depth [BS].

To use such theorems, we need to first show that L(f) is small. So it is important to find ways
of computing good upper bounds on the spectral norm, and thereby, in particular, identifying the
functions which have polynomially bounded spectral norm.

However, bounding the spectral norm seems to be a hard problem. This is perhaps not surprising
since L(f) is, after all, a complex object: it is an exponential sized sum, each term of which is itself
an exponential sized sum, and estimating all the relevant quantities often defies analysis, even for
quite simple functions. But the consequence is that good upper bounds on L(f) are only known
either for very simple functions (like parity, AND and OR) or for functions where one can compute
L(f) exactly by exploiting a convenient inductive structure (like the comparison function [SB]).
And so far there have been no general techniques to compute upper bounds: the approach used is
to work directly from the definition.

This paper presents a general technique to upper bound the spectral norm. Below we describe
the technique and then some applications.

1.3 Our Solution

The key to our solution is to find a “language” for expressing one function f in terms of other
functions ¢4, ..., ¢, which has the property that there is an automatic way to derive a bound on

L(f) from bounds on L(¢1),..., L(gm). Then by choosing g1, ..., gm to be functions for which we
know bounds on the spectral norm — these can be computed recursively if necessary — we can get
a bound on L(f). The difficulty of course is in finding a language which is sufficiently expressive and
also has the property that we can prove the necessary theorems which enable us to automatically
combine bounds on L(g1),..., L(¢y) into a bound on L(f). As we will prove below, the language
of universal decision trees meets both criteria. Let us now make all this more precise and proceed
to describe the main theorem.

A universal decision tree over n variables is a (full) binary tree in which each node is labeled
by a boolean function {—1,+1}" — {—1,+1}. The function from {—1,+1}" to {—1,4+1} which a
tree computes is defined as follows. On any input @ € {—1,41}", we start at the root and execute
the following procedure until we get an output. At an internal node labeled by ¢ : {—1,+1}" —
{=1,41} we branch to the left if g(z) = —1 and to the right if g(z) = +1. At a leaf labeled by
g:{-1,+1}" — {=1,+1} we output g(x) as the value computed by the tree at this input z. We
identify the decision tree with the function it computes and the nodes with the functions labeling
them, so that we can speak of the spectral norm L(T') of a decision tree T" or the spectral norm of

a node.

It is crucial in this definition that we allow the nodes to compute any boolean function. This
means our “language” has maximal expressive power and the main theorem (which we now state)

is of maximum generality.

Theorem 1.1 (Main Theorem) Let T' be a universal decision tree. Then

L(T) S Zleaves I L(gl) Hancestorsi of 1 %[L(gl) + 1]

where g; is the function labeling node v of T.

We will call "7.40es 1 L(g1) 1 L[L(g;) + 1] the weight of T. We note that this weight can

ancestors 1 of | 2
be (easily) computed given the spectral norms of the functions in the nodes of 7.
This main theorem is the “automatic” procedure we need. It shows how to combine bounds on
the norms of the nodes into a bound on the norm of the tree.

The full technique should now be clear. If we want a bound on L(f), we express f as a decision
tree whose nodes compute functions whose norms we already have bounds on (and if bounds on
the norms of the nodes are not known, they can be obtained recursively). We then compute the
weight of the tree. The main theorem says this is an upper bound on L(f). Part of the success of
the technique depends, of course, on making the “right” choice of how to express f as a universal
decision tree, amongst the many possible ways the given function f can be expressed as a universal

decision tree. The examples in later sections will illustrate.

How good is the bound given by our main theorem? Some indication is provided by the fact that
for restricted classes of decision trees where bounds on L(T') were known, the bounds our theorem
yields are the same or better. In particular for parity decision trees (each internal node is labeled
by a parity function X and each of leaf is labeled 41 or —1) our theorem yields L(T") < [|7T']/2]
which is (a slight improvement of) what [KM] had already proved for this special case (|T'] is the
number of nodes in 7'). We note however that parity decision trees are not themselves expressive
enough to serve as the basis for a general technique to bound spectral norms.

1.4 Applications

Our main theorem has several applications to the design of efficient learning algorithms.

LEARNING DNF. We address the problem of learning DN formulas [Va]. Linial, Mansour and
Nisan [LMN], Verbeurgt [Ve], and Furst, Jackson and Smith [FJS] consider (e€,4, D) learning of
DNF formulas: after seeing a collection of examples of the target f drawn under distribution D, the
algorithm must output a hypothesis A which with probability at least 1 —§ satisfies Prye p[f(z) #
h(z)] < e. The first two works present quasi-polynomial (in n,e ! 1gé™1) time algorithms for
this task when D is the uniform distribution, and the last generalizes to mutually-independent

distributions. To date, no polynomial time algorithm for learning (general) DNF' is known.

An often studied special case is k-DNF, where the number of literals per term is at most k.
Here we will consider a different type of restriction. We allow any number of literals per term, but

ask that the number of terms be small.

The model we consider in this paper is that of learning under the uniform distribution given the
ability to make membership queries. More precisely, a learning algorithm receives as input 1™, ¢ > 0
and 6 > 0, and is allowed to query the target function f: {—1,+1}" — {—1,41}. It is required to
output a hypothesis i which with probability at least 1 — ¢ satisfies Pryc (1 4112 [f(7) # h(2)] <
¢. The running time of the algorithm is measured in terms of n,e™! and lgé=! (in particular,
polynomial time means polynomial in these quantities). For a more formal description of the

model we refer the reader to Section 6.1.

Theorem 1.2 The class of DNF formulas which have O(logn) terms is learnable in polynomial
time.

More generally, we show that a k-term DNF formula is learnable in time polynomial in n,2%, ¢!,

and Ig 67 1.
Independently of this work, Blum and Rudich [BR] present an algorithm which uses membership

and equivalence queries to (exactly) learn a k-clause DN formula in time polynomial in n and 2k,

LearNING DEcIsioN TREES. We present a general result about learning decision trees.

Theorem 1.3 If a class of (universal) decision trees has polynomially bounded weight then it is

learnable in polynomial time.

Several special cases of this theorem are of interest. See Section 6.1 for details on these applications.

All of the above learning results are obtained by using our main theorem to bound the spectral

norm of the class of functions in question and then applying the learning algorithm of [KM].

MINIMIZING THE DEPTH OF NEURAL NETS. Threshold circuits (or neural nets) are circuits whose
gates are linear threshold functions (see Section 6.4 for full definitions). The depth of the circuit
is an important measure of efficiency, and much work in the area has concentrated on depth

minimization [HMPST, Br, BS, SB]. Spectral theory has provided an important tool for this task
with a theorem which says that functions of polynomially bounded spectral norm have depth two
threshold circuits [BS]. Combining this with our main theorem yields a novel tool.

Theorem 1.4 If a boolean function is expressible as a universal decision tree of polynomially
bounded weight then it is computable by a depth two threshold circuit.

Moreover, in the design of a neural net it is often the case that one needs to combine simple
functions into a more complex circuit. The above theorem is particularly suited to this type of
application, since it automatically provides a way to get small depth circuits for combinations of
simple functions.

We note that the theorem of [BS], and in consequence ours, are non-constructive.

The results of this paper appeared previously in [Bel] and [Be2].

2 Preliminaries

“Boolean” for us means +1 valued. A function f: {—1,4+1}" — Ris boolean if its range is {—1, +1}.
The sign of z € R, denoted sign(z), is —1 if 2 < 0, undefined if z = 0, and +1 if # > 0. The sign
of f{-1,41}" — R, denoted sign(f) is the map defined by z — sign(f(z)).

We identify a string z € {—1,+1}" with the set {7 : z; = —1}. With this convention, we apply
set-theoretic notation to strings, using expressions like “i € 2”7 or “y A z” (A is the symmetric

difference) where y,z € {—1,+1}" and 1 <i < n.
We define the inner product of f,g: {—1,+1}" — R by

<fvg> = 2_nz xe{—l,—l—l}n f($)g($) N

Note that (f, g) = E[fg] where the expectation is over the uniform distribution on the inputs. The
norm associated to this inner product is

I =/ {F F) -

The parity functions are the functions X, : {—1,41}" — {—1,41} defined for z € {—1,+1}" by
X:(2) = (—1)%(1—21)(1—1’1)+~~~+§(1—Z")(1_1’"). That is, X,(«) is —1 if the number of indices ¢ at which
z; = ¥; = —1is odd, and 1 otherwise. It is well known that {X.}.c(—1,4+1}» is an orthonormal basis
for the vector space of real valued functions on {—1,+1}" (the orthonormality is with respect to
the inner product defined above). A useful property of the parity functions is that XoX» = XoAb-

Now suppose f: {—1,+1}" — R. Then

[= Zze{—1,+1}" f(Z)Xz

o~

where f(2) = (f,X:) = 27" YXoeqo1,413n f(2)Xo(x). This (unique) expansion of f in terms of

~

the parity basis is its Fourier series. The Fourier coefficients of f are the real numbers f(z)

(2 € {=1,+1}"). The sequence of Fourier coefficients is also called the spectrum of f.I The
Fourier transform is the operator F defined by F(f) = f This operator is linear: F(af + bg) =
aF(f)+ bF(g) for real a,b and functions f,g: {—1,+1}" — R. The spectral norm (or just norm)
of fis
L) E Toerrime 7
In the context of norms, “small” means polynomially bounded (as a function of n) and “large”

means not small. Parseval’s identity

S et F(2F = 1P

follows directly from the orthonormality of the basis. It follows that if f is boolean then
Y ore{—1,41}n f(2)? = 1. A consequence of this last fact is the following

Proposition 2.1 L(f) < 272 for any boolean function f:{—1,+1}" — {=1,+1}.

3 Main Theorem

Here we present our general technique for upper bounding the spectral norm of a universal decision

tree.

Definition 3.1 A universal decision tree with input length n is a (full) binary tree’ in which each
node is labeled by a function from {—1,+1}" to {—1,+1}.

Note that we do not restrict the functions labeling the nodes: any boolean function is allowed.

T computes (or defines) a function from {—1,4+1}" to {—1,+1} in a natural way which we
now describe. Suppose & € {—1,41}". The value of T'(z) is obtained by repeating the following
procedure, starting at the root, until an output is obtained:

e If the current position is an internal node, then branch to the left if g(2) = —1 and to the right
if g(#) = +1, where g is the function labeling this internal node.

e If the current position is a leaf, then output g(2) where g is the function labeling this leaf.

We identify the decision tree with the function it computes and the nodes with the functions labeling
them, so that we can speak of the spectral norm L(7") of a universal decision tree T" or the spectral
norm of a node. |T'| will denote the number of nodes in T.

In order to formulate our main theorem we first need some definitions. Indeed, most of the
work here lies in making the correct definitions and once this is done the main theorem will follow
quite easily.

We assign to each function a number which we will call its degree. The degrees of the constituent
nodes will enable us to measure the spectral norm of a decision tree. The definition itself is very

simple:

! Some intuition about the Fourier coefficients may be gathered by observing that fA(z) = Pr[f(z) = x.(z)] —
Pr[f(z) # X.(2)], the probabilities being over a random choice of the input z.
! By this we mean that every node has either two children or no children.

Figure 1: The decision tree T’

def

Definition 3.2 The degree of g: {—1,+1}" — {—1,+1} is deg(g) = %[L(g) +1].

So the degrees are, strictly speaking, the spectral norms themselves: it is just more convenient to
“translate” slightly. Note that L(g) > 1 for any boolean g. So 1 is also the minimal degree of any
boolean function.

We will assign to each decision tree a weight which is computed as a function of the spectral

norms (or, more precisely, the degrees) of its constituent nodes.

Definition 3.3 The weight w(T') of a universal decision tree T is defined by induction as follows:

o [f|T| =1 then we let w(T)= L(g), where g is the function labeling the root of T

o If |T| > 3 then we let w(T) = deg(g)[w(1_-1) + w(T11)], where g is the function labeling the
root of T', and T_y and T4 are the left and right subtrees of T respectively (cf. Figure 1).

Unraveling the recursion, we can see that the weight of a tree can be computed as follows. First,
for each leaf [, multiply the spectral norm of the function ¢; labeling this leaf by the product of the
degrees of the functions labeling the ancestors of { (the ancestors of [are the nodes on the path
from [to the root, but excluding /). Now sum these quantities over all leaves [. Thereby we obtain

the expression quoted in Section 1.3. For future reference, let us state this as a Proposition.

Proposition 3.4 Let T be a universal decision tree. Then
w(T) = Zleaves { L(gl) Hancestorsi of 1 deg(gl) ”
where g; is the function labeling node ©.

Proof: By induction. =

We need a couple of (easy) lemmas before we can prove the main theorem. The first says that

multiplying a function f by a parity function does not change its spectral norm.

Lemma 3.5 L(fXs) = L(f) for any function f.

Proof: Recall that sAz = (sU z) — (sN z) is the symmetric difference of s,z € {—1,+1}". We
have

() = 27, fla)xs(2)x.()
= 27" f(2)Xsno(2)

o~

= f(sAz).

The lemma follows from the fact that the map z — s A z is a permutation of {—1,41}". =

The next lemma shows how to bound the spectral norm of sums and products of functions in terms
of the spectral norms of these functions.

Lemma 3.6 Suppose f,g: {—1,41}" — R. Then

(1) L(f+9)< L(f)+ L(g)
(2) L(fg) < L(f)L(g).

Proof: Using the linearity of the Fourier transform and the triangle inequality we have

>, | f+a(2)
S F(2) 4 5(2)
> (171 + 1))

L(f)+ L(g) .

L(f+g)

IAN

This establishes (1). To prove (2), set a, = g(z). Then making use of (1) we have

Lifg) = L(f-32.a:X:)
L(ZzazfXZ)
> Llazfxz)
> laz|LOfX:) -

IAN

But by Lemma 3.5 this equals

2o la:|L(f) = L)X lez| = L(f)L(g)

as desired. m

We are now ready to present the main theorem. It is very simply stated: it says that the spectral
norm of a decision tree is at most its weight.

Theorem 3.7 (Main Theorem) L(T') < w(T) for any universal decision tree T'.

Proof: The proofis by induction (on the structure of the tree). For the base case of T' consisting of
a single node labeled by ¢ we have L(T') = L(g) = w(T'). Now suppose T has > 3 nodes. Let g be
the function labeling the root of T', and let T_1 and T1q be its left and right subtrees respectively
(cf. Figure 1). Observe that

T(x) = 3[1 = g(2)]T-1(2) + {1 + g(2)] () .
That is, T = %T_l + %T-I—l - %gT_l + %gT_H. Applying Lemma 3.6 (1) we get that L(7') is at most

L(3T-1) + L(5T41) + L(=59T-1) + L(59T41) -

g:{-L+1}" = {-1,+1} L(g) | deg(g)

Parity: xs (s € {-1,+1}") 1 1

Conjunction of literals: A;c,#; (s € {—1,+1}") | <3 | <2

Disjunction of literals: \/;c & (s € {—1,41}") | <3 | <2

Comparison O(n) | O(n)

(Each output bit of) Addition O(n) | O(n)

Figure 2: Spectral Norms and Degrees of some well known functions

By Lemma 3.6 (2), this is at most
SL(T-1) + 5 L(Th1) + 3L(9) L(T-1) + 5L(9) L(T41)
= F[Lg) + L(T-1) + 5[L(g) + 1] L(T41)
= deg(g) [L(T-1) + L(T1)] -

But by induction L(T_1) < w(T_1)and L(T41) < w(T41) so the aboveis < deg(g)[w(T_1)+w(T41)]
which by definition is w(7'). This concludes the induction. m

4 Degrees of boolean functions

To use the main theorem we need to be able to compute weights. And to compute weights we need
to know the degrees of the functions involved. So it is worth developing some understanding of the
degrees of boolean functions. Below we study the degrees of some well known boolean functions.
We will use the facts developed here in later sections. We begin by observing that the parity

functions are exactly those of minimal degree.

Proposition 4.1 Suppose g is boolean. Then deg(g) = 1 if and only if L(g) = 1 if and only if
g = £X; for some s.

Proof: It is clear that deg(g) = 1 if and only if L(g) = 1, and it is also clear that L(g) = 1 if
g = £X;. To complete the proof it suffices to show that if L(g) = 1 then ¢ = £, for some s. So
suppose L(g) = 1. Then for any z we have

L = |g(2)]
= [X.9(2)x:(2)]
< XL 1a()xa ()]
= L(g)
= 17

and thus [>, g(2)x.(2)] = >, [g(2)X.(2)|. It follows that for each z either g(z)Xx.(z) > 0 for all
z or g(2)Xs(z) < 0 for all 2. Moreover the former happens when g(2) = 1 and the latter when
g(z) = —1, because g(z) = Y. g(2)X.(z). So fixing any z such that g(z) # 0 (at least one such must
exist) we can conclude that sign(g(z)) = X.(z) if g(z) = 1 and sign(g(z)) = —X.(2) if g(z) = —1.
But this is true for all x, and thus ¢ is either X, or —x,. H

Next we consider conjunctions A;¢,%; and disjunctions \/;.,Z; of literals over arbitrary subsets
s € {—1,+1}" of the variables (recall that we identify s € {—1,+1}" with {i:s; = —1}). The
literal Z is either « or Z. As usual we are taking the outputs to be £1 (-1 is true and 1 is false). One
can show that L(A;c,%i), L(V;c,Z:) < 3. So deg(N;csZi), deg(Vie,%i) < 2 (note that the bound is
independent of the number of literals in the clause). So these functions are just a step higher than
parity in the degree hierarchy.

Let us now consider arithmetic functions. The comparison function C,, : {-1,4+1}" — {—1,+1}
is defined for even n by C,(2y) = 1 if z > y and —1 otherwise, where z,y € {=1,4+1}"/% are
identified with the integers %Z?ﬁ(l — ;)22 7" and %Z?ﬁ(l — ;)22 7% respectively. It is well
known (cf. [SB]) that L(C,) = 5 4 1. Similarly, each output bit of the addition function can be

shown to have degree O(n).

These facts are summarized in Figure 2.

5 Special classes of decision trees

Most important applications of the main theorem are derived by looking at some subset of the class
of universal decision trees. It is convenient to have the following terminology.

Definition 5.1 Let B be a set of boolean functions. A decision tree over basis B is a universal
decision tree all of whose nodes compute functions in B.

For example, parity decision trees are decision trees over the basis consisting of {£X;}se(—1,41}»
whose leaves are labeled by constants (1 and —1). More generally, we may consider decision trees
over the basis of parity, A;c s, and ;¢ &; functions. We note that w(7T) = [|T'|/2] for any parity
decision tree T' (cf. Proposition 3.4 and Proposition 4.1). Thus the main theorem implies that
L(T) < [|T|/2] for any parity decision tree T' (cf. [KM]).

6 Applications

One of the main tasks in computational learning theory is to identify which functions are efficiently
learnable. OQur main theorem provides a tool to enlarge the class of functions known to be efficiently

learnable.

6.1 Preliminaries

The model we consider is that of learning boolean functions with high probability given the ability
to query the target. More precisely, the learning algorithm receives as input 17,¢,6 and, as an

10

oracle, the function f : {—1,41}" — {—1,41} which it is trying to learn. Its output is (an
encoding of) a hypothesis h : {—1,+1}" — {—1,41}. The running time of the learning algorithm
is measured in terms of n,e”! and logé™! (in particular, polynomial time means polynomial in
these quantities). We say that A learns a class C of boolean functions if the output A of A on input
1", €, 6 satisfies Erry,(f) < ¢ with probability > 1 — 4, for every f: {—-1,+1}" — {-1,41} from C
and every n and ¢,6 > 0. Here Erry(f) ef Pr[f(z) # h(z)] (the probability is over a random choice
of z € {—1,41}") is the error of the hypothesis h with respect to the target f and the probability
is over the coin tosses of A.

We say that [: N — N is a bound on the spectral norm of a class of functions C if L(f) < (n)
for all f:{-1,41}" — {—1,41} in C. The main result we will exploit is the following.

1

Theorem 6.1 [KM] A class of boolean functions is learnable in time polynomial in l(n),n, e~ and

lg 671, where [is a bound on the spectral norm of the class.

6.2 Learning DNF

A DNF formula is a disjunction €'y V...V C} of terms (', ...C where each term is a conjunct of
literals: Cj = Ajg,, & for some s; € {—1,+1}".

Theorem 6.2 The class of O(logn)-term DNF formulas is learnable in polynomial time.

Proof: It suffices to show that the class of k-term DNF formulas has spectral norm at most
20k To do this, we “simulate” the DNF formula C; V...V C} by a decision tree over the basis
{ NiesTi = s € {—=1,41}" }, and then bound the spectral norm of the decision tree.

The decision tree is defined (inductively) as follows. If £ = 1 it consists of a single node computing
(7. Otherwise, the root computes Cy and its left son is a leaf labeled “—1” while its right son is
the root of a tree computing C3 V...V Ck. (In other words, our tree is just the “decision list”
corresponding to the formula). We recall (cf. Figure 2) that the spectral norm of a A;c,#; is at
most 3 and the degree of a A;c,Z; is at most 2. By Proposition 3.4, the weight of the tree is then
at most 3 - 21 4 Zf;ll 2t = 20(K) | So by the main theorem, the spectral norm of this tree is at
most 29() . That is, L(C1V...v(C;) < 20(F) m

More generally, we have shown that the class of k-clause DNF formulas is learnable in time poly-
nomial in n,2%, =1, and lgé~1.

We note that the 2°() bound on the spectral norm of a k-clause DNF formula that we got
by applying our main theorem is essentially optimal. To see this, observe that the DNF formula
(z1Az3)V...V(226-1 Azak) has spectral norm > 29(k) | In particular this means that for DNF with
a super-logarithmic number of clauses one may not be able to prove polynomial time learnability
with these same techniques.

6.3 Learning Decision Trees

The original motivation of the learning algorithm of [KM] was to learn parity decision trees with
polynomially many nodes. We can extend this to learn many larger classes of decision trees.

11

Theorem 6.3 Let C be a class of universal decision trees with polynomially bounded weight. Then

C is learnable in polynomial time.

Proof: Follows directly from our Main Theorem and Theorem 6.1. ®

For example, let C be a class of decision trees over the basis { X5, Aje,%is Vig, @i 0 s € {—1,+1}7" }
with the property that the number of A,c,Z; or \/,c,%; nodes on any root to leafl path is at most
O(logn). Then C is learnable in polynomial time. This follows from Theorem 6.3 once we note that
(by Proposition 3.4 and the fact that deg(x;) = 1 and deg(\;c,%:), deg(V;e,%i) < 2) the weight is
polynomially bounded in this case. Similarly we can allow comparison nodes (a constant number
per root to leaf path) or other kinds of nodes in appropriate proportion to their degree, and still

maintain polynomial time learnability.

6.4 Neural Nets

We say that f is a linear threshold function if there exist polynomially bounded integer weights

wo, W1, . . ., Wy, such that
flz) = sign (wo + 227 wiz:)
A threshold circuit (or neural net) is a circuit in which every gate computes a linear threshold

function. The class of boolean function computable by depth d, polynomial sized threshold circuits

is usually denoted ﬁd.

Spectral theory has provided an important tool for proving the existence of small depth threshold
circuits. Bruck and Smolensky [BS] have shown that if a boolean function has polynomially bounded
spectral norm then it is computable by a depth two threshold circuit. This theorem (and extensions
of it) are exploited in [BS, SB] to prove that many functions (comparison and addition are examples)
are in LT,. By combining the result of [BS] with our main theorem we get a new method of proving

the existence of small depth threshold circuits:

Theorem 6.4 If a boolean function is expressible as a universal decision tree of polynomially
bounded weight then it is computable by a depth two threshold circuit.

In the design of a neural net it is often the case that one needs to combine simple functions into a
more complex circuit. Our main theorem is particularly suited to this type of application, since it
automatically provides a way to get small depth circuits for combinations of simple functions.

7 Extensions

Furst, Jackson and Smith [FJS] introduce the notion of mutually independent distributions and
show how to extend the spectral techniques of Linial, Mansour and Nisan [LMN] (used for learning
DNF under the uniform distribution) to the case of mutually independent distributions. Our
techniques and results can be similarly extended to the case of mutually independent distributions.
We discuss these extensions briefly here. For more details the reader is referred to [Bel].

A probability distribution ¢ : {—1,4+1}" — [0, 1] is mutually independent if the random vari-
ables zq,...,x, are independent. Given a mutually independent distribution ¢ one can define, with

12

respect to ¢, an inner product, an orthonormal basis, and finally a Fourier series for every function.
We will denote by L,(f) the spectral norm of f under the Fourier series given by mutually inde-
pendent distribution ¢. We call it the g-spectral norm. The exact definitions of these quantities
are not necessary here; for these the reader is referred to [I'JS].

To state the extension of our main theorem to the g-framework we need to redefine the degree.
The rest will follow.

Definition 7.1 Let ¢ be a mutually independent distribution. The q-degree of g: {—1,+1}" —
{—1,+1} is defined to be the least positive real number d with the property that L,(fg) < (2d —
L)Ly(f) for all f: {—1,4+1}" — {—1,+1}. We denote the g-degree of g by deg,(g).

Note that when ¢ is the uniform distribution this definition of the degree coincides with the one
in Section 3. To see this, let d be the least positive real number with the property that L(fg) <
(2d — 1)L(f) for all f :{-1,41}" — {—1,41}. Setting f to be a parity function and using
Lemma 3.5 we get 2d — 1 > L(g). But for any f: {—1,+1}" — {—1,+1}, Lemma 3.6 (2) says
that L(fg) < L(f)L(g) and so 2d — 1 < L(g). Together these imply d = 1[L(g) + 1] = deg(g), as
claimed. However we do not know whether or not deg,(g) = 3[L,(g) + 1] in general.

The ¢-weight of a decision tree can be defined just like in Definition 3.3, except that we would
use the g¢-spectral norm and ¢-degree in place of the spectral norm and degree respectively. We
denote the g-weight of a decision tree T' by w,(7T"). The main theorem then generalizes in the
natural way.

Theorem 7.2 Let g be a mutually independent distribution. Then Ly(T) < wy(T') for any universal
decision tree T.

We omit the proof which is identical to that of Theorem 3.7.
It was observed in [Bel] that the learning algorithm of [KM] also extends to the case of mutually

independent distributions. Thus in combination with Theorem 7.2 we have another tool for learning
under mutually independent distributions.

Acknowledgements

I thank Marek Karpinski and Ron Rivest for helpful discussions.
Work done while the author was at MIT.

References

[Bel] M. BELLARE. The Spectral Norm of Finite Functions. MIT Laboratory for Computer
Science Technical Report MIT/LCS/TR-495, February 1991.

[Be2] M. BELLARE. A Technique for Upper Bounding the Spectral Norm with Applications
to Learning. Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, ACM, 1992.

13

[FJS)

[HMPST]

[KKL]

[KM]

[LMN]

[SB]

[Va]

[Ve]

A. Brum aAND S. RupicH. Fast Learning of k-term DNF formulas with queries. Pro-
ceedings of the 24th Annual Symposium on Theory of Computing, ACM, 1992.

J. Bruck. Harmonic Analysis of Polynomial Threshold Functions. STAM J. Discrete
Math. 3(2), 168-177 (1990).

J. BRUCK AND R. SMOLENSKY. Polynomial Threshold Functions, AC® Functions, and

Spectral Norms. Proceedings of the 31st Symposium on Foundations of Computer
Science, IEEE, 1990.

M. FursT, J. JACKSON AND S. SMITH. Learning AC® Functions Sampled under
Mutually Independent Distributions. Manuscript (October 1990).

A. HaiNnaL, W. Maass, P. Pubrak, M. SZEGEDY AND G. TurAN. Threshold Cir-
cuits of Bounded Depth. Proceedings of the 28th Symposium on Foundations of Com-
puter Science, IEEE, 1987.

J. Kaun, G. Kara1 AND N. LINIAL. The Influence of Variables on Boolean Functions.
Proceedings of the 29th Symposium on Foundations of Computer Science, IEEE, 1988.

E. KUusHILEVITZ AND Y. MANSOUR. Learning Decision Trees using the Fourier Spec-
trum. Proceedings of the 23rd Annual Symposium on Theory of Computing, ACM,
1991.

N. LinNIAL, Y. MANSOUR AND N. NisaN. Constant Depth Circuits, Fourier Transform,

and Learnability. Proceedings of the 30th Symposium on Foundations of Computer
Science, IEEE, 1989.

K. Stv anDp J. Bruck. On the Power of Threshold Circuits with Small Weights.

Manuscript.

L. VALIANT. A Theory of the Learnable. Communications of the ACM 27(11), 1134-
1142 (1984).

K. VERBEURGT. Learning DNF under the uniform distribution in polynomial time.
Proceedings of the Second Annual Workshop on Computational Learning Theory, Mor-
gan Kaufmann Publishers Inc. (1989).

14

