
DATA MINING IN TEMPORAL DATABASES

George Koundourakis, Mohammad Saraee and  Babis Theodoulidis

Information Management Group

Department of Computation,  UMIST,

Manchester, United Kingdom

Email: (koundour,saraee,babis)@co.umist.ac.uk HTTP://timelab.co.umist.ac.uk

ABSTRACT

In this paper we describe our approach  to data mining in temporal databases by introducing Easy Miner, a data

mining system developed at UMIST. This system implements a wide spectrum of data mining functions, including

generalisation, relevance analysis, classification and discovery of association rules. By integrating these interesting

data mining techniques, the system provides a user friendly and interactive environment with good performance and

of course, wide choice of functionalities. These algorithms have been tested on time-oriented medical data and

experimental results show that the algorithms are efficient and effective for discovery of previously unknown

knowledge in databases.

1. Introduction

Data mining is the nontrivial extraction of implicit, previously unknown, and potentially useful information from

data [1]. In other words, it is the search for relationships and global patterns that exist in large databases, but are

“hidden” among the vast amount of data, such as a relationship between patient data and medical diagnosis. These

relationships represent valuable knowledge about the database and objects in it and (if the database is a faithful

mirror) of the real world registered by the database.

The growth in the size and number of existing databases far exceeds human abilities to analyse such data with simple

query and analysis approaches. Thus it created a need and an opportunity for extracting knowledge from databases.

Recently, data mining has been ranked as one of the most promising research topics for the 1990s by both database

and machine learning researchers.

 
 There are several kinds of knowledge that data mining aims to extract from a database. We have been focused on the

areas of relevance analysis, generalisation, classification, and association. We tried to integrate these areas and use

the advantages of one in order to benefit and the others. In the following sections we describe our approaches to these

areas, which also have been implemented and tested in a data mining tool called Easy Miner.



2. Temporal Constraints for Intervals.

Our first task to developing the time-oriented pattern discovery process is to move the data from the temporal

representation to an equivalent static one that can be managed by the existing algorithms. Valid time intervals are

associated with each tuple in time-oriented databases to record the time for which these tuples are valid within the

modelled domain. Because these intervals represent important semantics about the application, it may be desirable to

include them within the data used to produce generalisation, classification or associations rules. We introduce two

concepts for integrating temporal semantic into the process: namely the Moving Window clause and the Time Slice

clause.

The TIME SLICE Clause: The User specifies a time interval and only those objects in the database whose valid time

is contained in this interval get selected for discovery process. Example: Include all patients who have had stroke

between 1/10/1995 to 1/10/1997.

The MOVING WINDOW Clause: The user specifies an interval width and the objects in the databases are examined

through a temporal window of this width moving along the temporal axis. Example: Include all patients whose Blood

Pressure has raised more than 2 times within certain time (1 month, 2 months, 3 months, 6 months, 2 years).

3. Generalisation

Easy Miner uses generalisation rules as they are defined in [9]. By using these rules, values of the attributes are

generalised at multiple concept levels. As a result of this process, a set of attributes is generated for every generalised

attribute of the original data set. The generated attributes are instances of the same attribute but in different concept

levels. In order to determine which of these attributes (concept levels) is most appropriate to the required data-mining

task, relevance analysis is applied on them and only the one that is most relevant to the specific data-mining task is

kept. In Easy Miner there are several procedures for the automatic generation of generalisation rules for numeric

attributes. Date-time attributes can be easily generalised into years, seasons, seasons of a year, months, months of a

year and days. Finally, considering relevance with another attribute can lead to automatic generation of

generalisation rules for any attribute.

4. Relevance Analysis

We perform relevance analysis as defined by Kemper et al.[8].  Examples of obvious relevancies amongst database

attributes is ‘Age’ to ‘Date of birth’ and ‘Title’ to ‘Sex’ and ‘Marital Status’. This kind of knowledge is qualitative

and it is quite useful to mine from large databases that hold information about many objects (fields). For example a

bank could look in its data and identify the factors that it should consider in order to give a credit limit to a customer.

Applying Easy Miner to our credit history database revealed that Credit Limit is relevant to Account Status, Monthly

Expenses, Marital Status, Monthly Income and Gender.



A number of statistical and machine learning techniques for relevance analysis have been proposed until now. We

use an information-theoretic asymmetric measure of relevance introduced by Loether and McTavish [10] known as

the uncertainty coefficient.  Assume having a data set P of p data samples. Select an attribute of it as the classifying

attribute and assume that it has m distinct values (classes). Let us suppose also that P contains pi records for each

class PI (i=1...m). Then a random selected record belongs to class Pi with probability pi/p. The expected information

needed to classify a given sample is given by: ∑
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An attribute A with values {a1, a2,…, ak} can be used to partition P into {C1, C2,…, Ck}, where Cj contains those

records that have value aj of A. Let Cj contain pij records of class Pi. The expected information based on the

partitioning using as split attribute the A, is: ∑
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So, the information gained by partitioning on attribute A is: )(),...,,()( 21 AEpppIAgain m −=

The uncertainty coefficient U(A) for attribute A is obtained by normalising the information gain of A so that U(A)

ranges from 0 to 1. The value 0 means that there is significant independence between the A and the target attribute,

and 1 means that there is strong relevance between the two attributes. The normalisation of U(A) is achieved by the

following equation:  
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It is upon the user to keep the n most relevant attributes, or all the attributes that have value of uncertainty coefficient

greater than a pre-specified minimum threshold.

5. Classification

Classification is an important area of research in data mining. Classification partitions massive quantities of data into

sets of common characteristics and properties [5], [6]. In classification a set of records, acting as training set, is

analysed in order to produce a model of the given data. Each record is assumed to belong to a predefined class, as

determined by one of the attributes, called classifying attribute. Table 1 shows a part from a sample training set of

the medical database, where each record represents a patient and Lived is the classifying attribute of the training set.

Once derived, the classification model can be used to categorise future data samples, as well as providing a better

understanding of the database contents. Classification is particularly useful when a database contains examples that

can be used as the basis for future decision making, e.g. for assessing credit risks, for medical diagnosis, or for

scientific data analysis.

….. Sex Date of Birth Date of Stroke Lived …..
... Male 9/21/1924 9/23/94 Died ...
... Female 5/8/1921 12/10/94 Died ...
... Male 1/18/34 2/7/94 Survived ...
... Male 9/26/1925 11/13/94 Survived ...



... Female 3/28/51 12/9/94 Died ...

... Male 1/19/34 2/7/94 Survived ...

Table 1: Sample Training Set

The classification technique that we have developed in Easy Miner is based on the decision tree structure. By using a

decision tree, untagged data sample can be classified by testing the attribute values of the sample data against the

decision tree. A path is produced from the root to a leaf node, which has the class identification of the sample.

5.1 Decision Tree Classifier

A decision tree is a class discriminator that recursively partitions the training set until each partition consists entirely

or dominantly of examples from one class. Each internal node of the tree contains a split point, which is a test on one

attribute and determines how the data is partitioned. Figure 1 shows a sample decision-tree classifier based on the

training set shown in Table 1. This decision tree can be used in order to discriminate future patients that had stroke

into Survived or Died categories.

Figure 1: Decision Tree

5.2 Collection of Training Set and Construction of Decision Tree

In order to construct a decision tree classifier, the first step is to retrieve the classification task relevant data and store

them in a relation (table or query). This is an ease task that executing a usual query can perform it. The second step is

to perform generalisation, as it has been described previously. The third step is to examine the generated genaralised

training set with the purpose of “purifying” it and making it suitable for classification process. Including irrelevant

attributes in the training set would slow down and possibly confuse the classification process. Therefore, relevance

analysis is performed to the data set and then only the most relevant attributes are kept. The algorithm that we use for

tree building is, in general, the following:

MakeTree(Training Data T)

if (all points in S are in the same class) then

return

EvaluateSplits( )

if (T can not be further partition) then

Evaluate Each Class Probability(S)

return

Survived

Died

Date of Birth <1/1/1925

………

Date of Birth <1/5/1967



Use best split found to partition S into S1 and S2

Delete(S)

MakeTree(S1)

MakeTree(S2)

5.3 Data Structures

For each attribute of the training data a separate list is created. An entry of the attribute list has the following fields:

(i) attribute value, (ii) class label, (iii) index of the record (id) from which these value has been taken. Initial lists for

numeric attributes are sorted when first created.   In the beginning, all the entries of the attribute lists are associated

with the root of the tree. As the tree grows and nodes are split to create new ones, the attribute lists of each node are

partitioned and associated with the children. When this happens, the order of the records in the list is preserved, so

resorting is unnecessary and not required.

Histograms are other data structures that are being used. These histograms are capturing the class distribution of the

attribute records at a given node. For numeric attributes, two histograms are associated with each decision-tree node

that is under consideration for splitting Cabove and Cbelow. Cbelow contains the distribution of attributes that have been

already processed, and Cabove contains it for those that are not. For categorical attributes a histogram (count matrix) is

associated with every node. So, for a numeric attribute the histogram is a list of pairs of the form <class, frequency>

and for a categorical attribute, the histogram is a list of triples of the form <attribute value, class, frequency>.

5.4 Finding Split Points

While growing the tree, the goal at each node is to determine the split condition that best divides the training records

belonging to the node under examination. Several splitting indexes have been proposed in [3], [5] and [6] to evaluate

the goodness of the split. Two of the most popular and acceptable indexes are the gini index and the entropy index.

Having a data set T which contains examples from n classes and pj is the frequency of class j in data set T then:
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To find the best split point for a node, we scan every attribute’s lists and evaluate splits based on that attribute. The

attribute containing the split point with the lowest value for the split index is then used to split the node. There are

two kinds of attributes that we can perform a split:

•  Numeric attributes. For a numeric attribute A, a binary split A<u is performed to the set of data that it belongs.

The candidate-split points are midpoints between every two successive attribute values in the training data. In

order to find the split for an attribute on a node, the histogram Cbelow is initialised to zeros whereas Cabove is

initialised with the class distribution, for all the records for the node. This distribution is obtained when the node

is created. Attribute records are read one at a time and Cbelow and Cabove are updated for each record read. After



each record is read, a split between values we have and we have not yet seen is evaluated. Cbelow and Cabove have

all the information to compute the gini or Entropy index. Since the lists for numeric attributes are kept in sorted

order, each of the candidate split points for an attribute is evaluated in a simple scan of the associative attribute

list. If a successful point is found, we save it and we de-allocate the Cbelow and Cabove histograms before we

continue on the next attribute

•  Categorical Attributes. If S(A) is the set of possible values of a categorical attribute A, then the split test is of the

form A S∈ ′ , where SS ⊂′  and 2/][][ SS ≤′ . A single scan is made through the attribute list collecting

counts in the count matrix for each combination of class label that has size and attribute value found in the data.

Once we have finished, we consider all subsets of the attribute values as possible split points that that have size

less or equal to [S]/2 and compute the corresponding index. The information that is needed for computing the

index is available in the count matrix.

 

5.5 Implementation of the split

When the best split point for a node is found, split is performed by creating two children nodes and dividing the

attribute records between them. The partition of the attribute list of the splitting attribute is straightforward.  We

simply scan the list, apply the split test and move the records to the two attribute lists of the children nodes. As we

partition the list of the splitting attribute, the “id” of each record is inserted into a hash table. Once all the “id” are

collected, we scan the lists of the remaining attributes and examine the hash table with the “id” of each record. The

result of the comparison specifies in which child to place the record. During the splitting operation, class histograms

are built for each new leaf.  There are some cases that a data set can not be further partitioned. For example in the

training set of Table 2, it is impossible for a classifier to split the first two records into two separate data sets since

there all have identical attributes except the classifying attribute Lived.  There is no classification rule that can

explain why the two records have different class labels. This is very usual case in large databases and especially in

temporal databases where the stable data during the time appears to have the same values in different time-points. So,

classification of this temporal data considering as classifying attribute the time, will lead to this situation.

….. Gender Date of Birth Date of Stroke Lived …..
... Female 5/8/1921 12/10/94 Survived ...
... Female 5/8/1921 12/10/94 Died ...
... Male 1/18/34 2/7/94 Survived ...
... Female 3/28/51 12/9/94 Died ...

Table 2: Case of Impossible Partition

 In this case, we consider the node with that data set as a leaf with more than one class label. A record of the data set

of such a leaf belongs to a class j with probability rj /r, where rj is the number of tuples of each class j in that data set

and r is the total number of the records of this data set. When an unclassified data set is given as input to the

classifier it is possible that some of its records satisfy the classification rule that corresponds to the path from the root

to such a leaf. Then these records belong to a class j of that leaf with probability: rj /r.

 



5.6 Example of using Classification

 We used Easy Miner to classify records of patients that had had heart attack based on the values of attribute Lived.

By using a relatively small training set, we built a classifier for attribute Lived and after that we used that classifier to

classify all the records in the medical database. A part of the results of the classification process is shown in Figure 1.

The attribute Predicted Lived contains the prediction/classification for attribute Lived.

 
… Sex Date of Birth Date of Stroke Lived Predicted Lived …..
… Male 9/26/1925 11/13/94 Survived Survived (Probability = 100%) …..
... Male 9/21/1924 9/23/94 Died Died (Probability = 100%) ....
... Male 11/1/1921 9/23/94 - Survived (Probability = 100%) ....
... Male 10/7/1921 9/23/94 - Died (Probability = 100%) ....
... Female 3/28/51 12/9/94 Died Died (Probability = 100%) ....
... Female 4/24/51 12/9/94 - Survived (Probability = 100%) ....
... Female 5/8/1921 12/10/94 Died Died (Probability = 100%) ....
... Female 12/8/1921 12/10/94 - Survived (Probability = 100%) ....
... Male 1/18/34 2/7/94 Survived Survived (Probability = 100%) ....

Figure 6: Classified Medical Data

 

6. Association Rules

Agrawal describes discovery of association rules in large databases in [8]. The initial motivation for association rules

was to aid in the analysis of large transaction databases, such as those collected by supermarkets. The discovery of

associations between various line items can potentially aid decision making within organisations. Using the

formalism provided by Agrawal, association rules can be defined as follows.

Let I={i 1, i2,..,im} be a set of items. Let DB be a database of transactions, where each transaction T consists of a set of

items such that T I⊆ . Given an itemset X I⊆ , a transaction T contains X only and only if X T⊆ . An

association rule is an implication of the form X Y⇒ , where IX ⊆ , Y I⊆ and X Y∩ = ∅ . The association

rule X Y⇒  holds in DB with confidence c if the probability of a transaction in DB which contains X also contains

Y is c. The association rule X Y⇒  has support s in DB if the probability of a transaction in DB contains both X

and Y is s. The task of mining association rules is to find all the association rules whose support is larger than a

minimum support threshold 
l
′ and whose confidence is larger than a minimum confidence threshold 

l
′ .

6.2 A method for mining association rules

We use the semantic characteristic of decision trees to develop a method for finding association rules from a

database. The rules that our method discovers have the form: X Y⇒ , where X is a set of conditions upon the

values of several attributes and Y a specific value of one attribute or a combination of several attributes’ values. This

attribute (or combination of attributes) Y is called target attribute. The method for mining association rules consist of



3 simple steps including Data Preparation, Generation of rules and Selection of strong rules which will be discussed

in the following sections.

6.3 Data Preparation

Data preparation involves the following phases:

1. The target attribute, in which there is interest on finding association rules, must be selected and discriminated

from the others. In case that there is interest on more than one attribute, then the target attribute can be

constructed from the join of these attributes.

2. Generalisation may be performed on the target attribute(s) by using relative generalisation rules. If among the

target attributes there are numeric ones, then their values have to be generalised by using generalisation rules or

by grouping them in to ranges. By this method the target attribute is being converted into a categorical one with

only a few values of higher level. As a result of this process, the discovered rulesX Y⇒  will have higher

confidence since Y will have also higher support.

3. Generalisation also could be applied and to the other attributes of the data set. Moreover, it is recommended for

attributes that have a large number of distinct values. This results in viewing the data in abstractions that are more

useful and in generating candidate data sets for finding association rules, that have quite significant support.

6.4 Generation of Rules

After the stage of preparation of data, the target attribute can be considered as the class label of the whole set of data.

Hence, a decision tree can be constructed, based on that classifying attribute. Each path from the root to node of this

decision tree represents one or more rules of the form:

IF  (sequence of intermediate conditions) THEN  (classifying attribute value)

The confidence of each generated rule from such a path is rj /r, where rj is the number of tuples of each class j that

has records in the data set of that node, and r is the total number of the records of that data set.

6.5 Selection of Strong Rules

After extracting all the rules from the built decision tree, we select only the strong ones. As strong rules have been

defined the rules A B ⇒ that the support of A and B are above the minimum support threshold, and their

confidence is greater than the minimum confidence threshold. In the following table, there are rules that were

discovered by using this technique of Easy Miner. These rules concern the credit history database of bank customers.

Rule’s Body Support Confidence
IF ( (Marital_Status IN {Single}) ) THEN (Home = Rent) 16.22% 65.15%
IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {60 days late}) (1 <
Nbr_Children) (Savings_Account IN {Yes}) (1187< Mo_Income) ) THEN (Home = Own)

12.29% 66.00%

IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {Balanced}) (1611.50 <
Mo_Income <= 2918.50) (Checking_Account IN {No}) ) THEN (Home = Own)

14.99% 100.00%



IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {Balanced}) (3047.50 <
Mo_Income <= 3633) (Nbr_Children < 3) ) THEN (Home = Own)

10.57% 100.00%

IF ( (Marital_Status NOT_IN {Single}) (Account_Status IN {Balanced}) (3633.50 <
Mo_Income) (Nbr_Children < 3) ) THEN (Home = Own)

10.57% 93.02%

7. Use of Sampling

Finally, in Easy Miner we have the option of using sampling method. For some data mining tasks in very large

databases it is time consuming to perform data mining in the whole database. For this reason we have adopted the

sampling method of the simple validation. In this method, a percentage of the data mining task relevant data is

randomly selected from the whole data set. After that, this sample data set is treated as the training set for building a

decision tree. When the decision tree is built, we validate it and update its statistics by testing the whole data set on it

and watching how the records are distributed to the nodes of the tree. The advantage of this method is that there is

need for sorting the numeric attributes and finding split points only in a relatively small sample data set and not in the

whole data set.

8. Comparison with other methods

By performing generalisation on the examining data set, Easy Miner allows us to handle row data at higher

conceptual levels and more meaningful abstractions. Moreover, generalisation addresses the scalability issue by

compressing the examining data set. The generalised data is much more compact than the original one and so fewer

operations are required in the process of building a decision tree.

By performing relevance analysis on the generalised data set, we reduce further the amount of the training data since

we remove the less relevant attributes from it. This reduction on the size of the training set, results in faster and more

accurate building of a smaller decision tree. As Quinlan mentions in [7], having irrelevant attributes in the data set

that is examined increases greatly the error rate and size of the resulting trees. Because of the integration of

generalisation and relevance analysis into decision tree building, Easy Miner construction of decision trees is much

more efficient than SLIQ [5] and the serial version of SPRINT [6] and leads into better results.

The most established algorithms for discovery of association rules have problems when the examining data set

contains numeric attributes. The methods that are based on the attribute oriented induction [8] have to generalise the

numeric attributes and convert them into categorical ones. During this human-driven generalisation there is a lost of

information because the user-defined generalisation is not always the most adequate and optimum to the request data

mining task. In Apriori algorithm [8] the values of the numeric attributes are replaced by intervals. If the number of

intervals is large, the support for any single interval is low. On the other hand, if the number of intervals is low, it can

lead into rules with low confidence. To determine the number of intervals the algorithm uses K-partial completeness,

which is based only on the ordinal properties of the data. Easy Miner does not have those problems since numeric



attributes values are splitted into groups according to how well those groups are related to the values of the target

attribute. Therefore it handles them according the needs of every user-requested data mining task.

9. Summary and Future Work

In this paper, we introduced our approach for data mining in time-oriented data. We presented Easy Miner, a data

mining tool designed and developed at UMIST. All components of Easy Miner including relevance analysis,

classification and association rules have been described in detail with examples. We are currently in the stage of

optimising the performance of the tool and also carrying out extensive testing. At the same time we carry out tests

with other domains, namely shipping data and stock data.

In the future, we will apply our methods to distributed databases using many workstations to hold the data. This has

two justifications, firstly, to represent a distributed environment and secondly, to improve performance and reduce

the costs. As far the temporal aspects are concerned, we would like to enhance the algorithm for automatic-

generation of generalisation rules by employing temporal constraints as part of the problem definition. We believe

that data mining over temporal data can lead to the discovery of high quality knowledge that can be used for

predictive decision making.
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