DATA MINING IN TEMPORAL DATABASES

George Koundourakis, Mohammad Saraee and Babis Theodoulidis
Information Management Group
Department of Computation, UMIST,
Manchester, United Kingdom

Email: (koundour,saraee,babis)@co.umist.ac.uk HTTPe&léimco.umist.ac.uk

ABSTRACT

In this paper we describe our approach to data minirgnporal databases by introducing Easy Miner, a data
mining system developed at UMIST. This system implemantgle spectrum of data mining functions, including
generalisation, relevance analysis, classificationdascbvery of association rules. By integrating theserésting
data mining techniques, the system provides a user friamdlynteractive environment with good performance and
of course, wide choice of functionalities. These algorithrave been tested on time-oriented medical data and
experimental results show that the algorithms are dffi@ad effective for discovery of previously unknown

knowledge in databases.

1. Introduction

Data mining is the nontrivial extraction of implicit, preusly unknown, and potentially useful information from
data [1]. In other words, it is the search for relagivips and global patterns that exist in large databasesr®
“hidden” among the vast amount of data, such as a relhtphstween patient data and medical diagnosis. These
relationships represent valuable knowledge about thédastaand objects in it and (if the database is a diithf

mirror) of the real world registered by the database.

The growth in the size and number of existing databasexéaeds human abilities to analyse such data with simple
query and analysis approaches. Thus it created a neech appartunity for extracting knowledge from databases.
Recently, data mining has been ranked as one of thepmsising research topics for the 1990s by both database

and machine learning researchers.

There are several kinds of knowledge that data mining tiragtract from a database. We have been focusedeon th
areas of relevance analysis, generalisation, clagsdit, and association. We tried to integrate thesasagiad use
the advantages of one in order to benefit and the otlmettse following sections we describe our approachdisese

areas, which also have been implemented and tested inraidatg tool called Easy Miner.

2. Temporal Constraints for Intervals.

Our first task to developing the time-oriented patterscalvery process is to move the data from the temporal
representation to an equivalent static one that can baged by the existing algorithms. Valid time intervals ar
associated with each tuple in time-oriented database=scoodr the time for which these tuples are valid withia th
modelled domain. Because these intervals represent impsgmantics about the application, it may be desitable
include them within the data used to produce generalisatiassification or associations rules. We introduce tw
concepts for integrating temporal semantic into thegss. namely the Moving Window clause and the Tine SI

clause.

The TIME SLICE Clause: The User specifies a timerirstieand only those objects in the database whose tialel
is contained in this interval get selected for discoverggss. Example: Include all patients who have had stroke
between 1/10/1995 to 1/10/1997.

The MOVING WINDOW Clause: The user specifies an intewialth and the objects in the databases are examined
through a temporal window of this width moving along the tempeotial. Example: Include all patients whose Blood

Pressure has raised more than 2 times within certain fimo(th, 2 months, 3 months, 6 months, 2 years).

3. Generalisation

Easy Miner uses generalisation rules as they areedkfim [9]. By using these rules, values of the attribates
generalised at multiple concept levels. As a resutiisfgrocess, a set of attributes is generated for eengralised
attribute of the original data set. The generatedbattes are instances of the same attribute but in diffeamtept
levels. In order to determine which of these attribteacept levels) is most appropriate to the requiredahitiang
task, relevance analysis is applied on them and oelyptie that is most relevant to the specific data-mitdsg is
kept. In Easy Miner there are several procedures fratitomatic generation of generalisation rules for numeri
attributes. Date-time attributes can be easily gersedlinto years, seasons, seasons of a year, momth#)s of a
year and days. Finally, considering relevance with amotit&ibute can lead to automatic generation of

generalisation rules for any attribute.

4. Relevance Analysis

We perform relevance analysis as defined by Kemper.[8f.aExamples of obvious relevancies amongst database
attributes is ‘Age’ to ‘Date of birth’ and ‘Title’ toSex’ and ‘Marital Status’. This kind of knowledge is quaiiat

and it is quite useful to mine from large databaseshblat information about many objects (fields). For exangple
bank could look in its data and identify the factors thalhould consider in order to give a credit limit to a oorsdr.
Applying Easy Miner to our credit history database rigt¢hat Credit Limit is relevant tAccount Satus, Monthly
Expenses, Marital Satus, Monthly Income andGender.

A number of statistical and machine learning techniqueselewance analysis have been proposed until now. We
use an information-theoretic asymmetric measureslgfivance introduced by Loether and McTavish [10] known as
the uncertainty coefficient. Assume having a data set P of p data samples. @alattribute of it as the classifying
attribute and assume that it has m distinct valuessgtasLet us suppose also that P contgimegords for each
class P(i=1...m). Then a random selected record belongs 83 ¢awith probability p/p. The expected information

needed to classify a given sample is givenjoyp, p, ..., p..) = _i Pijog, P
p p

An attribute A with values {a &...., a} can be used to partition P into {CC,,..., G}, where G contains those

records that have valug af A. Let G contain p records of class;PThe expected information based on the

partitioning using as split attribute the A, is:(p) z T P, (Py + o+ Pry)

So, the information gained by partitioning on attributissAgain(A) = 1 (p,, Pys---»Py) — E(A)

The uncertainty coefficient U(A) for attribute A ibtained by normalising the information gain of A katt U(A)
ranges from 0 to 1. The value 0 means that there idfisggmi independence between the A and the target adribut

and 1 means that there is strong relevance betweenvthattributes. The normalisation of U(A) is aclei@\by the

following equation: U(A) = (P Pzres P) — E(A)
(P, P2y Prm)

It is upon the user to keep thenost relevant attributes, or all the attributes Haate value of uncertainty coefficient

greater than a pre-specified minimum threshold.

5. Classification

Classification is an important area of research i daihing. Classification partitions massive quargité data into

sets of common characteristics and properties [5], If6klassification a set of records, actingtesning set, is
analysed in order to produce a model of the given datdn EEmord is assumed to belong to a predefined class, as
determined by one of the attributes, calbbassifying attribute. Table 1 shows a part from a sample training set of
the medical database, where each record representigmt padLived is theclassifying attribute of the training set.

Once derived, the classification model can be used emoase future data samples, as well as providingttarbe
understanding of the database contents. Classificetiparticularly useful when a database contains examips t
can be used as the basis for future decision makingfae.@ssessing credit risks, for medical diagnosis,oor f

scientific data analysis.

Male 9/21/1924 9/23/94 Died
Female 5/8/1921 12/10/94 Died
Male 1/18/34 2/7/94 Survived
Male 9/26/1925 11/13/94 Survived

Female 3/28/51 12/9/94 Died
Male 1/19/34 2/7/94 Survived

Table 1: Sample Training Set

The classification technique that we have developed in Bassr is based on the decision tree structure. By using
decision tree, untagged data sample can be classifiedtmgtdse attribute values of the sample data agaimst th
decision tree. A path is produced from the root to firlede, which has the class identification of the sampl

5.1 Decision Tree Classifier

A decision tree is a class discriminator that recetygipartitions the training set until each partition sists entirely

or dominantly of examples from one class. Each interndé b the tree containssplit point, which is a test on one
attribute and determines how the data is partitioned.r&igushows a sample decision-tree classifier basetieon
training set shown in Table 1. This decision tree candeel in order to discriminate future patients that hawkestr
into Survived or Died categories.

Date of Birth <1/5/1967
@

Date of Birth

Survived

......... Died

Figure 1: Decision Tree

5.2 Collection of Training Set and Construction of Decision Tree

In order to construct a decision tree classifier, ttst $tep is to retrieve the classification task reteévdata and store
them in a relation (table or query). This is an eask tlzat executing a usual query can perform it. The secepdsst

to perform generalisation, as it has been describedqusyi The third step is to examine the generated gésedal
training set with the purpose of “purifying” it and makingsititable for classification process. Including ienelnt
attributes in the training set would slow down and possibhfise the classification process. Therefoesgvance
analysisis performed to the data set and then only the mimstanat attributes are kept. The algorithm that we use for

tree building is, in general, the following:

MakeTree(Training Data T)

if (all pointsin Sarein the same class) then
return

EvaluateSplits()

if (T can not be further partition) then
Evaluate Each Class Probability(S)
return

Use best split found to partition Sinto S1 and &

Delete(S)
MakeTree(SL)

MakeTree(S2)
5.3 Data Structures
For each attribute of the training data a separateslisteiated. An entry of the attribute list has the falhgfields:
(i) attribute value, (ii) class label, (iii) index tfe record (id) from which these value has been taketmlllists for
numeric attributes are sorted when first created. hénbieginning, all the entries of the attribute lists associated
with the root of the tree. As the tree grows and nadlessplit to create new ones, the attribute listsach node are
partitioned and associated with the children. Whenhajgpens, the order of the records in the list is predese

resorting is unnecessary and not required.

Histograms are other data structures that are being used. Thstsgriams are capturing the class distribution of the
attribute records at a given node. For numeric attribtxes histograms are associated with each decisiomtrde
that is under consideration for splittifjoe aNdCraon- Coaow CONtains the distribution of attributes that have been
already processed, a0 contains it for those that are not. For categomdtibutes a histograncgunt matrix) is
associated with every node. So, for a numeric attritngdnistogram is a list of pairs of the form <classgérency>

and for a categorical attribute, the histogram istafisriples of the form <attribute value, class, fregge>.

5.4 Finding Split Points

While growing the tree, the goal at each node is terdene the split condition that best divides the trajrmecords
belonging to the node under examination. Several splittidgxes have been proposed in [3], [5] and [6] to evaluate
the goodness of the split. Two of the most popular and adidepihdexes are thgni index and theentropy index.

Having a data set T which contains examples from rsetaand jis the frequency of class j in data set T then:
n n
gini(T) =1- Z p; and the entropy inde&nt(T) is: Ent (T) = —Z p; log, (p;)
=1 1=1

If a split divides S into subsets &d S, then the values of the indexes of the divided dataieea by:

Ginl 1 (5) = gini(S)) + = gini(S,) andEnt,, (S) =~ ENt(S,) +-2 Ent(S,)

To find the best split point for a node, we scan ewattybute’s lists and evaluate splits based on thabat&i The
attribute containing the split point with the lowestue for the split index is then used to split the node. eraee

two kinds of attributes that we can perform a split:

® Numeric attributes. For a numeric attribute A, a binary split A<u is perfedrto the set of data that it belongs.
The candidate-split points are midpoints between eveoyswecessive attribute values in the training data. In
order to find the split for an attribute on a node, thgdgramCiygoy is initialised to zeros whered&nove IS
initialised with the class distribution, for all thecoeds for the node. This distribution is obtained whenribde

is created. Attribute records are read one at a timieCgy o and Canove are updated for each record read. After

each record is read, a split between values we havevarve not yet seen is evaluat€gly,, andCapoe have
all the information to compute thgini or Entropy index. Since the lists for numeric attributes are kepgtoired
order, each of the candidate split points for an atkilisitevaluated in a simple scan of the associativdatttri
list. If a successful point is found, we save it anddeeallocate theCygo, and Cyove histograms before we

continue on the next attribute

® Categorical Attributes. If S(A) is the set of possible values of a categbatizibute A, then the split test is of the
form ALIS', whereS [0S and[S] <[S]/2. A single scan is made through the attribute list collgctin

counts in the count matrix for each combination ofslabel that has size and attribute value found in #te. d
Once we have finished, we consider all subsets ofttlibude values as possible split points that that haae si
less or equal to [S]/2 and compute the corresponding indexinférenation that is needed for computing the

index is available in the count matrix.

5.5 Implementation of the split

When the best split point for a node is found, split idopmed by creating two children nodes and dividing the
attribute records between them. The partition of ttiebate list of the splitting attribute is straightfoavd. We
simply scan the list, apply the split test and moverdwerds to the two attribute lists of the children nodeswe
partition the list of the splitting attribute, the “idf each record is inserted into a hash table. Onchaltid” are
collected, we scan the lists of the remaining atteébwnd examine the hash table with the “id” of eadond. The
result of the comparison specifies in which child to pldeerecord. During the splitting operation, classdgsms
are built for each new leaf. There are some cdsssat data set can not be further partitioned. For exaimphe
training set of Table 2, it is impossible for a clssto split the first two records into two separakata sets since
there all have identical attributes except the clasgjfyttributeLived. There is no classification rule that can
explain why the two records have different class lat¥iss is very usual case in large databases and edpégial
temporal databases where the stable data during thepipgars to have the same values in different time-p&nis.

classification of this temporal data considering assifi@ng attribute the time, will lead to this situation

Female 5/8/1921 12/10/94 Survived

Female 5/8/1921 12/10/94 Died
Male 1/18/3¢ 2/7/9¢ Survivec

Femali 3/28/5! 12/9/9¢ Died

Table 2: Case of Impossible Partition

In this case, we consider the node with that data setesf with more than one class label. A record efdhata set
of such a leaf belongs to a class j with probability, where ris the number of tuples of each clags that data set
andr is the total number of the records of this data ¥édien an unclassified data set is given as input ¢o th
classifier it is possible that some of its recordssBathe classification rule that corresponds to the frat the root

to such a leaf. Then these records belong to a ctdgthét leaf with probabilityr; /.

5.6 Example of using Classification

We used Easy Miner to classify records of patientstthdthad heart attack based on the values of attrilutd.

By using a relatively small training set, we built asdifier for attributd_ived and after that we used that classifier to
classify all the records in the medical database. Agfdhe results of the classification process mshin Figure 1.
The attributePredicted Lived contains the prediction/classification for attributeed.

Male | 9/26/1925 11/13/94 Survivdd Survived (Probability = 10! (Probability = 100%) |.....
Male | 9/21/1924 9/23/94 Died Died (Probability = 100%)
Male | 11/1/1921 9/23/94 - Survived (Probability = 100%)
...| Male| 10/7/1921 9/23/94 - Died (Probability = 1009%4)
...|Female 3/28/51 12/9/94 Died Died (Probability = 100%)
...|Female 4/24/51 12/9/94 - Survived (Probability = 100%)
...|Female 5/8/1921 12/10/94 Died Died (Probability = 100%)
.|Femal¢ 12/8/1921 12/10/94 - Survived (Probability = 100%)
Male 1/18/34 217194 Survived Survived (Probability = 100%)

Figure 6: Classified Medical Data

6. Association Rules

Agrawal describes discovery of association rules in lar¢gbdaes in [8]. The initial motivation for associatiates
was to aid in the analysis of large transaction databaseh as those collected by supermarkets. The discofvery
associations between various line items can potantail decision making within organisations. Using the
formalism provided by Agrawal, association rules caddfened as follows.

Let I1={i,, i»,..,in} be a set oftems. Let DB be a database of transactions, where teackaction T consists of a set of
items such thafl [J | . Given anitemset X [J | , a transaction Tontains X only and only if X [1 T . An
association rule is an implication of the fordd 0 Y, where X [1, Y[|l and X n' Y =[. The association
rule X O Y holds in DB withconfidence c if the probability of a transaction in DB which contaXslso contains

Y is c. The association ruleX [J Y hassupport sin DB if the probability of a transaction in DB comtaiboth X

and Y iss. The task of mining association rules is to findth# association rules whose support is larger than a

mini mum support threshold al' and whose confidence is larger thamiai mum confidence threshold ¢ I' .

6.2 A method for mining association rules

We use the semantic characteristic of decision treedetelop a method for finding association rules from a
database. The rules that our method discovers haveorttme X [1 Y, where X is a set of conditions upon the
values of several attributes and Y a specific value efaitribute or a combination of several attributest@s. This

attribute (or combination of attributes) Y is caltadget attribute. The method for mining association rules consist of

3 simple steps including Data Preparation, Generationle$ and Selection of strong rules which will be discussed

in the following sections.

6.3 Data Preparation

Data preparation involves the following phases:

1. Thetarget attribute, in which there is interest on finding association splaust be selected and discriminated
from the others. In case that there is interest on ntiwei@ one attribute, then tharget attribute can be

constructed from the join of these attributes.

2. Generalisation may be performed on theget attribute(s) by using relative generalisation rules. If among the
target attributes there are numeric ones, then thkiesdave to be generalised by using generalisation oules
by grouping them in to ranges. By this method the targebatit is being converted into a categorical one with
only a few values of higher level. As a result of thiscess, the discovered rul¥s[] Y will have higher

confidence since Y will have also higher support.

3. Generalisation also could be applied and to the othénuats of the data set. Moreover, it is recommended f
attributes that have a large number of distinct vallies results in viewing the data in abstractions thataore

useful and in generating candidate data sets for findirggiasi®n rules, that have quite significant support.

6.4 Generation of Rules
After the stage of preparation of data, thigyet attribute can be considered as the class label of the whbl# data.
Hence, a decision tree can be constructed, based onabsifythg attribute. Each path from the root to nodéhisf

decision tree represents one or more rules of thna: fo
IF (segquence of intermediate conditions) THEN (classifying attribute value)

The confidence of each generated rule from such a patirj wherer; is the number of tuples of each class j that

has records in the data set of that node rasthe total numbeof the records of that data set.

6.5 Selection of Strong Rules

After extracting all the rules from the built decisitvee, we select only the strong ones. As strongsriabere been
defined the rulesA [1 B that the support of A and B are above the minimum supporthibicesand their
confidence is greater than the minimum confidence thiéshio the following table, there are rules that were
discovered by using this technique of Easy Miner. These colesern the credit history database of bank customers.

IF ((Marital_Status IN {Single})) THEN (Home = Rent) 16.22%| 65.15%
IF ((Marital_Status NOT_IN {Single}) (Account_Status {B0 days late}) (1 < 12.29%| 66.00%
Nbr_Children) (Savings_Account IN {Yes}) (1187< Mo_Incom&HEN (Home = Own

IF ((Marital_Status NOT _IN {Single}) (Account_Status {Ralanced}) (1611.50 < 14.99%| 100.00%
Mo_Income <= 2918.50) (Checking_Account IN {No})) THEN (Hem Own)

IF ((Marital_Status NOT _IN {Single}) (Account_Status {Ralanced}) (3047.50 < 10.57%| 100.00%
Mo_Income <= 3633) (Nbr_Children < 3)) THEN (Home = Own)

IF ((Marital_Status NOT _IN {Single}) (Account_Status {Ralanced}) (3633.50 < 10.57%| 93.02%
Mo_Income) (Nbr_Children < 3)) THEN (Home = Own)

7. Use of Sampling

Finally, in Easy Miner we have the option of using plng method. For some data mining tasks in very large
databases it is time consuming to perform data minirthenwhole database. For this reason we have adopted the
sampling method of the simple validation. In this methogercentage of the data mining task relevant data is
randomly selected from the whole data set. After téd, sample data set is treated as the trainingosdiuilding a
decision tree. When the decision tree is built, we vidittaand update its statistics by testing the whota dat on it

and watching how the records are distributed to the nddsedree. The advantage of this method is that tisere
need for sorting the numeric attributes and finding gpints only in a relatively small sample data set motdn the

whole data set.

8. Comparison with other methods

By performing generalisation on the examining data set, Béisgr allows us to handle row data at higher
conceptual levels and more meaningful abstractions. dWere generalisation addresses the scalability issue by
compressing the examining data set. The generalisedsdatach more compact than the original one and so fewer

operations are required in the process of building a deciste.

By performing relevance analysis on the generaliseds#dfave reduce further the amount of the training datees
we remove the less relevant attributes from it. Tadkiction on the size of the training set, results stefaand more
accurate building of a smaller decision tree. As Quinhentions in [7], having irrelevant attributes in theadst
that is examined increases greatly the error rate sirel of the resulting trees. Because of the integratib
generalisation and relevance analysis into decision tridgifg, Easy Miner construction of decision trees is much

more efficient than SLIQ [5] and the serial version BRENT [6] and leads into better results.

The most established algorithms for discovery of astoniaules have problems when the examining data set
contains numeric attributes. The methods that aredbass the attribute oriented induction [8] have to generdtis
numeric attributes and convert them into categorioglso During this human-driven generalisation therel@staof
information because the user-defined generalisationtialmays the most adequate and optimum to the request data
mining task. In Apriori algorithm [8] the values of themeric attributes are replaced by intervals. If the remab
intervals is large, the support for any single inteisdbw. On the other hand, if the number of intervallow, it can

lead into rules with low confidence. To determinerienber of intervals the algorithm uses K-partial congpiess,
which is based only on the ordinal properties of the.dasésy Miner does not have those problems since numeric

attributes values are splitted into groups accordingote Well those groups are related to the values of ttgeta

attribute. Therefore it handles them according the nekegery user-requested data mining task.

9. Summary and Future Work

In this paper, we introduced our approach for data miningrie-briented data. We presented Easy Miner, a data
mining tool designed and developed at UMIST. All componeifit&asy Miner including relevance analysis,
classification and association rules have been describddtéil with examples. We are currently in the stage of
optimising the performance of the tool and also cagyut extensive testing. At the same time we carry estst

with other domains, namely shipping data and stock data.

In the future, we will apply our methods to distributed bates using many workstations to hold the data. Tlsis ha
two justifications, firstly, to represent a distribdt environment and secondly, to improve performance ahutee
the costs. As far the temporal aspects are concemedyould like to enhance the algorithm for automatic-
generation of generalisation rules by employing temporastcaints as part of the problem definition. We believe
that data mining over temporal data can lead to theodisy of high quality knowledge that can be used for
predictive decision making.

REFERENCES

[1] Fayyad U, Piatetsky-Shapiro, Smyth Uthurusamy R. AdwanigeKnowledge Discovery and Data Mining.
AAAI/MIT Press, 1995.

[2] Chen X, Petrounias |, Heathfield H. Discovering Tempéssociation Rules in Temporal Databases. In the
Proceedings of the International Workshop on Issues and catiplis of Database Technology (IADT98),
Berlin, Germany, July 1998.

[3] Kamber M, Winstone L, Gong W, Cheng S, Han J. Gersatidn and Decision Tree Induction: Efficient
Classification in Data Mining. In Proceedings of 1997 Intéonal Workshop on Research Issues on Data
Engineering (RIDEY7), Birmingham, England, April 1997, pp 111-120.

[4] Loether H.J, McTavish D. G. Descriptive and Inféi@rStatistics: An Introduction. Allyn and Bacon 1993.

[5] Mehta M., Agrawal R., and Rissanen J. SLIQ: A Fasi&e Classifier for Data Mining. In Proc. of thith
Int'l Conference on Extending Database Technology (EDBvignon, France, March 1996.

[6] Shafer J, Mehta M., Agrawal R. SPRINT: A Scalables€lier for Data Mining. In Proceedings of the"®2
International Conference on Very Large Data Bases (V). Mimbai (Bombay), India, 1996, pp 544-555.

[7]1 J. R. Quinlan. Improved Use of Continuous Attributes in5Cdournal of Artificial Intelligence Research 4,
1996, pp 77-90.

[8] Rakesh Agrawal and R. Srikant. Mining Quantitative Asstiam Rules in Large Relational Tables. In Proc. of
the ACM SIGMOD Int'l Conf. on Very Large Data Bag®4.DB), Zurich, Switzerland, September 1995.

[9] D. W. Cheung, Ada W. Fu, J. Han. Knowledge Discovery inabages: A Rule-Based Attribute-Oriented
Approach. In Proc. of 1994 Int. Symp. On methodologies fetligent systems, Charlotte, N.C. Oct 1994,

