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Abstract

We present a new data structure, called a random-access list,
that supports array lookup and update operations in O(log n)
time, while simultaneously providing O(1) time list opera-
tions (cons, head, tail). A closer analysis of the array oper-
ations improves the bound to O(min{z,logn}) in the worst
case and O(log 1) in the expected case, where 7 is the index of
the desired element. Empirical evidence suggests that this
data structure should be quite efficient in practice.

1 Introduction

Lists are the primary data structure in every functional pro-
grammer’s toolbox. They are simple, convenient, and usu-
ally quite efficient. The main drawback of lists is that access-
ing the ith element requires O(i) time. In such situations,
functional programmers often find themselves longing for
the efficient random access of arrays. Unfortunately, arrays
can be quite awkward to implement in a functional setting,
where previous versions of the array must be available even
after an update.

Since arrays are such an important data structure, tremen-
dous effort has been invested in integrating arrays into purely
functional languages. In recent years, however, most of this
effort has focused on analyses and language restrictions to
make destructive array updates safe. Crucial to these ef-
forts is the assumption that arrays are typically used in a
single-threaded manner, that is, after every update, the old
array becomes garbage and may safely be modified in-place
to yield the new array.

But what happens when this assumption is violated? Or
what if we wish to describe arrays at the user level of a purely
functional language, as opposed to the implementation level,
so that destructive updates are not available?

In this paper, we present a new data structure, called a
random-access list, that supports non-single-threaded array
lookups and updates in O(logn) time.! This data struc-
ture is purely functional and is quite simple to implement
in virtually any functional language.

The novel aspect of this data structure is that it provides
random access while semultancously supporting all normal

1Al logarithms in this paper are base 2.
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list primitives in O(1) time. Thus, random-access lists may
be substituted for standard lists in any application with no
loss of efficiency (up to a small constant factor).

We begin by describing random access for functional ar-
rays represented first as complete binary trees, and then
as collections of trees. We then show how to add or re-
move a single element from the front of such a collection in
O(1) time, providing the basis for efficient list operations.
Next, we describe several variations on random-access lists,
such as random-access queues and deques, and show how to
support min queries in a random-access structure with no
penalty. We then discuss related work and present experi-
mental comparisons of our data structure with several other
purely functional data structures. We conclude with some
brief remarks.

All code fragments in this paper are written in Standard
ML [23], but are easily adaptable to any other functional lan-
guage. All source code is available via anonymous ftp from
ftp.cs.cnu.edu,in directory /afs/cs/project/fox/ftpand
file randomaccess.tar.gz.

2 Complete Binary Trees in Preorder

We begin by focusing on the issue of random access. We
wish to implement purely functional arrays supporting the
following operations:

e lookup A . Return the ith element of A. If ¢ is not a
valid index, raise the Subscript exception.

e update A ¢ z: Return a new array identical to A except
that the ith element has been changed to z. If 7 is not
a valid index, raise the Subscript exception.

(For now, we ignore the question of how arrays are created.)

How might such a data structure be represented? The
obvious first approach is to use balanced binary trees. Any
balanced binary tree representation will do (e.g., AVL trees
or red-black trees), but we adopt the rather extreme position
of representing arrays as complete binary trees. Recall that
complete binary trees are totally balanced — every internal
node has two children of exactly the same size and depth.
Unfortunately, complete binary trees are only available in
sizes of the form 2% — 1, but we will deal with this problem
shortly.

Once the shape of the tree has been determined, we must
next decide on what order to store the elements in the tree.
Typical balanced search trees, such as AVL trees or red-
black trees, store the elements in symmetric order, that is,
in the order of a left-to-right inorder traversal. However,
we reject this choice on the grounds that the first element
is stored in the leftmost node and requires O(logn) time



Figure 1: An array represented as a complete binary tree in
preorder.

to access. Since we will eventually want to access the first
element in O(1) time (to support efficient list operations), we
instead choose to store the elements in preorder, that is, in
the order of a left-to-right preorder traversal (see Figure 1).
In this scheme, the first element (element 0) is stored at the
root. Elements 1...[n/2| are stored in the left subtree, and
elements [n/2]...n — 1 in the right subtree.?

Given this organization, it is quite simple to write lookup
and update functions, as shown in Figure 2. Note that each
function takes the size of the tree as an extra parameter.
Since the height of a complete binary tree is logarithmic in
the size of the tree, the running time of each function is
clearly O(logn).

3 Collections of Trees

As noted in the previous section, complete trees only come
in sizes of the form 2¥ — 1, so how do you represent an ar-
ray of arbitrary size? One rather unsatisfying approach is
to simply use the smallest complete tree that is sufficiently
large. However, up to half of the elements might be wasted
in this scheme. An alternative approach, adopted here, is to
represent an array of arbitrary size as a collection of com-
plete trees that sum to the appropriate size (see Figure 3).
Clearly, this is always possible since you could have a col-
lection of n trees of size 1. However, we show that in fact
one can always represent an arbitrary array using only a
logarithmic number of trees.

We first make several definitions. A skew-binary term
is an integer of the form 2*¥ — 1 for k > 0. Note that if ¢
is a skew-binary term, then 2¢ + 1 is the next larger skew-
binary term. A skew-binary decomposition of a integer n
is a multiset T of skew-binary terms {¢1,...,%m} such that
n=1t+ -+tm. We call such a decomposition greedy if the
largest term is as large as possible and if the remainder of
the decomposition is also greedy. More formally, a decom-
position 7' is greedy if no subset of terms sums to > a larger
term, ¢.e.,

vSCT: Zt< 2(max S) +1
tes
Call this the subset-sum restriction.

Greedy skew-binary decompositions have several useful
properties, including:

?Braun trees [19, 28] also store the first element at the root, but
alternate the remaining elements between the left and right subtrees.
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Figure 3: An array represented as a collection of complete
binary trees.

Property 1 Fuvery integer n > 0 has a unique greedy de-
composition, denoted G(n).

Proof: We give a constructive proof (i.e., an algortihm).
Clearly, G(0) = {}, and this is unique. Now, assume that
n > 0 and consider the largest skew-binary term t < n.
G(n) must include ¢ since no set of smaller terms may sum
to > ¢. The remainder of G(n) must sum to n — ¢, and must
obey the subset-sum restriction. But this is just G(n — t)!
Finally, note that no subset of {t} ¥ G(n — t) may sum to a
term larger than ¢ since otherwise ¢ would not be the largest
term < n. Thus, G(n) = {t} W G(n — t). Clearly, this

algorithm 1is deterministic and always terminates. O

Property 2 A skew-binary decomposition is greedy if and
only iof every term in the decomposition is unique, except
that the smallest two may be the same. In other words, if
t1,...,tm are the (sorted) terms of a skew-binary decompo-
setion T, then T is greedy of and only if

t <l < <y

Proof: (=) Suppose in a greedy decomposition there existed
two terms of the form 2" —1, and another term of the same or
lesser size. Then these three terms would violate the subset-
sum restriction because they would sum to > 2F+! — 1.

(+=) By induction on k, no collection of terms in which
only the smallest is repeated can possibly sum to a larger
term. Thus, the decomposition is greedy. O

Property 3 |G(n)| < [log(n + 1)]

Proof: By inspection for n = 0. Now, suppose n > 0 and
G(n) contains more than k = [log(n + 1)] terms. By Prop-
erty 2, it must contain a term at least as large as 25 —1 > n.
When combined with any of the remaining k& or more terms,
this strictly exceeds n. O

Now, to represent an array of size n, we simply choose
tree sizes according to the greedy decomposition of n. Prop-
erty 3 guarantees that lookups and updates on a collection
of trees still require only O(log n) time: O(logn) to find the
right tree in the collection, and O(logn) to find the right
element in the tree. Code for these functions is presented in
Figure 4.

4 Random-Access Lists

We have to this point ignored the issue of array creation.
Typically, the size of an array is specified at the time of cre-
ation and is never changed. However, in many situations,



datatype ’a tree = Leaf of ’a | Node of ’a * ’a tree * ’a tree
exception Subscript

fun tree_lookup size (Leaf x) 0 = x
| tree_lookup size (Leaf x) i = raise Subscript
| tree_lookup size (Node (x,t1,t2)) 0 = x
| tree_lookup size (Node (x,t1,t2)) i
let val size’ = size div 2
in

if i <= size’ then tree_lookup size’ t1 (i-1)
else tree_lookup size’ t2 (i-1l-size’)
end

fun tree_update size (Leaf x) O y = Leaf y
| tree_update size (Leaf x) i y = raise Subscript
| tree_update size (Node (x,t1,t2)) 0 y = Node (y,t1,t2)
| tree_update size (Node (x,t1,t2)) i y
let val size’ = size div 2
in

if i <= size’ then Node (x,tree_update size’ t1 (i-1) y,t2)
else Node (x,tl,tree_update size’ t2 (i-1-size’) y)
end

Figure 2: Lookup and update operations on complete binary trees.

type ’a functional_array = (int * ’a tree) list
fun lookup [] i = raise Subscript
| lookup ((size,t) :: rest) i = if i < size then tree_lookup size t i
else lookup rest (i-size)
fun update [] i y = raise Subscript

| update ((size,t) :: rest) i y = if i < size then (size,tree_update size t i y) :: rest
else (size,t) :: update rest (i-size) y

Figure 4: Lookup and update operations on collections of trees. Each tree is paired with its size.
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the desired size is not known ahead of time, making fixed-
size arrays awkward. Dijkstra [13] instead proposed a sys-
tem of flexible arrays that are initially empty, but that can
grow or shrink by one element at a time. We call a flexible
array that grows and shrinks only at the front of the array,
and 1s indexed from the first element, a random-access list.

We wish to provide the standard list operations cons,
head, and tail, as well the empty random-access list empty,
and a predicate ¢sempty. It is in these operations that com-
plete binary trees and greedy decompositions prove their
worth. As the following property demonstrates, changing
n by 1 only affects at most the two smallest terms of the
greedy decomposition of n, suggesting that cons and tail can
be implemented in O(1) time, as opposed to O(log n) time as
required by virtually every other tree-based representation
of arrays.

Property 4 (a) If G(n) contains no repeated terms, then
G(n+1)={1} ¥ G(n)

(b) If G(n) contains a repeated term 2F — 1, then
Gn+1)={2"" —1}wdn) — {28 —1,2" -1}

Proof: (a) Since G(n) contains no repeated terms, {1} W
(G/(n) may contain repeated 1 terms, but otherwise all terms
are unique. Thus, by Property 2, {1} W G(n) is the greedy
decomposition of n + 1.

(b) By Property 2, G’ = G(n) — {2 — 1,2 — 1} is com-
posed entirely of unique terms larger than 2¥ — 1. Thus,
{2¥+1 _ 1} w G’ may contain repeated 257! — 1 terms, but
otherwise all terms are unique. Therefore, {27! — 1} w G’
is the greedy decomposition of n + 1. O

Property 4 suggests the following implementation of list
operations: To cons a new element onto a random-access
list, check if the two smallest trees in the existing list are
the same size. If not, add the new element as a single-
ton tree. Otherwise, join the two trees into a new, larger
tree with the new element as the root. Provided the trees
are maintained in increasing order of size, this can be ac-
complished in O(1) time. To take the tail of a list, simply
remove the leading singleton tree, if one exists. Otherwise,
remove the root of the smallest tree, and add its two sub-
trees to the collection. This also requires only O(1) time.
These operations are illustrated pictorially in Figure 5. The
remaining list operations (head, empty, isempty) are trivial
to implement in O(1) time. Figure 6 contains code for all
five list operations.

The fact that all list primitives can be implemented in
only O(1) time is remarkable since it implies that any appli-
cation using standard lists can be rewritten to use random-
access lists with no loss of efficiency (up to a constant factor)
even if the application never takes advantage of random ac-
cess. In practice, slowdowns on list-intensive applications
that do not use random access are less than about a factor
of 2. And, of course, applications that do take advantage of
random access can observe arbitrary speedups.

5 Analysis

Recall that lookups and updates require O(¢) time for stan-
dard lists. For small values of ¢, this is better than O(log n).
However, since every step through the collection or down
a tree decreases ¢ by at least one, a more accurate bound
on the worst-case running time for lookups and updates in
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random-access lists is O(min{s,log n}), showing that random-
access lists are never less efficient than standard lists. This

bound is tight (consider an array represented as a single

tree).

Several competing data structures, notably Braun trees
[19, 28] and finger search trees [21, 33], improve the worst-
case bounds on lookups and updates slightly to O(log i). We
now show that random-access lists match this bound, albeit
in the expected case rather than worst case.

First, consider a random-access list containing exactly
one tree of every size up to 2U°8("*D] _ 1 Notice that the
kth tree has depth k, and that every element ¢ is contained in
approximately the (logi)-th tree. Thus, every element can
be accessed in O(log ?) time: O(log 1) to find the right tree in
the collection, and O(log?) to find the right element in the
tree. In fact, this bound holds whenever there are no “gaps”
in the collection where trees of more than ¢ consecutive sizes
are missing, for some constant ¢ (Kosaraju [21] calls this the
gap property). The intuition behind the O(logi) expected
bound is that large gaps are unlikely for randomly chosen
n.

Let k = [log(i+ 2)] and notice that 2% 1 > i so that if
there is a tree of size 2 — 1 in the collection, then element
1 occurs no later in the collection than that tree. If element
¢ occurs in an earlier tree, then it certainly requires only
O(log i) time to access. Otherwise, it requires at most O(k’)
time, where 28" _ 1 is the size of the first tree of size >k _1
that is present in the collection. For randomly chosen n, the
probability that &' = k is 1/2. The probability that k' =
k+1is 1/4, and, in general, the probability that k' = k+m
is 1/2™*!. Thus, the expected running time of an access is

ko k41 k+m

0(54_ 1 _|_..._|_2m+1 _|_)

This series converges to O(k) = O(log 1).

6 Variations

Sometimes arrays that are extensible at the rear rather than
the front are more convenient. Or you may wish to extend
the array at the front, but without shifting the existing in-
dices. Both of these variations are quite simple to simulate
using random-access lists by associating a total size or start-
ing index with each list.

Alternatively, you may wish to extend the array at the
rear, but remove elements from the front, yielding a random-
access queue. This can be implemented by substituting
random-access lists for standard lists in the purely functional
queues of Hood and Melville [18]. Similarly, arrays that can
grow or shrink at either end (random-access deques) can be
implemented by substituting random-access lists for stan-
dard lists in the purely functional deques of Hood [17] or
Chuang and Goldberg [10]. Note that the purely functional
queues and deques of Okasaki [27] are not suitable for this
modification since they depend on lazy lists, and random-
access lists are (spine) strict.

A mun-list is a list data structure that supports an ad-
ditional operation min that returns the minimum element.
(but note that the operation delete-min is not supported).
Min-queues and min-deques are defined similarly. Such data
structures have numerous applications, including VLSI river
routing [11], all-pairs shortest-path algorithms [15], and com-
puting external farthest neighbors for simple polygons [2].
We now show how to implement random-access min-lists
with the same bounds as random-access lists. Just as above,
random-access min-queues and min-deques may be built from
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Figure 5: The two cases of cons and tai on random-access lists.

type ’a random_access_list = (int * ’a tree) list
exception Empty
val empty = []

fun isempty [] = true
| isempty ((size,t) :: rest) = false

fun cons x (xs as ((sizel,tl) :: (size2,t2) :: rest)) =
if sizel = size?2 then (l+sizel+size2,Node (x,t1,t2)) :: rest
else (1,Leaf x) :: xs
| cons x xs = (1,Leaf x) :: xs

fun head [] = raise Empty

| head ((size,Leaf x) :: rest) = x
| head ((size,Node (x,t1,t2)) :: rest) = x
fun tail [] = raise Empty

| tail ((size,Leaf x) :: rest) = rest

| tail ((size,Node (x,t1,t2)) :: rest) =
let val size’ = size div 2
in

(size’,t1) :: (size’,t2) :: rest

end

Figure 6: Operations on random-access lists.
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Figure 7: A random-access min-list. Tags on nodes are writ-
ten below the node. The additional tags on roots are written
above the node.

such lists. Gajewska and Tarjan [16] first described efficient
min-deques, but without supporting random access.

It is very simple to associate a global minimum with each
list. However, when the minimum element is removed or
updated, we do not wish to search the entire list for the new
minimum. Instead we tag every tree node with the minimum
element in the subtree rooted at that node, and every root in
the collection of trees with the minimum element from this
and all subsequent trees (see Figure 7). Then the overall
minimum is the tag on the first root. Maintaining these tags,
even during updates, is not difficult since any given tag can
be recomputed in O(1) time with strictly local information.
Tags on tree nodes depend only on the value at the node and
the tags of its two children. Tags on roots in the collection
depend only on the tag of the current root and the tag of the
next root in the collection. The only tags that need to be
recomputed during an update are those for nodes that are
reconstructed by the update anyway, so there is no penalty
for maintaining this information.

7 Related Work

A series of array accesses (lookups or updates) is called
single-threaded if every operation refers to the most recent
version of the array, never to a previous version [31]. Single-
threaded array accesses may safely be implemented destruc-
tively, requiring only O(1) time. The vast majority of re-
search on functional arrays has focused on detecting or en-
forcing single-threadedness through such techniques as static
analysis [7, 26, 30], linear types [36], or monads [29].

An array that supports non-singled-threaded access is
called fully persistent[14]. A number of data structures have
been proposed to represent fully persistent arrays. One tech-
nique, known as version arrays [1] or shallow binding [4, 5],
maintains a cache of elements along with trees of differen-
tial nodes indicating differences from the cache. This tech-
nique yields O(1) performance for single-threaded accesses,
but may degrade to O(Ffupdates) for non-single-threaded
accesses. Chuang [9] uses randomization to improve the ex-
pected performance for non-single-threaded accesses. Unfor-
tunately, version arrays rely on destructive operations inter-
nally, and so cannot be implemented in a purely functional
language (although they may be provided as primitives for
such a language). Furthermore, version arrays are limited to
a fixed size (although Chuang’s randomized method could
be adapted to flexible arrays).

Dietz [12] exploits the fact that indices of fixed-size ar-
rays are bounded integers to provide an implementation re-
quiring O(loglog n) expected amortized time per operation.
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Various balanced binary tree schemes have been used to
implement fully persistent arrays purely functionally, includ-
ing AVL trees [25] and Braun trees [19, 28]. Such trees easily
support O(log n) lookups and updates (O(log ) in the case
of Braun trees), but require O(log n) time to add or remove
an element.

Finger search trees [21, 33] are similar to binary search
trees. Instead of beginning searches at the root, however,
finger search trees begin searches at the leftmost leaf, first
searching upward to find an ancestor of the desired node and
then searching downward in the normal fashion. Lookups
and updates require O(log ¢) time, and adding or removing
a leaf in the leftmost position can be accomplished in O(1)
time. Finger search trees can be made fully persistent using
the (internally destructive) techniques of Driscoll et al. [14],
but it is not clear whether they can be implemented purely
functionally without suffering a degradation in performance.

Kaplan and Tarjan [20] recently introduced the algo-
rithmic notion of recursive slowdown, and used it to de-
sign a new purely functional implementation of constant-
time double-ended queues. A pleasant accidental property
of their data structure is that it also supports random access
in O(log d) time, where d is the distance from the desired
element to the nearest end of the queue.

A very different technique was introduced by Myers [24]
to implement random-access stacks. He augments a stan-
dard singly-linked list with auxiliary pointers allowing one
to skip arbitrarily far ahead in the list. The number of ele-
ments skipped by each auxiliary pointer is controlled by the
digits of a canonical skew-binary number (virtually iden-
tical to the greedy skew-binary decompositions described
here). His scheme allows O(1) list operations, and O(log n)
lookups, but requires O(¢) time for updates. The difficulty
with updates i1s that his scheme contains many redundant
pointers. Removing these redundant pointers yields a struc-
ture isomorphic to the random-access lists described here
(see Figure 8). Thus, random-access lists may be viewed
as an improvement to Myers’ representation to support ef-
ficient updates.

Finally, random-access lists share many similarities with
binomial heaps [34]. Both are based on rigidly structured
trees of certain, fixed sizes (2k for binomial heaps and 2% —1
for random-access lists). Both represent aggregates as col-
lections of trees. Both build bigger trees by joining trees
of identical size. Adding a single element to each structure
is highly reminiscent of binary arithmetic. The difference
is that binomial heaps use binary arithmetic, in which car-
ries may propogate arbitrarily far, while random-access lists
use skew-binary arithmetic, in which carries may propogate
only a single position.

8 Measurements

To determine the effectiveness of our data structure, we com-
pared the running times of six purely functional data struc-
tures on a variety of problems and problem sizes. In addition
to random-access lists, we also measured the performance
of standard lists, Myers’ random-access stacks [24], AVL
trees [25], Braun trees [19, 28], and Kaplan-Tarjan lists [20].
For both AVL trees and Kaplan-Tarjan lists, we optimized
the implementations to support insertions and deletions only
at the front. Otherwise, only minor tuning was performed,
such as replacing division by two with a bitwise shift oper-
ation.
We used five benchmark problems:

e Sum: construct a list containing n integers, and then
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Figure 8: Myers’ random-access stacks with redundant pointers (a) and without (b)

sum the elements

e Lookup: sequentially lookup each element of an exist-
ing list of size n

e Update: sequentially update each element of an exist-
ing list of size n

e Quicksort: sort a list of » random integers using the
quicksort algorithm on lists

e Histogram: count the occurrences of each integer in a
list of 5n integers chosen randomly from 0...n — 1

The first three benchmarks were run on problem sizes of
1000, 10,000, and 100,000; the latter two benchmarks on
problem sizes of 1000 and 10,000. The Sum and Quicksort
benchmarks measure the effectiveness of each data structure
when used as a list. The Lookup, Update, and Histogram
benchmarks measure the effectiveness of each data structure
when used as an array.

The results of these experiments are shown in Figure 9.
For each experiment, we also give the ratio of its average
running time to that of the fastest data structure on that
problem and problem size. Examining the ratios, we see that
(not surprisingly) standard lists outperform all other data
structures when used as lists, but are totally impractical as
arrays. Myers’ random-access stacks also perform quite well
as lists, but their lack of efficient updates cripples their use
as arrays. On the other hand, AVL trees and Braun trees
both excel at array applications while faring poorly on list
applications. Kaplan-Tarjan lists yield mediocre results on
every experiment, but recall that they were not designed
with random access in mind.

Of all the data structures, only random-access lists are
competitive at every task. They are nearly as efficient as
standard lists on list applications, and nearly as efficient as
binary trees on array applications. In fact, they are always
within about a factor of two of the fastest data structure on
any given problem. This makes random-access lists the data
structure of choice for applications featuring both patterns
of usage (particularly when array accesses are non-single-

threaded).
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Finally, the erratic performance of Braun trees deserves
some comment. Braun trees perform very well as arrays
when either the array is small or access is random. How-
ever, they perform surprisingly poorly for sequential access
on large arrays. Closer examination reveals an inordinate
amount of time being spent collecting garbage. This is be-
cause Braun trees exhibit very poor locality — other than
near the root, elements that are close in the array ordering
will always be stored in distant segments of the tree. This
interacts poorly with generational garbage collectors [22],
which depend on locality for good performance.

9 Discussion

We have presented an implementation of random-access lists
that supports O(logn) array operations and O(1) list oper-
ations. For randomly chosen n, the bound for array opera-
tions can be improved to O(log i) expected time. This data
structure is both simple to code, and efficient enough to be
a practical alternative to standard lists even when random
access is not required.

Although the O(logn) bounds are disappointing when
compared to the O(1) bounds of imperative arrays, Ben-
Amram and Galil [6] have shown that this is optimal for any
linked structure of bounded-width nodes, even allowing for
destructive updates. Improving these bounds would require
the use of substructures of unbounded width supporting ran-
dom access. In order to maintain the O(1) bounds on list
operations, such substructures would need to be initializable
in O(1) time.

There is one sense in which the replacement of standard
lists with random-access lists might be unpalatable, and that
is pattern matching. To maintain the necessary structure,
random-access lists would need to be provided as an ab-
stract data type, and abstract data types are well known
to clash with pattern matching. Pattern matching is an ex-
tremely convenient way of writing functions involving lists
(and many other data structures), but it requires knowl-
edge of the data structure’s representation. Mechanisms
for pattern matching on abstract data types have been pro-
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Problem N Time  Time  Time Ratio Time  Time  Time Ratio Time  Time  Time Ratio
Sum 1000 0.010 0.004 0.014 1.00 0.011 0.005 0.016 1.13 0.014 0.002 0.016 1.11
10000 0.105 0.129 0.234 1.00 0.118 0.208 0.326 1.39 0.145 0.213 0.358 1.53

100000 1.032 1.562 2.594 1.00 1.170 3.845 5.015 1.93 1.489 4.060 5.550 2.14

Lookup 1000 0.263 0.000 0.264 17.58 0.020 0.000 0.021 1.37 0.019 0.000 0.020 1.32
10000 — — — — 0.250 0.007 0.257 1.48 0.235 0.006 0.241 1.39

100000 — — — — 2.859 0.015 2.874 1.44 2.480 0.016 2.497 1.25

Update 1000 3.297 4.585 7.882 189.64 3.599 3.714 7.313 175.96 0.063 0.003 0.066 1.59
10000 — — — — — — — — 0.897 0.264 1.161 1.45

100000 — — — — — — — — 10.598 6.239 16.837 1.38

Quicksort 1000 0.191 0.010 0.201 1.00 0.201 0.016 0.217 1.08 0.236 0.021 0.257 1.28
10000 2.686 1.203 3.890 1.00 2.677 1.832 4.509 1.16 3.121 1.968 5.089 1.31

Histogram 1000 | 17.859 19.795 37.654 46.70 | 18.305 22.619 40.924 50.75 0.502 0.340 0.842 1.04
10000 — — — — — — — — 7.233 7.869 15.102 1.46

AVL Tree Braun Tree Kaplan-Tarjan List
User GC Total . User GC Total . User GC Total .

Problem N Time  Time  Time Ratio Time  Time  Time Ratio Time  Time  Time Ratio
Sum 1000 0.098 0.019 0.117 8.34 0.055 0.006 0.061 4.34 0.065 0.014 0.080 5.67
10000 1.287 0.312 1.599 6.83 0.814 1.477 2.291 9.79 0.673 0.445 1.119 4.78

100000 | 15.640 3.328 18.969 7.31 | 11.394 23.291 34.685 13.37 5.695 10.825 16.520 6.37

Lookup 1000 0.015 0.000 0.015 1.03 0.015 0.000 0.015 1.00 0.030 0.001 0.031 2.09
10000 0.173 0.000 0.174 1.00 0.210 0.002 0.212 1.22 0.420 0.004 0.424 2.44

100000 1.990 0.003 1.993 1.00 3.167 0.022 3.189 1.60 5.154 0.166 5.320 2.67

Update 1000 0.040 0.006 0.046 1.11 0.039 0.002 0.042 1.00 0.099 0.008 0.107 2.57
10000 0.542 0.260 0.803 1.00 0.602 0.727 1.328 1.65 1.155 0.478 1.633 2.03

100000 6.612 5.570 12.182 1.00 8.012 17.937 25.949 2.13 | 13.470 9.548 23.018 1.89

Quicksort 1000 0.953 0.168 1.121 5.58 0.508 0.037 0.546 2.72 0.956 0.257 1.213 6.04
10000 | 16.645 3.014 19.658 5.05 | 10.260 7.548 17.809 4.58 | 10.495 4.372 14.867 3.82

Histogram 1000 0.423 0.399 0.821 1.02 0.367 0.439 0.806 1.00 0.721 0.642 1.363 1.69
10000 5.695 6.508 12.204 1.18 4.852 5.478 10.330 1.00 | 10.092 10.899 20.991 2.03

Figure 9: Average running time (in seconds) for each combination of data structure, problem, and problem size. Times are
broken down into user time and garbage collection time. Dashes (—) indicate tests that were too slow to measure. For each
experiment, we also give the ratio of its total running time to that of the fastest data structure on the same problem and
problem size. Note that only random-access lists are competitive on every task. All measurements were taken on a DecStation

5000/200 with 32MB of RAM running Mach 3.0 and SML/NJ 0.93.
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posed [35, 8], but have yet to be incorporated into a major
functional language. (Note that the more limited proposal
of Aitken and Reppy [3] is not robust enough to cope with
random-access lists.)

Finally, note that the techniques of Shao et al. [32] for
reducing the space requirements of standard lists by storing
multiple values per node apply equally well to random-access
lists.
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