
Purely Functional Random-Access ListsChris OkasakiSchool of Computer Science, Carnegie Mellon University5000 Forbes Avenue, Pittsburgh, Pennsylvania, USA 15213(e-mail: cokasaki@cs.cmu.edu)AbstractWe present a new data structure, called a random-access list,that supports array lookup and update operations in O(log n)time, while simultaneously providing O(1) time list opera-tions (cons, head, tail). A closer analysis of the array oper-ations improves the bound to O(minfi; log ng) in the worstcase and O(log i) in the expected case, where i is the index ofthe desired element. Empirical evidence suggests that thisdata structure should be quite e�cient in practice.1 IntroductionLists are the primary data structure in every functional pro-grammer's toolbox. They are simple, convenient, and usu-ally quite e�cient. The main drawback of lists is that access-ing the ith element requires O(i) time. In such situations,functional programmers often �nd themselves longing forthe e�cient random access of arrays. Unfortunately, arrayscan be quite awkward to implement in a functional setting,where previous versions of the array must be available evenafter an update.Since arrays are such an important data structure, tremen-dous e�ort has been invested in integrating arrays into purelyfunctional languages. In recent years, however, most of thise�ort has focused on analyses and language restrictions tomake destructive array updates safe. Crucial to these ef-forts is the assumption that arrays are typically used in asingle-threaded manner, that is, after every update, the oldarray becomes garbage and may safely be modi�ed in-placeto yield the new array.But what happens when this assumption is violated? Orwhat if we wish to describe arrays at the user level of a purelyfunctional language, as opposed to the implementation level,so that destructive updates are not available?In this paper, we present a new data structure, called arandom-access list, that supports non-single-threaded arraylookups and updates in O(log n) time.1 This data struc-ture is purely functional and is quite simple to implementin virtually any functional language.The novel aspect of this data structure is that it providesrandom access while simultaneously supporting all normal1All logarithms in this paper are base 2.

list primitives in O(1) time. Thus, random-access lists maybe substituted for standard lists in any application with noloss of e�ciency (up to a small constant factor).We begin by describing random access for functional ar-rays represented �rst as complete binary trees, and thenas collections of trees. We then show how to add or re-move a single element from the front of such a collection inO(1) time, providing the basis for e�cient list operations.Next, we describe several variations on random-access lists,such as random-access queues and deques, and show how tosupport min queries in a random-access structure with nopenalty. We then discuss related work and present experi-mental comparisons of our data structure with several otherpurely functional data structures. We conclude with somebrief remarks.All code fragments in this paper are written in StandardML [23], but are easily adaptable to any other functional lan-guage. All source code is available via anonymous ftp fromftp.cs.cmu.edu, in directory /afs/cs/project/fox/ftpand�le randomaccess.tar.gz.2 Complete Binary Trees in PreorderWe begin by focusing on the issue of random access. Wewish to implement purely functional arrays supporting thefollowing operations:� lookup A i: Return the ith element of A. If i is not avalid index, raise the Subscript exception.� update A i x: Return a new array identical to A exceptthat the ith element has been changed to x. If i is nota valid index, raise the Subscript exception.(For now, we ignore the question of how arrays are created.)How might such a data structure be represented? Theobvious �rst approach is to use balanced binary trees. Anybalanced binary tree representation will do (e.g., AVL treesor red-black trees), but we adopt the rather extreme positionof representing arrays as complete binary trees. Recall thatcomplete binary trees are totally balanced | every internalnode has two children of exactly the same size and depth.Unfortunately, complete binary trees are only available insizes of the form 2k � 1, but we will deal with this problemshortly.Once the shape of the tree has been determined, we mustnext decide on what order to store the elements in the tree.Typical balanced search trees, such as AVL trees or red-black trees, store the elements in symmetric order, that is,in the order of a left-to-right inorder traversal. However,we reject this choice on the grounds that the �rst elementis stored in the leftmost node and requires O(log n) time86



kakb��� keAAAkc��� kdCCC kf��� kgCCCFigure 1: An array represented as a complete binary tree inpreorder.to access. Since we will eventually want to access the �rstelement in O(1) time (to support e�cient list operations), weinstead choose to store the elements in preorder, that is, inthe order of a left-to-right preorder traversal (see Figure 1).In this scheme, the �rst element (element 0) is stored at theroot. Elements 1 . . . bn=2c are stored in the left subtree, andelements dn=2e . . .n� 1 in the right subtree.2Given this organization, it is quite simple to write lookupand update functions, as shown in Figure 2. Note that eachfunction takes the size of the tree as an extra parameter.Since the height of a complete binary tree is logarithmic inthe size of the tree, the running time of each function isclearly O(log n).3 Collections of TreesAs noted in the previous section, complete trees only comein sizes of the form 2k � 1, so how do you represent an ar-ray of arbitrary size? One rather unsatisfying approach isto simply use the smallest complete tree that is su�cientlylarge. However, up to half of the elements might be wastedin this scheme. An alternative approach, adopted here, is torepresent an array of arbitrary size as a collection of com-plete trees that sum to the appropriate size (see Figure 3).Clearly, this is always possible since you could have a col-lection of n trees of size 1. However, we show that in factone can always represent an arbitrary array using only alogarithmic number of trees.We �rst make several de�nitions. A skew-binary termis an integer of the form 2k � 1 for k > 0. Note that if tis a skew-binary term, then 2t + 1 is the next larger skew-binary term. A skew-binary decomposition of a integer nis a multiset T of skew-binary terms ft1; . . . ; tmg such thatn = t1+ � � �+ tm. We call such a decomposition greedy if thelargest term is as large as possible and if the remainder ofthe decomposition is also greedy. More formally, a decom-position T is greedy if no subset of terms sums to � a largerterm, i.e., 8S � T :Xt2S t < 2(max S) + 1Call this the subset-sum restriction.Greedy skew-binary decompositions have several usefulproperties, including:2Braun trees [19, 28] also store the �rst element at the root, butalternate the remaining elements between the left and right subtrees.

kakb��� kcAAA kdke��� kfAAA kgkh��� kkAAAki��� kjCCC kl��� kmCCCFigure 3: An array represented as a collection of completebinary trees.Property 1 Every integer n � 0 has a unique greedy de-composition, denoted G(n).Proof: We give a constructive proof (i.e., an algortihm).Clearly, G(0) = fg, and this is unique. Now, assume thatn > 0 and consider the largest skew-binary term t � n.G(n) must include t since no set of smaller terms may sumto � t. The remainder of G(n) must sum to n� t, and mustobey the subset-sum restriction. But this is just G(n � t)!Finally, note that no subset of ftg ]G(n� t) may sum to aterm larger than t since otherwise t would not be the largestterm � n. Thus, G(n) = ftg ] G(n � t). Clearly, thisalgorithm is deterministic and always terminates. 2Property 2 A skew-binary decomposition is greedy if andonly if every term in the decomposition is unique, exceptthat the smallest two may be the same. In other words, ift1; . . . ; tm are the (sorted) terms of a skew-binary decompo-sition T , then T is greedy if and only ift1 � t2 < � � � < tmProof: ()) Suppose in a greedy decomposition there existedtwo terms of the form 2k�1, and another term of the same orlesser size. Then these three terms would violate the subset-sum restriction because they would sum to � 2k+1 � 1.(() By induction on k, no collection of terms in whichonly the smallest is repeated can possibly sum to a largerterm. Thus, the decomposition is greedy. 2Property 3 jG(n)j � dlog(n+ 1)eProof: By inspection for n = 0. Now, suppose n > 0 andG(n) contains more than k = dlog(n+ 1)e terms. By Prop-erty 2, it must contain a term at least as large as 2k�1 � n.When combined with any of the remaining k or more terms,this strictly exceeds n. 2Now, to represent an array of size n, we simply choosetree sizes according to the greedy decomposition of n. Prop-erty 3 guarantees that lookups and updates on a collectionof trees still require only O(log n) time: O(log n) to �nd theright tree in the collection, and O(log n) to �nd the rightelement in the tree. Code for these functions is presented inFigure 4.4 Random-Access ListsWe have to this point ignored the issue of array creation.Typically, the size of an array is speci�ed at the time of cre-ation and is never changed. However, in many situations,87



datatype 'a tree = Leaf of 'a | Node of 'a * 'a tree * 'a treeexception Subscriptfun tree_lookup size (Leaf x) 0 = x| tree_lookup size (Leaf x) i = raise Subscript| tree_lookup size (Node (x,t1,t2)) 0 = x| tree_lookup size (Node (x,t1,t2)) i =let val size' = size div 2in if i <= size' then tree_lookup size' t1 (i-1)else tree_lookup size' t2 (i-1-size')endfun tree_update size (Leaf x) 0 y = Leaf y| tree_update size (Leaf x) i y = raise Subscript| tree_update size (Node (x,t1,t2)) 0 y = Node (y,t1,t2)| tree_update size (Node (x,t1,t2)) i y =let val size' = size div 2in if i <= size' then Node (x,tree_update size' t1 (i-1) y,t2)else Node (x,t1,tree_update size' t2 (i-1-size') y)end Figure 2: Lookup and update operations on complete binary trees.
type 'a functional_array = (int * 'a tree) listfun lookup [] i = raise Subscript| lookup ((size,t) :: rest) i = if i < size then tree_lookup size t ielse lookup rest (i-size)fun update [] i y = raise Subscript| update ((size,t) :: rest) i y = if i < size then (size,tree_update size t i y) :: restelse (size,t) :: update rest (i-size) yFigure 4: Lookup and update operations on collections of trees. Each tree is paired with its size.88



the desired size is not known ahead of time, making �xed-size arrays awkward. Dijkstra [13] instead proposed a sys-tem of 
exible arrays that are initially empty, but that cangrow or shrink by one element at a time. We call a 
exiblearray that grows and shrinks only at the front of the array,and is indexed from the �rst element, a random-access list.We wish to provide the standard list operations cons,head, and tail, as well the empty random-access list empty,and a predicate isempty. It is in these operations that com-plete binary trees and greedy decompositions prove theirworth. As the following property demonstrates, changingn by �1 only a�ects at most the two smallest terms of thegreedy decomposition of n, suggesting that cons and tail canbe implemented in O(1) time, as opposed to O(log n) time asrequired by virtually every other tree-based representationof arrays.Property 4 (a) If G(n) contains no repeated terms, thenG(n+ 1) = f1g ]G(n)(b) If G(n) contains a repeated term 2k � 1, thenG(n+ 1) = f2k+1 � 1g ]G(n)� f2k � 1; 2k � 1gProof: (a) Since G(n) contains no repeated terms, f1g ]G(n) may contain repeated 1 terms, but otherwise all termsare unique. Thus, by Property 2, f1g ]G(n) is the greedydecomposition of n+ 1.(b) By Property 2, G0 = G(n)� f2k � 1; 2k � 1g is com-posed entirely of unique terms larger than 2k � 1. Thus,f2k+1 � 1g ]G0 may contain repeated 2k+1 � 1 terms, butotherwise all terms are unique. Therefore, f2k+1 � 1g ]G0is the greedy decomposition of n+ 1. 2Property 4 suggests the following implementation of listoperations: To cons a new element onto a random-accesslist, check if the two smallest trees in the existing list arethe same size. If not, add the new element as a single-ton tree. Otherwise, join the two trees into a new, largertree with the new element as the root. Provided the treesare maintained in increasing order of size, this can be ac-complished in O(1) time. To take the tail of a list, simplyremove the leading singleton tree, if one exists. Otherwise,remove the root of the smallest tree, and add its two sub-trees to the collection. This also requires only O(1) time.These operations are illustrated pictorially in Figure 5. Theremaining list operations (head, empty, isempty) are trivialto implement in O(1) time. Figure 6 contains code for all�ve list operations.The fact that all list primitives can be implemented inonly O(1) time is remarkable since it implies that any appli-cation using standard lists can be rewritten to use random-access lists with no loss of e�ciency (up to a constant factor)even if the application never takes advantage of random ac-cess. In practice, slowdowns on list-intensive applicationsthat do not use random access are less than about a factorof 2. And, of course, applications that do take advantage ofrandom access can observe arbitrary speedups.5 AnalysisRecall that lookups and updates require O(i) time for stan-dard lists. For small values of i, this is better than O(log n).However, since every step through the collection or downa tree decreases i by at least one, a more accurate boundon the worst-case running time for lookups and updates in

random-access lists is O(minfi; log ng), showing that random-access lists are never less e�cient than standard lists. Thisbound is tight (consider an array represented as a singletree).Several competing data structures, notably Braun trees[19, 28] and �nger search trees [21, 33], improve the worst-case bounds on lookups and updates slightly to O(log i). Wenow show that random-access lists match this bound, albeitin the expected case rather than worst case.First, consider a random-access list containing exactlyone tree of every size up to 2blog(n+1)c � 1. Notice that thekth tree has depth k, and that every element i is contained inapproximately the (log i)-th tree. Thus, every element canbe accessed in O(log i) time: O(log i) to �nd the right tree inthe collection, and O(log i) to �nd the right element in thetree. In fact, this bound holds whenever there are no \gaps"in the collection where trees of more than c consecutive sizesare missing, for some constant c (Kosaraju [21] calls this thegap property). The intuition behind the O(log i) expectedbound is that large gaps are unlikely for randomly chosenn. Let k = dlog(i+2)e and notice that 2k � 1 > i so that ifthere is a tree of size 2k � 1 in the collection, then elementi occurs no later in the collection than that tree. If elementi occurs in an earlier tree, then it certainly requires onlyO(log i) time to access. Otherwise, it requires at most O(k0)time, where 2k0�1 is the size of the �rst tree of size � 2k�1that is present in the collection. For randomly chosen n, theprobability that k0 = k is 1=2. The probability that k0 =k+1 is 1=4, and, in general, the probability that k0 = k+mis 1=2m+1. Thus, the expected running time of an access isO(k2 + k+ 14 + � � �+ k +m2m+1 + � � �)This series converges to O(k) = O(log i).6 VariationsSometimes arrays that are extensible at the rear rather thanthe front are more convenient. Or you may wish to extendthe array at the front, but without shifting the existing in-dices. Both of these variations are quite simple to simulateusing random-access lists by associating a total size or start-ing index with each list.Alternatively, you may wish to extend the array at therear, but remove elements from the front, yielding a random-access queue. This can be implemented by substitutingrandom-access lists for standard lists in the purely functionalqueues of Hood and Melville [18]. Similarly, arrays that cangrow or shrink at either end (random-access deques) can beimplemented by substituting random-access lists for stan-dard lists in the purely functional deques of Hood [17] orChuang and Goldberg [10]. Note that the purely functionalqueues and deques of Okasaki [27] are not suitable for thismodi�cation since they depend on lazy lists, and random-access lists are (spine) strict.A min-list is a list data structure that supports an ad-ditional operation min that returns the minimum element.(but note that the operation delete-min is not supported).Min-queues and min-deques are de�ned similarly. Such datastructures have numerous applications, including VLSI riverrouting [11], all-pairs shortest-path algorithms [15], and com-puting external farthest neighbors for simple polygons [2].We now show how to implement random-access min-listswith the same bounds as random-access lists. Just as above,random-access min-queues and min-deques may be built from89



jT1j < jT2jk���� AAAAT1 k������ AAAAAAT2Cons + * Tailk k���� AAAAT1 k������ AAAAAAT2
jT1j = jT2jk���� AAAAT1 k���� AAAAT2Cons + * Tailk��� @@@k���� AAAAT1 k���� AAAAT2Figure 5: The two cases of cons and tail on random-access lists.type 'a random_access_list = (int * 'a tree) listexception Emptyval empty = []fun isempty [] = true| isempty ((size,t) :: rest) = falsefun cons x (xs as ((size1,t1) :: (size2,t2) :: rest)) =if size1 = size2 then (1+size1+size2,Node (x,t1,t2)) :: restelse (1,Leaf x) :: xs| cons x xs = (1,Leaf x) :: xsfun head [] = raise Empty| head ((size,Leaf x) :: rest) = x| head ((size,Node (x,t1,t2)) :: rest) = xfun tail [] = raise Empty| tail ((size,Leaf x) :: rest) = rest| tail ((size,Node (x,t1,t2)) :: rest) =let val size' = size div 2in (size',t1) :: (size',t2) :: restend Figure 6: Operations on random-access lists.90



k172k22��� k44AAA k161k99��� k11AAA k242k52��� k33AAAk22��� k77CCC k88��� k44CCCFigure 7: A random-access min-list. Tags on nodes are writ-ten below the node. The additional tags on roots are writtenabove the node.such lists. Gajewska and Tarjan [16] �rst described e�cientmin-deques, but without supporting random access.It is very simple to associate a global minimum with eachlist. However, when the minimum element is removed orupdated, we do not wish to search the entire list for the newminimum. Instead we tag every tree node with the minimumelement in the subtree rooted at that node, and every root inthe collection of trees with the minimum element from thisand all subsequent trees (see Figure 7). Then the overallminimum is the tag on the �rst root. Maintaining these tags,even during updates, is not di�cult since any given tag canbe recomputed in O(1) time with strictly local information.Tags on tree nodes depend only on the value at the node andthe tags of its two children. Tags on roots in the collectiondepend only on the tag of the current root and the tag of thenext root in the collection. The only tags that need to berecomputed during an update are those for nodes that arereconstructed by the update anyway, so there is no penaltyfor maintaining this information.7 Related WorkA series of array accesses (lookups or updates) is calledsingle-threaded if every operation refers to the most recentversion of the array, never to a previous version [31]. Single-threaded array accesses may safely be implemented destruc-tively, requiring only O(1) time. The vast majority of re-search on functional arrays has focused on detecting or en-forcing single-threadedness through such techniques as staticanalysis [7, 26, 30], linear types [36], or monads [29].An array that supports non-singled-threaded access iscalled fully persistent [14]. A number of data structures havebeen proposed to represent fully persistent arrays. One tech-nique, known as version arrays [1] or shallow binding [4, 5],maintains a cache of elements along with trees of di�eren-tial nodes indicating di�erences from the cache. This tech-nique yields O(1) performance for single-threaded accesses,but may degrade to O(#updates) for non-single-threadedaccesses. Chuang [9] uses randomization to improve the ex-pected performance for non-single-threaded accesses. Unfor-tunately, version arrays rely on destructive operations inter-nally, and so cannot be implemented in a purely functionallanguage (although they may be provided as primitives forsuch a language). Furthermore, version arrays are limited toa �xed size (although Chuang's randomized method couldbe adapted to 
exible arrays).Dietz [12] exploits the fact that indices of �xed-size ar-rays are bounded integers to provide an implementation re-quiring O(log log n) expected amortized time per operation.

Various balanced binary tree schemes have been used toimplement fully persistent arrays purely functionally, includ-ing AVL trees [25] and Braun trees [19, 28]. Such trees easilysupport O(log n) lookups and updates (O(log i) in the caseof Braun trees), but require O(log n) time to add or removean element.Finger search trees [21, 33] are similar to binary searchtrees. Instead of beginning searches at the root, however,�nger search trees begin searches at the leftmost leaf, �rstsearching upward to �nd an ancestor of the desired node andthen searching downward in the normal fashion. Lookupsand updates require O(log i) time, and adding or removinga leaf in the leftmost position can be accomplished in O(1)time. Finger search trees can be made fully persistent usingthe (internally destructive) techniques of Driscoll et al. [14],but it is not clear whether they can be implemented purelyfunctionally without su�ering a degradation in performance.Kaplan and Tarjan [20] recently introduced the algo-rithmic notion of recursive slowdown, and used it to de-sign a new purely functional implementation of constant-time double-ended queues. A pleasant accidental propertyof their data structure is that it also supports random accessin O(log d) time, where d is the distance from the desiredelement to the nearest end of the queue.A very di�erent technique was introduced by Myers [24]to implement random-access stacks. He augments a stan-dard singly-linked list with auxiliary pointers allowing oneto skip arbitrarily far ahead in the list. The number of ele-ments skipped by each auxiliary pointer is controlled by thedigits of a canonical skew-binary number (virtually iden-tical to the greedy skew-binary decompositions describedhere). His scheme allows O(1) list operations, and O(log n)lookups, but requires O(i) time for updates. The di�cultywith updates is that his scheme contains many redundantpointers. Removing these redundant pointers yields a struc-ture isomorphic to the random-access lists described here(see Figure 8). Thus, random-access lists may be viewedas an improvement to Myers' representation to support ef-�cient updates.Finally, random-access lists share many similarities withbinomial heaps [34]. Both are based on rigidly structuredtrees of certain, �xed sizes (2k for binomial heaps and 2k�1for random-access lists). Both represent aggregates as col-lections of trees. Both build bigger trees by joining treesof identical size. Adding a single element to each structureis highly reminiscent of binary arithmetic. The di�erenceis that binomial heaps use binary arithmetic, in which car-ries may propogate arbitrarily far, while random-access listsuse skew-binary arithmetic, in which carries may propogateonly a single position.8 MeasurementsTo determine the e�ectiveness of our data structure, we com-pared the running times of six purely functional data struc-tures on a variety of problems and problem sizes. In additionto random-access lists, we also measured the performanceof standard lists, Myers' random-access stacks [24], AVLtrees [25], Braun trees [19, 28], and Kaplan-Tarjan lists [20].For both AVL trees and Kaplan-Tarjan lists, we optimizedthe implementations to support insertions and deletions onlyat the front. Otherwise, only minor tuning was performed,such as replacing division by two with a bitwise shift oper-ation.We used �ve benchmark problems:� Sum: construct a list containing n integers, and then91



- - - - - - - - - -a b c d e f g h i j ;� �6� �6� �6� �6� �6� �6 � �6� �6� �6� �6(a)kakb��� kc kdke��� khkf��� kg ki��� kj ;(b)Figure 8: Myers' random-access stacks with redundant pointers (a) and without (b)sum the elements� Lookup: sequentially lookup each element of an exist-ing list of size n� Update: sequentially update each element of an exist-ing list of size n� Quicksort: sort a list of n random integers using thequicksort algorithm on lists� Histogram: count the occurrences of each integer in alist of 5n integers chosen randomly from 0 . . .n� 1The �rst three benchmarks were run on problem sizes of1000, 10,000, and 100,000; the latter two benchmarks onproblem sizes of 1000 and 10,000. The Sum and Quicksortbenchmarks measure the e�ectiveness of each data structurewhen used as a list. The Lookup, Update, and Histogrambenchmarks measure the e�ectiveness of each data structurewhen used as an array.The results of these experiments are shown in Figure 9.For each experiment, we also give the ratio of its averagerunning time to that of the fastest data structure on thatproblem and problem size. Examining the ratios, we see that(not surprisingly) standard lists outperform all other datastructures when used as lists, but are totally impractical asarrays. Myers' random-access stacks also perform quite wellas lists, but their lack of e�cient updates cripples their useas arrays. On the other hand, AVL trees and Braun treesboth excel at array applications while faring poorly on listapplications. Kaplan-Tarjan lists yield mediocre results onevery experiment, but recall that they were not designedwith random access in mind.Of all the data structures, only random-access lists arecompetitive at every task. They are nearly as e�cient asstandard lists on list applications, and nearly as e�cient asbinary trees on array applications. In fact, they are alwayswithin about a factor of two of the fastest data structure onany given problem. This makes random-access lists the datastructure of choice for applications featuring both patternsof usage (particularly when array accesses are non-single-threaded).

Finally, the erratic performance of Braun trees deservessome comment. Braun trees perform very well as arrayswhen either the array is small or access is random. How-ever, they perform surprisingly poorly for sequential accesson large arrays. Closer examination reveals an inordinateamount of time being spent collecting garbage. This is be-cause Braun trees exhibit very poor locality | other thannear the root, elements that are close in the array orderingwill always be stored in distant segments of the tree. Thisinteracts poorly with generational garbage collectors [22],which depend on locality for good performance.9 DiscussionWe have presented an implementation of random-access liststhat supports O(log n) array operations and O(1) list oper-ations. For randomly chosen n, the bound for array opera-tions can be improved to O(log i) expected time. This datastructure is both simple to code, and e�cient enough to bea practical alternative to standard lists even when randomaccess is not required.Although the O(log n) bounds are disappointing whencompared to the O(1) bounds of imperative arrays, Ben-Amram and Galil [6] have shown that this is optimal for anylinked structure of bounded-width nodes, even allowing fordestructive updates. Improving these bounds would requirethe use of substructures of unbounded width supporting ran-dom access. In order to maintain the O(1) bounds on listoperations, such substructures would need to be initializablein O(1) time.There is one sense in which the replacement of standardlists with random-access lists might be unpalatable, and thatis pattern matching. To maintain the necessary structure,random-access lists would need to be provided as an ab-stract data type, and abstract data types are well knownto clash with pattern matching. Pattern matching is an ex-tremely convenient way of writing functions involving lists(and many other data structures), but it requires knowl-edge of the data structure's representation. Mechanismsfor pattern matching on abstract data types have been pro-92



Standard List Myers Stack Random-Access ListProblem N UserTime GCTime TotalTime Ratio UserTime GCTime TotalTime Ratio UserTime GCTime TotalTime RatioSum 1000 0.010 0.004 0.014 1.00 0.011 0.005 0.016 1.13 0.014 0.002 0.016 1.1110000 0.105 0.129 0.234 1.00 0.118 0.208 0.326 1.39 0.145 0.213 0.358 1.53100000 1.032 1.562 2.594 1.00 1.170 3.845 5.015 1.93 1.489 4.060 5.550 2.14Lookup 1000 0.263 0.000 0.264 17.58 0.020 0.000 0.021 1.37 0.019 0.000 0.020 1.3210000 | | | | 0.250 0.007 0.257 1.48 0.235 0.006 0.241 1.39100000 | | | | 2.859 0.015 2.874 1.44 2.480 0.016 2.497 1.25Update 1000 3.297 4.585 7.882 189.64 3.599 3.714 7.313 175.96 0.063 0.003 0.066 1.5910000 | | | | | | | | 0.897 0.264 1.161 1.45100000 | | | | | | | | 10.598 6.239 16.837 1.38Quicksort 1000 0.191 0.010 0.201 1.00 0.201 0.016 0.217 1.08 0.236 0.021 0.257 1.2810000 2.686 1.203 3.890 1.00 2.677 1.832 4.509 1.16 3.121 1.968 5.089 1.31Histogram 1000 17.859 19.795 37.654 46.70 18.305 22.619 40.924 50.75 0.502 0.340 0.842 1.0410000 | | | | | | | | 7.233 7.869 15.102 1.46AVL Tree Braun Tree Kaplan-Tarjan ListProblem N UserTime GCTime TotalTime Ratio UserTime GCTime TotalTime Ratio UserTime GCTime TotalTime RatioSum 1000 0.098 0.019 0.117 8.34 0.055 0.006 0.061 4.34 0.065 0.014 0.080 5.6710000 1.287 0.312 1.599 6.83 0.814 1.477 2.291 9.79 0.673 0.445 1.119 4.78100000 15.640 3.328 18.969 7.31 11.394 23.291 34.685 13.37 5.695 10.825 16.520 6.37Lookup 1000 0.015 0.000 0.015 1.03 0.015 0.000 0.015 1.00 0.030 0.001 0.031 2.0910000 0.173 0.000 0.174 1.00 0.210 0.002 0.212 1.22 0.420 0.004 0.424 2.44100000 1.990 0.003 1.993 1.00 3.167 0.022 3.189 1.60 5.154 0.166 5.320 2.67Update 1000 0.040 0.006 0.046 1.11 0.039 0.002 0.042 1.00 0.099 0.008 0.107 2.5710000 0.542 0.260 0.803 1.00 0.602 0.727 1.328 1.65 1.155 0.478 1.633 2.03100000 6.612 5.570 12.182 1.00 8.012 17.937 25.949 2.13 13.470 9.548 23.018 1.89Quicksort 1000 0.953 0.168 1.121 5.58 0.508 0.037 0.546 2.72 0.956 0.257 1.213 6.0410000 16.645 3.014 19.658 5.05 10.260 7.548 17.809 4.58 10.495 4.372 14.867 3.82Histogram 1000 0.423 0.399 0.821 1.02 0.367 0.439 0.806 1.00 0.721 0.642 1.363 1.6910000 5.695 6.508 12.204 1.18 4.852 5.478 10.330 1.00 10.092 10.899 20.991 2.03Figure 9: Average running time (in seconds) for each combination of data structure, problem, and problem size. Times arebroken down into user time and garbage collection time. Dashes (|) indicate tests that were too slow to measure. For eachexperiment, we also give the ratio of its total running time to that of the fastest data structure on the same problem andproblem size. Note that only random-access lists are competitive on every task. All measurements were taken on a DecStation5000/200 with 32MB of RAM running Mach 3.0 and SML/NJ 0.93.
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