
High-Performance Common Gateway Interface InvocationGanesh Venkitachalam Tzi-cker ChiuehComputer Science DepartmentState University of New York at Stony BrookStony Brook, NY 11794-4400fganesh, chiuehg@cs.sunysb.edu
AbstractAs more and more Web services are delivered in the form of Common Gateway Interfaces(CGI) scripts, the e�ciency at which Web servers execute CGI scripts is becoming evermore important. In this paper we show that the performance overhead associated withinvoking a conventional CGI script could potentially become a bottleneck, especially forservers directly connected to high-speed network links. While existing CGI executionmodel runs CGI scripts as independent processes, the LibCGI architecture described inthis work allows the Web server to execute CGI scripts as part of its address space. Ona 100-Mbps Ethernet link and for web pages smaller than 10 KBytes, LibCGI is shownto be 2.3 times as fast as FastCGI, and 3.9 to 4.6 times faster than the conventionalCGI model. This paper describes in detail the design and evaluation of the LibCGIarchitecture and its prototype implementation.1 IntroductionCommon Gateway Interface (CGI) is a standard service invocation mechanism that Web serverssupport either to provide "dynamic contents," HTML pages that are created dynamically to respondto user queries/requests, or to enact certain side e�ects in the background. CGI scripts1, which arewritten in compiled languages like C or interpreted languages like Perl, add to the Web server'sstandard HTML page access service with a set of site-speci�c functions, ranging from database1Performance-conscious Web servers typically use CGI scripts written in compiled language such as C, which isalso the focus of this paper. 1

gateways to order processing in electronic commerce. In fact, the generic Web page access can beconsidered as a special type of CGIs that are built into the Web server by default.As WWW/Internet permeates into the daily life of the mass, end users are demanding Webpages of higher qualities as well as more interactivity with Web contents. Statically composedHTML pages lack the exibility to accommodate fast-paced content changes and the feedbackcapability essential to support on-line interaction. As a result, dynamically created HTML pages,which are results of program execution, emerge as the mechanism of choice in commercial Websites. Therefore, the performance of invoking CGI programs should be at least as important asthat of servicing URL pages when comparing Web servers. This is especially the case when theWeb server is equipped with such a large amount of physical memory that client requests rarelyrequire disk I/O, for example, Internet search engines.Conventional CGI scripts are executed as separate processes that are independent of the Webserver. Scripts are put in a special directory known to the Web server, and get invoked in responseto URL requests requiring their services. Invoked scripts receive inputs from and return outputsto the Web server. The steps involved in executing a CGI script are as follows:1. The Web server receives a request from a Web client.2. The Web server forks and exec's the CGI script after setting up the environment variablesaccording to the CGI Interface.3. Once started up, the CGI script reads the environment variables and the standard input,which is usually tied to a pipe with the Web server, processes the request, and sends theoutput back to the server via the standard output, which is also usually tied to a pipe to theWeb server. Then the CGI script process exits.4. After parsing the headers to make sure that they are properly formed, the Web server sendsthe CGI output back to the requesting client.The above CGI execution model is inherently slow because of the overheads associated withfork/exec and with inter-process communication for CGI scripts' inputs and outputs. This paperdescribes a new CGI execution model that allows CGI scripts to run in the same address space asthe Web server. Consequently, the Web server invokes CGI scripts as if they are local procedurecalls, thus completely eliminating the CGI invocation and inter-process communication overheads.The rest of this paper is organized as follows. Section 2 reviews previous solutions to the CGIinvocation overhead problem. Section 3 introduces the LibCGI architecture, which allows the Webserver to call CGI scripts by making simple function calls. Section 4 describes the prototype im-plementation of LibCGI on the Apache Web server. Section 5 presents the results of a performancestudy on the LibCGI prototype. Section 6 concludes this paper with a brief outline of on-goingwork to further improve LibCGI.
2

ProcessingLatency (�sec)Fork 998Exec 5250IPC 932Total 7180Table 1: Delay breakdown of the overhead of invoking a CGI script as measured on a Pentium200-MHz machine.2 Existing SolutionsTo have a better understanding of the conventional CGI execution model's performance overhead,we need to �nd out where the time goes when the Web server invokes a CGI script. The resultsmeasured on a Pentium-200MHz machine are shown in Table 1. All of these are (potentially)blocking system calls. Hence one should remember that the CPU might be doing useful work inthe meantime. The Web server �rst forks a process, and passes the control to the forked process,which executes an exec call to start executing the designated CGI script. The input parametersare passed into the CGI process through environment variables. However, the outputs of a CGIscript have to be communicated back to the Web server through an IPC mechanism. The Forkoverhead was measured as the time it takes from the moment the parent process issues the forksystem call to the moment when the parent gets back control. The Exec overhead was measured asthe time it takes for complete the exec call. The Input/Output overhead was measured as the timefrom the moment a CGI process writes its output onto stdout, to the moment the Web server getscontrol, after being blocked on a read on that pipe. Note that the input overhead is included in theFork overhead because the environment variables, through which CGI inputs are encapsulated, arecopied from the Web server to the CGI process during the fork call. The last two rows in Table1 also includes the CPU scheduler overhead. As we can see, the minimal CGI invocation latencyturns out to be at least 7.18 msec . If there are multiple interactions between the Web server andCGI processes, the Input/Output overhead would increase proportionally.2.1 FastCGIFastCGI [3] is a CGI execution architecture that eliminates the fork/exec overhead by running CGIscripts as persistent processes that are constantly standing by to service client requests. FastCGIwas originally developed to reduce the per-call start-up cost associated with CGI scripts thatinteract with relational database management systems. This type of CGI scripts typically requirean initial hand-shake phase to establish states, which is usually rather time-consuming and involvesIPC overhead. The steps involved in invoking the service of a FastCGI script are:1. The Web server creates a FastCGI application process to handle a particular type of requests,3

either at start-up or on demand.2. The FastCGI program initializes itself properly and waits for the Web server to establish asocket connection.3. When the Web server receives a client request of the target type, it opens a socket connectionto the FastCGI process. The server then sends the CGI environment variable informationand standard input over the connection.4. The FastCGI process reads data from the socket, processes the request and sends resultsand/or error information back to the server over the same connection.5. When the FastCGI process closes the connection, the Web server parses the returned headers,and sends the response back to the client.6. The FastCGI process then waits for another connection from the server.The Web Server and the FastCGI process communicate over Unix domain or TCP sockets.These processes use the FastCGI protocol to write and read the data from the socket. To hidethe programming di�erence between generic CGI and FastCGI, a FastCGI library is providedto encapsulate all the interaction between the Web server and the FastCGI application process.Because there is no process fork and exec cost, the overhead of invoking a FastCGI script isreduced to 3.65 msec, and mainly comes from the control transfer between the Web server andthe FastCGI process (1.9 msec), the inter-process communication for inputs/outputs (1.4 msec),and the FastCGI protocol processing overhead (0.35 msec). The FastCGI protocol processing itselfrequires scheduling back and forth between the Web server and the FastCGI application.2.2 Web Server APIsAs Web servers become the generic front-end for o�ering WWW services, the software architectureof modern Web servers has been extended to support a exible programming interface, which isdesigned to allow new extension services to be added in a modular fashion. Microsoft's ISAPI [4]and Netscape's NSAPI [1] and WAI [1], and Apache's module API [2] are examples of Web serverAPI. Typical extension services include log collection, authorization, etc. The extension servicesare linked to the Web server as dynamic libraries and are running in the same address space as theWeb server. Therefore, these APIs provide a good foundation to build an e�cient CGI invocationmechanism. Unfortunately, the current design of these APIs do not directly support simple CGIInvocation. These web server extensions are meant to be used for more complicated purposes thanCGI execution. Hence the complexity of programming CGI scripts in such a fashion is signi�cantlymore than that of programming conventional CGI scripts. Also, the name space for Web serverextensions is not exposed to Web clients, as in the case of CGI, and the APIs are much morecomplicated compared to CGI programming model.4

With mod perl [7] it is possible to write web server extensions using Perl. These extensions canhook into the Apache server, or just work as CGI scripts. The idea is to embed a Perl interpreterinto the Apache Server, so that the cost of forking and exec-ing a Perl interpreter each time toservice a CGI request is avoided. In this respect, the idea is similar to FastCGI. But the fact thatinterpreted languages like Perl are slower than compiled languages still remains, especially sincePerl is directly interpreted rather than from an intermediate byte-code form.WAI [5]is a distributed CGI system based on CORBA and it is easier to use than the NSAPIand ISAPI. The basic idea is to have a WAI service running, which accepts requests and sends backresults to the Web Server. In the case of WAI, the complexity of communication between the Webserver and the WAI service is hidden behind the CORBA interface. But the generality of WAIagain introduces the IPC and data copying overhead, as in the case of FastCGI.The proposed LibCGI mechanism is designed to support a programming interface similar toCGI, and is built on top of Apache's module API, which is comparable to ISAPI and NSAPI interms of the level of programming abstraction.3 Faster CGI Invocation using LibCGI3.1 ArchitectureAs we have seen, FastCGI retains the ease of programming associated with CGI, while cuttingaway the Fork/Exec overheads. Web Server APIs do away with even the IPC overhead, but aretoo complicated for normal use as the base for CGI program development. Ideally, what we wantis to preserve the CGI programming model, while keeping the CGI invocation cost comparable tolocal function calls. The basic idea is to compile CGI scripts into a shared library and load theshared library upon a client request. Once a shared library is loaded a speci�c function which isexported by the library will be called to process every request. The loading cost itself is a one-timecost because the library is unloaded only when the Web server exits. Thus when a request for theservice of a CGI script that is already loaded arrives, the CGI invocation overhead is the same asthat of making a local procedure call, which does not involve any blocking system calls.We assume that CGI script is written in a compiled language and compiled into a shared object,say, (.so). LibCGI can load these CGI shared libraries dynamically, and process a CGI requestby calling the corresponding shared library. The key advantage of LibCGI is that its programmingmodel is very similar to the conventional CGI programming model. In particular, there is no needto recompile the Web server each time a new CGI script is installed under LibCGI. And the API forwriting CGI scripts, including the name space visible to Web clients, remains largely unchanged.3.2 The LibCGI programming modelThe source code of a LibCGI script is compiled as a shared library. Conventional CGI scriptsare put in a cgi-bin directory, but LibCGI shared libraries are placed in a separate directory,5

e.g., libcgi-bin. Installation of a LibCGI script is nothing but copying the shared library to thisdirectory. Because LibCGI scripts are running in the same address space as the Web server, onlytrusted personnel have the authority to install a LibCGI script can be installed. The name of theCGI shared library is speci�ed as part of the URL. For example, to invoke a LibCGI script thathas been compiled to a shared library named run.so and put in a directory libcgi-bin underthe document root of the Web server, www.cs.sunysb.edu, clients should send a URL request thatlooks like http://www.cs.sunysb.edu/libcgi-bin/run.so. When the Web server receives sucha request, it sets up the necessary environment variables and makes a call into the correspondingdynamic library to perform the requested function, with an input parameter containing the stringreceived from the client. This string would be available to an ordinary CGI script from stdin.The called library can access the environment variables using the standard getenv function. Thelibrary performs the requested processing and writes the resulting output back to the client usinga lwrite function that we provide, instead of the standard write function. The lwrite functionis the interface between Apache and the CGI script in the LibCGI model. lwrite processes theoutput produced by the CGI library.Programming CGI scripts in the LibCGI model is exactly the same as programming a conven-tional CGI script except the following changes:� An initialization function initfunc whenever appropriate, should be provided, which is calledby the Web server when the LibCGI script is loaded the �rst time around. Such initializationsteps as establishing a database connection or reading g con�guration �les should be donehere.� Every LibCGI script has to export a processfunc function. This function will be invokedon every request that the Web server gets for his script. The processfunc is thus essentiallythe equivalent of main() in a conventional CGI script written in C.� LibCGI scripts do not read from the stdin. Instead the Web server relays the input fromthe client as a string input argument when it calls a LibCGI script as a function.� LibCGI scripts use the lwrite/lputs functions instead of write/puts functions as in theconventional CGI model.� When a LibCGI script is unloaded, the Web server will call a terminatefunc functionterminatefunc if available, to perform any necessary cleanup.Only processfunc is required in every CGI script as it is the function which is called to dothe required processing on every incoming request. However, initfunc and terminatefunc areoptional.
6

4 Prototype Implementation4.1 Basic Software ArchitectureApache is designed to be extensible through the concept of modules. A new module can be linkedinto the Apache Server to implement whatever additional services desired, thus extending the Webserver's functionality An Apache module's interface to the core part of Apache is via the modulestructure. This structure exports a set of function pointers to the Apache core, which will be calledat di�erent times during the processing of a request. For example, a module can provide functionsto be called for parsing the HTTP Request header or for servicing the actual request. One can adda handler for a new type of HTTP objects by exporting a handler function via the module structand adding that function and type in the con�guration �les. A requested �le's type is determinedby the �lename extension that the Web server gets as part of the URL. The Apache core searchesthrough the con�guration �les to �nd out the appropriate handler for each object type, and invokesthe appropriate handler routine from the table of function pointers exported by the correspondingmodule. Also, new modules can use Apache-provided functions like send header, lwrite andlprintf to send back the parsed header and data results back to the client, and so on.The basic idea of our implementation strategy is to create a new Apache module, called theLibCGI module, speci�cally for handling HTTP requests of the type .so. When a request ofthe type .so is received by the Apache server, a new handler implemented in the Apache corewill be invoked to handle this request. The parameters of the client request are passed to thishandler via the request rec structure. The handler will load the LibCGI module as a sharedlibrary if it is not already loaded. Apache keeps track of loaded libraries in a list. The processingfunction processfunc of the LibCGI shared library is then called after Apache saves the currentenvironment, sets up the environment variables for the shared library and reads the client inputdata if any.The function processfunc is passed a single pointer that points to the data received from theclient as a result of a POST Method, or a NULL pointer if the requested operation was a GETmethod. Then processfunc proceeds to process the client request in the normal fashion, and�nally uses lwrite/lputs functions to send back the output. The actual details of sending HTTPresponse headers etc., is kept transparent to CGI script programmers because the headers returnedby the LibCGI library function are parsed and stored in the standard data structures of the Apacheserver. If there is an error in the header, further outputs from the script is ignored, an InternalServer Error message is sent back to the client, and the corresponding LibCGI library is unloaded.We have implemented a LibCGI prototype on Apache 1.2.5, on a Pentium 200 machine with32 MB RAM, running Linux 2.0.34 We used the dlopen, dlsym and dlclose functions providedin Linux and GCC version 2.7.2.3. As most UNIX platforms have a similar mechanism to supportthe creation and loading of shared libraries, porting the implementation prototype to other UNIXplatforms is expected to be relatively straightforward.7

Apache Server

Normal Execution
of script

LibCGI script

Faulty Execution
of script

 Signal Handler

Apache Server

LibCGI script

SEGV/ Timeout

Figure 1: Comparison between LibCGI execution ows in the presence and absence of errors.4.2 Error ProcessingIf everything proceeds normally and the script execution was successful, the output of the functionis received by the client, and the library will persist across requests. After the �rst time the scriptis accessed, the cost of executing the script is the cost to set up environment variables and the costof a function call. Data copying between the Web server and the script is also reduced, becausethey run in the same address space. Thus the LibCGI invocation overhead is minimal and roughlyequivalent to to that of a local procedure call, which is about 20 CPU cycles, or 0.1 �sec on a200-MHz machine. overhead is minimal.If a LibCGI script were to go into an in�nite loop, this would actually prevent the Web serveritself from running, and thus denying the service to all subsequent requests. We use a timeoutmechanism to detect long-running LibCGI scripts, and terminate them if necessary. Similarly asegmentation violation by a LibCGI script would actually terminate the Web server. This is handledby installing a signal handler for the segment error signal, which would unload the errant LibCGIlibrary and return control to the Web server. Here care must be taken to write the terminationfunction in the library so that it does not assume anything about the state of the library. Forexample, the termination function may be called because of some error caused by the processingfunction, processfunc. Figure 1 compares the execution ow of a LibCGI script in the faulty andfault-free cases.If the processing function times out, or causes a segmentation violation, an Internal ServerError message is also sent back to the client. However, because part of the headers/output of theLibCGI script might have been already sent to the client, any such errors should be logged in theServer error logs for subsequent analysis.One major drawback of the LibCGI mechanism is that interpreted scripts like Perl or shell8

scripts cannot bene�t from this approach to improve their performance. Only programs whichcan be actually compiled into a shared library can take advantage of LibCGI. Fortunately, CGIapplications that are conscious about performance are almost always implemented in a compiledlanguage. There is another issue regarding the performance of CGI script execution. If the Webserver chooses to set up the REMOTE HOST environment variable for the library, it involves a reverseDNS lookup, which could potentially cost seconds and wipe out all the performance gain of LibCGI.This is not speci�c to LibCGI, but a well known problem in general. Hence in all the followingmeasurements, the Apache Server was con�gured such that this environment variable is not setup. Nevertheless, we export a function get remote host to LibCGI scripts, which returns thehost name of the source node by performing a reverse DNS lookup. As a result, only those CGIscripts that need this information need to pay the DNS lookup overhead. As mentioned above, ifthe LibCGI library code causes a segmentation violation or timeout after sending correct headers,partial output might have been send back to the client. In such a case, the Web server sends anerror message to the client as an explanation for the anomaly.4.3 Protection and AvailabilityBecause the Web server and the CGI scripts reside in the same address space, the Web server is notprotected from buggy CGI scripts. The LibCGI architecture incorporates a three-pronged solutionto address this problem:1. An intra-address space protection mechanism based on segmentation hardware is used toestablish the protection boundaries between CGI scripts and the Web server.2. The Web server is modi�ed to catch segmentation fault and timer expiration signals protectitself from CGI scripts that cause segmentation violation errors or enter in�nite loops.3. A separate process that constantly monitors the health of running Web servers, and restartsa new Web server when one of time crashes, which is already built into the Apache Server.In addition, only trusted CGI scripts are allowed to run in the LibCGI mode.The second solution provides a minimal defense against typical programming bugs in CGI scripts.The third solution is relatively straightforward, as the Apache server follows a process-pool model.That is, several Web server processes are pre-forked and are able to servicing requests concurrently.Hence when one of the server crashes, there will always be other Web servers available for handlingthe next request for a given LibCGI script. Because these Web servers processes reside in separateaddress spaces, the crashing of a server process due to a buggy LibCGI script does not a�ect theavailability of the Web service as a whole.Although the last two solution are su�cient for all practical purposes, they are not completelysatisfactory as they only address LibCGI's availability problem, leaving the protection issue un-resolved. We have developed a novel intra-address-space protection mechanism using Intel's x86segmentation hardware [6], which is briey described in the following paragraphs and whose details9

are beyond the scope of this paper. The current LibCGI prototype, however, does not include thismechanism yet.We use a combination of segmentation and paging protection hardware in x86 architectureto support safe user-level extensions. In this case, the Web server is the application and theCGI script is an extension to the application. The basic idea is to load the application and theextension into di�erent segments of the same virtual address space (VAS), each with a di�erentprivilege level. The Intel processor provides protection check at both segment and paging levels.Di�erent Segment Privilege Levels (SPL) are mapped to di�erent Page Privilege Levels (PPL). Anapplication process starts at a particular SPL (say Level 3) and converts itself to a higher SPL (sayLevel 2) through a system call. All the pages owned by this application are also now marked at ahigher PPL. Protection between the OS kernel and the application still exists because the kerneland the application have di�erent SPL.When the �rst user extension is loaded, an extension segment residing in the same VAS as theapplication is created, but with a lower SPL and PPL than the application. Pages not currentlyused by the main application are allocated to hold the user-level extension's code, stack, and data.In addition, the application can choose to expose to the extension whatever pages it desires. Thismeans that the application can share selective portions of its VAS, such as shared libraries orshared memory regions. As a result, a user-level extension can access its own code, data, and stack,as well as libraries and memory regions in the main application. However, user-level extensionscan never access pages that the main application chooses to hide. Because the main applicationprocess' segments cover the same virtual address space range as the extension segment, relocationsupported by a generic dynamic linker such as dlsym is su�cient. Moreover, data/function pointerscan be passed between the main application and extensions without modi�cations, thus greatlyfacilitating code/data sharing and reducing unnecessary memory copy (memcpy) overhead. Mostof all, this protection mechanism is almost transparent to the application programs. The onlymodi�cations necessary to the application are the addition of a system call in the beginning tochange its protection level, and replacing dlopen and dlsym calls with seg dlopen and seg dlsym,which are LibCGI versions of dlopen and dlsym. Optionally, applications need to make additionalsystem calls to make available those memory regions chosen to be exposed to the extensions, withpointers to the memory regions as parameters.5 Performance EvaluationTo compare the performance of CGI, FastCGI, and LibCGI, we measured the latency of invokinga CGI script under these three architectures. We instrumented the Apache server to measure thetime it takes to handle a complete request for each CGI execution model. We created a CGI,FastCGI and LibCGI program that does nothing but to write a memory-resident data packet ofvarious size back to the requesting client. Then we measured the time between when the Webserver receives a client request and when the data packet is completely sent out. The resulting10

Request Handling TimeSize of Data Conventional CGI FastCGI LibCGIsent to client (msec) (msec) (msec)28 Bytes 8.2 5.0 1.31 KBytes 8.6 5.3 1.6Hl 10 KBytes 11.6 7.5 2.4100 KBytes 75 71 63Table 2: Comparison of the execution latency of a program that returns a memory-resident datapacket of various size to the requesting client under the conventional CGI, FastCGI and LibCGIarchitectures. Throughput (requests/sec)Size of HTML Conventional FastCGI LibCGI Web�le requested CGI ServerBit Rate (Mbps) 10 100 10 100 10 100 10 10028 Bytes 88 98 162 193 320 448 323 4601 KBytes 81 92 151 188 278 431 285 43610 KBytes 52 76 72 130 85 312 86 315100 KBytes 9 38 10 47 10 88 10 89Table 3: Comparison of CGI, FastCGI and LibCGI in their execution throughput as measured bynumbers of scripts completed per second, assuming that the Web server and its clients are connectedthrough a 10-Mbps and a 100-Mbps Ethernet link. All HTML �les accessed during the tests arememory-resident.latency measurements are shown in Table 2. All the performance measurements were collected onan Apache Web server running on a Pentium 200-MHz machine with 32 MB RAM.LibCGI is about 3.8 and 6.3 times as fast as FastCGI and CGI respectively, when the datapacket size is 28 bytes. The speed-up ratio decreases as the size of data packets increases, becausethe data transfer time accounts for a progressively more signi�cant portion of the total latency.However, even for 10-KByte packet, the corresponding speed-up factors are still rather signi�cant,3.1 and 4.8, respectively. Compared to CGI and FastCGI, LibCGI costs an additional one-timeoverhead of loading a CGI script as a shared library, which is about 400 �sec.While LibCGI delivers impressive improvements over FastCGI and CGI in CGI script processinglatency, this does not necessarily translate to end-to-end server throughput improvement if thenetwork is the bottleneck. We used the ApacheBench[2] benchmark included in the standard11

Apache distribution to measure the overall throughput of di�erent CGI execution models, whenthe Web server and its clients are connected through a 10-Mbps and a 100-Mbps Ethernet link. Ineach run, a total of 1000 requests are sent to the Web server with up to 30 requests being servicedconcurrently. Each request involves an access to a �xed HTML �le, which is memory-resident atall time. The Web server can service each request directly by opening the HTML �le, reading itin, and writing it back to the requesting client. The Web server can also service each request byinvoke a CGI script that does exactly the same thing but under di�erent CGI execution models.Table 3 show the throughput statistics when the requests are serviced by the Web Server directlyand by CGI scripts under various execution models. The Ethernet links are quiescent in all runs.The Web Server column in Table 3 establishes an upper bound on the CGI script executionthroughput when network delay is included, as there is no CGI script invocation overhead in thiscase. For all data sizes and network speeds, LibCGI is within 3% of the corresponding con�gu-ration's bound, conclusively demonstrating its e�ectiveness in reducing the performance overheadof invoking CGI scripts. On a 100-Mbps link and when the HTML �le is smaller than 10KBytes,LibCGI is about 2.3 times faster than FastCGI, which in turn is 1.7 to 2 times faster than CGI.These throughput improvements are signi�cant because most popular Web servers are connectedto the Internet through links with an aggregate bandwidth higher than 100 Mbps, and most Webpages are rarely larger than 10 KBytes. The gaps between LibCGI and FastCGI, and betweenFastCGI and CGI, decrease as the HTML �le increases and/or as the link speed decreases, be-cause the non-invocation overhead becomes more signi�cant when the �le is larger and/or whenthe network link is slower.6 ConclusionThis paper describes the design, implementation, and evaluation of a high-performance CGI archi-tecture called LibCGI. The main idea behind the LibCGI architecture is the use of the dynamiclibrary linking and loading capability that Apache's module interface provides. By loading CGIscripts into the same address space of the Web server, the overhead of invoking a LibCGI scriptis reduced to that of a local procedure call. Performance measurements on a working prototypeshow that LibCGI improves the the CGI script execution throughput over FastCGI by a factorof 2.3, and over the conventional CGI model by a factor of 3.9 to 4.6. The LibCGI prototype weimplemented also provides a primitive set of protection mechanisms that keeps the Web server frombeing a�ected by such bugs in LibCGI scripts as in�nite loops and segmentation violation.Currently, we are working on an intra-address space protection mechanism that exploits seg-mentation hardware available in Intel's x86 architecture to establish protection boundaries amongsoftware modules within the same address space [6]. This mechanism, once fully working and incor-porated into Apache, will provide an e�cient and e�ective way to support the LibCGI architecturewithout safety concerns. We are also exploring the idea of applying the LibCGI architecture toother types of service extensions, e.g., CORBA object invocations.12

References[1] NSAPI Programmers Guide, http://developer.netscape.com/docs/manuals/enterprise/nsapi/[2] The Apache Server project, http://www.apache.org/[3] The Uno�cial FastCGI Homepage, http://fastcgi.idle.com/[4] ISAPI Reference, http://www.microsoft.com/win32dev/apiext/isapiref.htm[5] Writing Web Applications with WAI,http://developer.netscape.com/docs/manuals/enterprise/wai/[6] Chiueh, T.; Venkitachalam, G.; Pradhan, P.; "Intra-Address Space Protection usingSegmentation Hardware", Seventh IEEE Workshop on Hot Topics In Operating Systems(HoTOS - VII), March 1999, Rio Rico, Arizona.[7] Apache/Perl Integration Project, http://perl.apache.org/

13

