
61

oconv - create an octree from a RADIANCE scene description

pcomb - combine RADIANCE pictures.

pcompos - composite RADIANCE pictures.

pfilt - filter a RADIANCE picture

pflip - flip a RADIANCE picture.

pinterp - interpolate/extrapolate view from pictures

protate - rotate a RADIANCE picture.

psign - produce a RADIANCE picture from text.

pvalue - convert RADIANCE picture to/from alternate formats

ra_bn - convert RADIANCE picture to/from Barneyscan image

ra_pixar - convert RADIANCE picture to/from PIXAR picture

ra_ppm - convert RADIANCE picture to/from a Poskanzer Portable

 Pixmap

ra_pr - convert RADIANCE picture to/from pixrect rasterfile

ra_pr24 - convert RADIANCE picture to/from 24-bit rasterfile

ra_rgbe - change run-length encoding of a RADIANCE picture

ra_t16 - convert RADIANCE picture to/from Targa 16 or 24-bit image

 file

ra_t8 - convert RADIANCE picture to/from Targa 8-bit image file

ra_tiff - convert RADIANCE picture to/from a TIFF color or greyscale

 image

rcalc - record calculator

replmarks - replace triangular markers in a RADIANCE scene description

rpict - generate a RADIANCE picture

rtrace - trace rays in RADIANCE scene

rview - generate RADIANCE images interactively

thf2rad - convert GDS things file to RADIANCE description

total - sum up columns

ttyimage - RADIANCE driver for X window system

xform - transform a RADIANCE scene description

xglaresrc - display glare sources under X11

ximage - RADIANCE driver for X window system

xshowtrace - interactively show rays traced on RADIANCE image under X11

60

Appendix A

Location of files.

All execulables may be found in

/usr/local/bin

All library files, eg function files, picture files etc may be found

/usr/local/lib/ray

RADIANCE PROGRAM LIST.

aedimage - RADIANCE driver for AED 512 color graphics terminal

arch2rad - convert Architrion text file to RADIANCE description

calc - calculator

cnt - index counter

dayfact - compute illuminance and daylight factor on workplane

ev - evaluate expressions

falsecolor - make a false color RADIANCE picture

findglare - locate glare sources in a RADIANCE scene

genbox - generate a RADIANCE description of a box

genprism - generate a RADIANCE description of a prism

genrev - generate a RADIANCE description of surface of revolution

gensky - generate a RADIANCE description of the sky

gensurf - generate a RADIANCE description of a functional surface

genworm - generate a RADIANCE description of a functional worm

getbbox - compute bounding box for RADIANCE scene

getinfo - get header information from a RADIANCE file

glare - perform glare and visual comfort calculations

glarendx - calculate glare index

ies2rad - convert IES luminaire data to RADIANCE description

lam - laminate lines of multiple files

lampcolor - compute spectral radiance for diffuse emitter

lookamb - examine ambient file values

mkillum - compute illum sources for a RADIANCE scene

neat - neaten up output columns

normpat - normalize RADIANCE pictures for use as patterns.

59

5. References

Greg Ward. "The RADIANCE 2.Ø Synthetic Imaging System

Reference Manual."

Lawrence Berkeley Laboratory.

Berkeley, California.

Cindy Larson "RADIANCE - Users Manual (Draft)"

Lawrence Berkeley Laboratory.

Berkeley, California. Nov 1991.

Greg Ward RADIANCE manual pages.

(Principle Author) Lawrence Berkeley Laboratory.

Berkeley, California.

John E. Kaufman "IES Lighting handbook, Reference volume."

Illuminating Engineering Society

New York. 1981

58

Pfilt usage;

pfilt [options] [file]

Common pfilt options.

-x res Set the x resolution to xres. If a slash followed by

a real number is given for xres, then the new x

resolution will be set to the original resolution

divided by the real number.

-y yres Set the y resolution to yres (same as -x option).

-e exp Adjusts the exposure. The exp value can

begin with either a '+' or '-' (specifying the a

number of fstops), otherwise it is interpreted as a

straight multiplier.

-t lamp Colour balance the image as if the lamp fixture

type was used.

-r rad Use Gaussian filtering with a radius of rad to

provide highest quality images.

-n N Set number of star points for star pattern to N.

-h lvl Set the intensity for which areas will start to draw

star patterns.

Reducing the image resolution by two or three and using a Gaussian

filter radius of around .6 produces the highest quality anti-aliased

image.

57

Indirect calculation parameters.

The indirect calculation uses an interreflected component for

ambient light. Each calculation produces a number of rays

which are stored and used for interpolation on nearby values.

These indirect illuminance values may be stored in a file which

can be shared for slightly faster renderings.

-ab N Sets the number of ambient bounces to N which

determines the number of diffuse bounces.

-af file Sets the ambient file to file.

Miscellaneous parameters.

-lr N Limit number of reflections to N.

-t sec Sets the time between progress reports.

-e file Sends progress reports (from -t) and error

messages to file instead of standard error.

The following table shows typical rpict values in relation to rendering

speed and accuracy.

Param Description Min Fast Accur Max Default

===== ============= ===========================

-ps pixel sampling 16 8 4 1 4

-pj anti-aliasing jitter Ø Ø.6 Ø.9 1 Ø.67

-dj source jitter Ø Ø Ø.7 1 Ø

4.4. Pfilt

The pfilt program performs anit-aliasing and scaling on an image file

produced by rpict. Other options include setting the exposure of the

image, colour balancing and creating star highlights around bright

areas of a picture.

56

The horizontal and vertical resolution values determine the

amount of detail in the final image and as such heavily influence

the pictures rendering time. For large images it is possible to

reduce this time by using image plane sampling (-ps).

-x xres Specify x resolution.

-y yres Specify y resolution.

-ps size Sets the sample pixel spacing for adaptive

subdivision on the image plane.

-pj frac Sets the sample jitter to frac. This value, between

Ø and 1 is used when anti-aliasing by randomly

sampling over pixels.

Direct calculation parameters.

The direct calculation does not use any interreflected

component and as such should be provided with an ambient

light level (as described with rview). By the programs defaults,

sources are treated as if they emanate from a point. By jittering

a ray to a source by an amount proportional to the sources size,

a more accurate image results. This, however, requires that the

image plane sampling be set to zero thus resulting in longer

rendering times.

-av red green blue Sets the ambient values (as discussed

above)

-dj frac Sets direct jittering to frac. (between Ø and 1)

55

Calculating the ambient light value.

Ambient light levels are specified when indirect calculations are not

required (ie when -ab is Ø see rpict). There are two ways for quickly

acquiring a rough estimate of ambient light values. The first is to

select a point using the interactive trace command that is half way

between full shadow and light shadow. The trace command returns

the object selected, its location, material and most importantly, its

luminance value. This value can then be used as the ambient value.

The second technique involves setting the -ab command line option to

1 at runtime. After a rough image has appeared set the ab value to Ø

and set the av values until the new sections of the image match the

colour of the original image. Use these values for the final rendering

using rpict.

4.3. Rpict

Rpict is the program that produces a high resolution picture of a scene

from a given perspective. The image may take a few minutes or many

hours to generate depending on the resolution of the final picture and

the desired picture accuracy. The rpict program output is controlled by

the specification of a number of command line variables. These fall

into several categories such as views, resolution, direct and indirect

calculations.

Rpict usage;

rpict [options] octree > imagefile <-(Create image file)

rpict [-defaults] <-(List variable defaults)

Common rpict options.

Viewing parameters.

Rpict takes the same viewing variables as rview (see above).

Usually these viewing parameters are fine tuned in rview and

saved to a file. The rpict program then simply reads this file

using the -vf option.

Resolution parameters.

54

Common program variables.

*set [var [val]] Changes or checks specified program

variables. If val is absent the current value of var

is displayed. If var is absent a list of all available

variables are displayed. The following variables

can be specified on the command line.

-ab N Sets the number of ambient bounces to N which

determines the number of diffuse bounces

calculated through an indirect calculation.

-av red green blue Set the ambient light value to a radiance of

red, green and blue to be used in place of an

indirect light calculation. Examples of quick ways

of calculating this are shown below.

Miscellaneous parameters.

*frame [xmin ymin xmax ymax] or [all]

Sets the frame for refinement. If the bounding box

coordinates are not given, the cursor is used to

pick the box boundaries. The frame all command

will reset the box to the total image size.

*exposure [spec] Adjusts the exposure. The spec value can

begin with either a '+' or '-' (specifying the a

number of fstops), or an '=' (specifying an

absolute value). If the '=' option is given without

the spec value or if the spec value is omitted

altogether then the cursor is used to pick a point

for normalisation.

*new Restarts the rendering of the image.

*quit Quit the program.

*^R Redraw the screen.

*write.[file] Write the current image to the file (at current

resolution).

53

options can be specified interactively with the dialogue box set

command, while running the program.

Rview command line usage:

rview [options] octree <-(Renders interactive view)

rview -defaults <-(Lists default values)

Common rview options. (* denotes interactive (dialogue box)

command only)

Viewing Parameters.

*last file Load viewing parameters from file.

*aim [mag [x y z]] Zoom in by mag on specified point. If no

point is specified then the cursor is used to select

the view centre.

*view [file] Saves current viewing parameters to file. If file is

left out then rview prompts for the following view

settings.

-vtt View type. t can be either 'v' for perspective view,

'l' for parallel view, 'a' or 'h' for fish eye views.

-vp x y z Viewing point. (or centre point for parallel view)

-vd xd yd zd View direction vector.

-vu xd yd zd View up direction

-vh val Horizontal field of view in degrees.

-vv val Vertical field of view in degrees.

-vf file Get viewing parameters from a file.

52

4. Image Rendering

Once a scene has been fully defined in terms of its geometry and materials it

can be rendered into a two dimensional image. All that needs to be chosen is

the particular viewing point. RADIANCE uses the simulation technique of

image-oriented raytracing. This involves tracing a ray of light backwards from

the viewers eye position, to one or more sources, taking into effect specular

reflections, transmissions and all geometries. The reason for doing this in

reverse as opposed to the real world model, is that of all of the rays that are

reflected and refracted from a light source, only a very small number actually

enter the eye.

4.1. Oconv

To reduce the time taken to generate images, RADIANCE uses

octrees to sort the geometry in a scene. An octree recursively

subdivides spaces into nested octants or cubes which contain no more

than a set number of objects. When a ray is traced, intersection

calculations are only performed on those objects which lie in the cubes

of the intercepting ray, not across the whole scene and thus reducing

the time required to render a scene.

The oconv program is used to create an octree file from scene

description files. This octree file is then used as input for the

rendering programs. An octree may be frozen by using the -f option in

the oconv program to have its information stored in a binary format at

the end of the octree file. This enables the octree to be faster loading,

machine independent and not depend upon the original scene

description files.

4.2. Rview

Rview is a ray-tracing rendering program for interactively viewing a

scene in perspective. It is used not as a final image renderer but as a

device for debugging scenes, for evaluating lighting and for setting

viewing parameters. It displays a rough image of the scene on the

screen and slowly increases its resolution. The users can interrupt

this refining and enter a command into a dialogue box to change a

number of settings such as the viewing type, size and magnification,

the exposure or refinement frame. Most of rview's command line

51

-b brt Zenith brightness

-t trb Turbidity factor

-a lat Latitude in degrees north (-ve for south)

-o lon Longitude in degrees west

-m mer Standard meridian in degrees west of Greenwich

Example.

Hemispherical Blue Sky

Sunny with sun for Perth W.A

on 16th March, 1Ø:ØØ am

!gensky 3 16 1Ø +s -a -32 -o 115.6 -m 12Ø

skyfunc glow skyglow

Ø

Ø

4 .9 .9 1 Ø

skyglow source sky

Ø

Ø

4 Ø Ø 1 18Ø

50

If a spherical light geometry is required then the brightfunc

primitive must be slightly altered. In the above examples the

brightfunc modifier is dealing with flat sources and thus uses the

flatcorr string argument in its calculations. This must be

changed to corr when using a sphere as the light geometry.

When specific lamp geometry is required utilising different lamp

colours then the following technique can be used: Firstly the

three individual radiance values are obtained by using the

lampcolor program as described previously. Each of these

values is then multiplied by PI and divided by the maximun

value found in the second half of the IES distribution data file (in

the spot.dat example that value would be 7.3734). The result is

then used as the final radiance values for the source.

3.3. Daylighting

The RADIANCE package supplies a program called gensky that

creates a scene description for the CIE standard sky distribution. This

description can be for any time of the year, any where in the world

using either a sunny sky, with or without sun, or a cloudy sky. The

material and surface used for the sky are left up to the user.

The output sky distribution is given as a brightness function called

skyfunc. The x axis points east, the y axis points north and the z axis

corresponds to the zenith.

Usage: gensky month day hour [options]

gensky -ang altitude azimuth [options]

gensky -defaults

The gensky options are:

-s Standard CIE clear sky

+s Clear sky with sun.

-c Standard CIE overcast sky

+c Uniform cloudy sky

-g frl Average ground reflectance

49

described later if non white balanced lamp colours are desired.)

The first step is to define the new lamp geometry and replace

the geometry created by the ies2rad program. The next step is

to calculate the total surface area of this new light source. The

final step is edit the radiance values of the light primitive. The

new values (red, green and blue) are simply the reciprocal of

the total surface area (in meters) of the light source.

Example:

This example uses the same light distribution as above but

instead of a 228mm x 288mm light source it utilises a 14Ø mm

diameter disk (as a recessed down spot might look).

The modified geometry file myspot.rad:

ies2rad -dm/1ØØØ -t default

Dimensions in millimetres

#<IES #6, R-4Ø FLOOD WITH SPECULAR

REFLECTOR SKIRT; 45 DEG CUTOFF

#<LAMP=R-4Ø FLOOD

Ø watt luminaire, lamp*ballast factor = 1

void brightdata iesØ6_dist

4 flatcorr spot.dat source.cal src_theta

Ø

1 1

iesØ6_dist light iesØ6_light

Ø

Ø

3 64.96 64.96 64.96 <-(1/area of 14Ø dia disk)

iesØ6_light ring iesØ6.myspot

Ø

Ø

8

Ø Ø Ø

Ø Ø -1

7Ø Ø

48

iesØ6_light polygon iesØ6.u

Ø

Ø

12

-114.3 -114.3 Ø.25

114.3 -114.3 Ø.25

114.3 114.3 Ø.25

-114.3 114.3 Ø.25

The distribution file spot.dat:

1

Ø Ø 21

Ø 5 15 25

35 45 55 65

75 85 9Ø 95

1Ø5 115 125 135

145 155 165 175

18Ø

7.3743 7.3743 5.64246 3.26257

1.31844 Ø.1229Ø5 Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø

3.2.1. Customisation of IES files

Because of the way that the IES specifies its basic light source

geometries, the physical representation of the specified lamp,

often is unsatisfactory. For instance the iesØ1 lamp type will

produce six polygons in the shape of a box to represent a

spherical globe.

One way to overcome this is to specify a new geometry for the

light source and use the distribution data file produced by

ies2rad. This is a relatively straight forward process provided

specific lamp colours are not required. (A second technique is

47

Example.

ies2rad -dm/1ØØØ -t default -o spot iesØ6

This converts the IES luminaire type iesØ6 (R-4Ø flood with

specular anodized reflector skirt: 45 degree cutoff) into a

RADIANCE geometry file spot.rad and a distribution data file

spot.dat with units in millimetres and using a colour balanced

light.

The geometry file spot.rad:

ies2rad -dm/1ØØØ -t default

Dimensions in millimetres

#<IES #6, R-4Ø FLOOD WITH SPECULAR

REFLECTOR SKIRT; 45 DEG CUTOFF

#<LAMP=R-4Ø FLOOD

Ø watt luminaire, lamp*ballast factor = 1

void brightdata iesØ6_dist

4 flatcorr spot.dat source.cal src_theta

Ø

1 1

iesØ6_dist light iesØ6_light

Ø

Ø

3 19.1358 19.1358 19.1358

iesØ6_light polygon iesØ6.d

Ø

Ø

12

-114.3 -114.3 -Ø.25

-114.3 114.3 -Ø.25

114.3 114.3 -Ø.25

114.3 -114.3 -Ø.25

46

The RADIANCE package provides a program called lampcolor that

does this calculation for you. It asks for the total lumens, the geometry

type of the source, the type of lamp (from the lamp.tab file) etc. and

produces three radiance values (red, green and blue).

3.2. Using IES distribution data

As mentioned in the introduction, RADIANCE has the ability to use

manufactures' photometric data to provide accurate distributions of

light for their sources. The RADIANCE package comes with the

standard IES (Illuminating Engineering Society) data files for around

5Ø different lighting fixtures. These data files can be converted

straight into RADIANCE scene descriptions by a program called

ies2rad.

3.2.1 The ies2rad program

The ies2rad program produces a RADIANCE file, which

contains the light source geometry and a data file, which

contains the light distribution data. The light source geometry is

always centred at the origin, aimed in the negative z direction

and orientated so that the Ø degree plane is along the x axis,

and as such must be transformed to its final position.

Ies2rad usage:

ies2rad [options] inputfiles...

common options:

-l libdir Default path to look for ies data files.

-p predir Output subdirctory name.

-o outname Output file name (no extension)

-duntis Output dimension units.

-i rad Specify illum sphere for geometry (radius)

-t lamp Specify lamp type (use default for white
balanced lamp)

-m factor Multiplication factor

45

The calculation is a four part one:

1. Convert the total lumen value of the lamp into watts by dividing

the lumens by 179. (watts)

2. Divide this value by Pi. (watts/steradian)

3 Divide the watts by the total emitting surface area of the lamp in

square meters. (watts/steradian/m2)

4. Compensate for fixtures and lumen depreciation by a factor of 5

to 2Ø %. (watts/steradians/m2)

Example.

A 75 watt GLS (general lighting service incandescent lamp)

has a radius of 3Ø mm a total initial lumen value of 96Ø.

Thus the radiance value for this white light source is..

power = 96Ø lumen / 179

= 56.471 watts

area = (.Ø3Ø)2 * Pi *4

= Ø.Ø1131 m2

radiance value = power / area / Pi

= 56.471 / Pi / Ø.Ø1131

= 15Ø.944 watts/steradian/m2

depreciation factor = 5%

Final radiance value = .95 * 15Ø.994

= 143.397 watts/steradian/m2

44

3. RADIANCE Light Specifications

The correct definition of light sources is critical to produce accurate images in

RADIANCE. RADIANCE is able to use manufactures data in terms of specific

distributions and lamp colour in its calculations.

RADIANCE, like most colour software only deals with a single band of red,

green and blue. Although the human eye is able to construct almost any

colour from combinations of these three colours, it is not the same as

continuously sampling the entire spectrum. It is thus possible for

inaccuracies to enter the rendered image. This RGB model is however, the

easiest to emulate on current computer hardware and thus the most widely

accepted and utilised.

When the human eye views a scene that is lit by non heavily weighted colour

lights it automatically colour balances the scene as to appear white and

natural. Thus even if a number of particular frequencies are absent, such as

some of the higher (blue and violet) frequencies in an incandescent light

source, the overall scene still appears white. If no colour balancing occurs

the scene no longer looks natural. In RADIANCE there are two ways to

colour balance an image. The first is to use all white light sources and the

second is to use the pfilt program to filter the rendered image.

The RADIANCE package also provides a file called lamp.tab that contains

useful lamp information. This file is used by the lampcolor program and by

the pfilt program to obtain the RGB value of different lamps. The file defines

lamp types, chromaticity coordinates and depreciation lists.

3.1. Calculating radiance values

All RADIANCE light sources require three radiance values. One for

red, green and blue. To calculate the radiance value, the total initial

lumen value of the light and the total surface area of the light must be

known. This will produce one radiance value that is used for the red,

green and blue radiance values resulting in a white balanced light

fixture.

43

2.6.5. Mixtext

The mixtext uses one modifier for the text foreground and one

modifier for the background.

The mixtext primitive.

modifier mixtext identifier

4 foreground background

fontfile textfile

Ø

9 Ox OY Oz

Rx Ry Rz

Dx Dy Dz

42

The prism2 primitive.

modifier prism2 identifier

5 + ceof1 dx1 dy1 dz1

coef2 dx2 dy2 dz2 funcfile trans

Ø

n A1 A2 ... An

2.6.3. Mixfunc

The mixfunc primitive mixes two modifiers procedurally. The

foreground and background arguments must be modifiers that

have been previously uniquely defined. The vname argument is

the coefficient defined in the funcfile that defines the influence

of the foreground (The background coefficient is 1-vname).

The mixfunc type.

modifier mixfunc identifier

4 + foreground background

vname funcfile trans

Ø

n A1 A2 ... An

2.6.4. Mixdata

The mixdata primitive is similar to mixfunc except that it

combines two or more modifiers using a data file instead of a

calculation.

The mixdata primitive.

modifier mixdata identifier

5 + n + foreground background

func datafile funcfile

x1 x2 ... xn trans

Ø

m A1 A2 ... Am

41

2.6. Miscellaneous primitive types.

RADIANCE also provides other primitive types that do not fall under

any of the above groups. They include the material types antimatter,

prism1 and prism2 and the types mixfunc mixdata and mixtext for

blending one or more textures and patterns.

2.6.1. Antimatter

The primitive type anitmatter is a material that is able to

"remove" volumes from other volumes. A ray that passes into

an anitmatter object becomes blind to all the specified modifiers.

The first string argument (a modifier) will be used to shade the

area between the regular volume and the anitmatter volume. If

this modifier is void, then the anitmatter will appear completely

invisible.

The antimatter primitive.

modifier antimatter identifier

N mod1 mod2 ... modN

Ø

Ø

2.6.2. Prism1 and Prism2

The primitive type prisms are materials for general light

redirection from prismatic glazing, generating secondary light

sources. They can only be used to modify planar surfaces and

should not result in light focusing or scattering. The string

arguments specify the coefficient for the redirected light and its

direction. The prism2 type is identical to prism1 except that it

provides for two ray redirections rather than one.

The prism1 primitive.

modifier prism1 identifier

5 + ceof dx dy dz funcfile trans

Ø

n A1 A2 ... An

40

Zpert.dat (A simple text file)

2

Ø 1 4

Ø 1 4

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

Ø Ø Ø Ø

EOF

Figure 7. A Quilt texture

Explanation.

This texture primitive produces a bumpy quilt texture. The

surface normal data is read in from the three data files, one

normal from each file. The function file is used to manipulate

and then return the surface normal. The real argument in this

example (A1) determines the smoothness (or height) of the

texture surface.

39

Example.

void texdata tile

9 pass_dx pass_dy pass_dz

xpert.dat ypert.dat zpert.dat

tex.cal frac(Px) frac(Py)

Ø

1 .5

Tex.cal

{-Basic texdata function file -----------------------------------}

pass_dx(dx, dy, dz) = dx * A1; { get x normal }

pass_dy(dx, dy, dz) = dy * A1; { get y normal }

pass_dz(dx, dy, dz) = dz * A1; { get z normal }

no_pert(dx, dy, dz) = Ø; { don't change normal }

{- EOF ---}

Xpert.dat (A simple text file)

2 <-(Number of dimensions of array)

Ø 1 4 <-(first dimension array size of 4)

Ø 1 4 <- (second dimension array size of 4

)

-1 -1 1 -1 <-(Data for array [1][])

Ø Ø Ø Ø <- (Data for array [2][])

Ø Ø Ø Ø <- (....)

1 1 1 1 <- (Data for array [4][])

EOF

Ypert.dat (A simple text file)

2

Ø 1 4

Ø 1 4

-1 Ø Ø 1

-1 Ø Ø 1

-1 Ø Ø 1

-1 Ø Ø 1

EOF

38

Explanation.

The values returned from the function file groove.cal are added

to the surface normal for each specific point of the surface. The

calculation checks if the y coordinate of the intersection point

lies within a grove. If it is then the y value of the normal vector

is changed. The function uses an if statement (if(a, b, c) - if a

is +ve, return b, else return c), which is defined in the rayinit.cal

file.

2.5.2. Texdata

The texdata primitive type uses three data files to get the

surface normal perturbations rather than a function file.

The texdata primitive:

modifier texdata identifier

8 + xfunc yfunc zfunc <-(function args)

xdataf ydataf zdata <-(data file names)

fname xØ x1 ... xf <-(function file name)

Ø

n A1 A2 ... An <-(function file args)

The data file format.

N

beg1 end1 m1

beg2 end2 m2

....

begN endN mN

DATA

Where N - The number of dimensions in array

begx - The beginning coordinate value

endx - The ending coordinate value

mx - The size of the dimension array

All data is separated by white space and no comments
are allowed.

37

Groove.cal

{-Groove function file --}

{ Groove function for a surface in the xy plane

origin at (Ø Ø Ø)

A1 = Width of horizontal (x axis) groove as fraction of

unit length.

}

xpert = Ø; { don't change the x normal }

zpert = Ø; { don't change the y normal }

ypert = if(A1/2 - frac(Py), { if ray in bottom grove }

Ø.5, { return +ve pert }

if(A1 - frac(Py), { if ray in top

groove }

-Ø.5, { return -ve pert }

Ø { else no pert }

)

);

{- EOF --}

Figure 6. Groovy Texture.

36

2.5. Texture Modifie rs.

Where pattern modifiers alter (perturb) a material's colour, texture

modifiers perturb a material's surface normal. This perturbation may

be defined as a function or specified by data. A texture unlike a

pattern takes into account the direction of light that is illuminating the

surface.

2.5.1. Texfunc

The texfunc primitive uses a function file to specify a procedural

texture. The function file, like all other function files, uses

predefined RADIANCE variables in calculations to shift a

surface normal.

The texfunc primitive:

modifier texfunc identifier

4 + xpert ypert zpert

funcfile trans

Ø

n A1 A2 ... An

Example.

void texfunc groove

4 xpert ypert zpert groove.cal

Ø

1 .1

35

2.4.4.2. Brighttext

The brighttext primitive is similar to the colortext primitive

except it is monochromatic.

The brighttext primitive:

modifier brighttext identifier

2 fontfile textfile

Ø

11 Ox Oy Oz <-(Origin for text)

Rx Ry Rz <-(Direction of text)

Dx Dy Dz <-(Slope of text)

foreground background <-(Brightness)

Example.

void brighttext page2

2 helvet.fnt text2.txt

Ø

11 Ø Ø Ø <-(Origin)

Ø 1Ø Ø <-(Rotation)

5 -.2 Ø <-(Slant)

.2 1 <-(Brightness)

Explanation.

The text is read in from the text2.txt file and displayed in

the helvet.fnt font. The upper left corner of the text is

defined at (Ø Ø Ø). The text is orientated vertically up

the page (Ø 1Ø Ø) and has an aspect ratio of .5 as the

R vector is ten units (Ø 1Ø Ø) and D vector is one five

units (5 -.2 Ø). The characters are of ten units in size

and slant slightly forward as the bottom of the characters

are .2 of a unit behind the top (Ø 1Ø Ø) vs (5 -Ø.2 Ø).

The font has a brightness of .2 and is on a white

background.

34

Explanation.

The text is read in from the text.txt file and displayed in

the helvet.fnt font. The upper left corner of the text is

defined at (Ø 1Ø Ø). The text is orientated horizontally

across the page (1 Ø Ø) and has an aspect ratio of 1 as

the R vector is one unit across (1 Ø Ø) and D vector is

one unit down (-.2 -1 Ø). The characters are of one

unit in size and slant slightly forward as the bottom of the

characters are .2 of a unit behind the top (1 Ø Ø) vs (-

Ø.2 -1 Ø). The font colour is blue on a white

background

33

colour and upper left origin for the text block must also be

given to define the material.

The colortext primitive:

modifier colortext identifier

2 fontfile textfile

Ø

15 Ox Oy Oz <-(Origin for text)

Rx Ry Rz <-(Direction of text)

Dx Dy Dz <-(Slope of text)

rfore gfore bfore <-(Foreground colour)

rback gback bback <-(Background colour)

Example.

void colortext page

2 helvet.fnt text.txt

Ø

15 Ø 1Ø Ø

1 Ø Ø

-.2 -1 Ø

Ø.2 Ø.3 Ø.8

1 1 1

Figure 5. Page.

32

Figure 4. Carpet tiles ?

Explanation.

This primitive produces a tiled carpet pattern from a

RADIANCE picture called carpettile.pic. Since the tile_u

and tile _v string arguments were supplied the picture will

repeatedly tile the picture image. The real argument

(1.48) specifies the height to width ratio of the tiles. The

picture pattern is then rotated 9Ø degrees around the z

axis and scaled by a factor of ten.

2.4.4. Text Patterns

Text patterns are primitive types that produce text. The text font

is defined by an auxiliary font file and the text may be defined

as part of the primitive or in an external file. There are two

types of text patterns.

2.4.4.1. Colortext

The colortext primitive is dichromayic writing in a

polygonal font. The size, orientation, aspect ratio and

slant of the characters are defined by right and down

motion vectors. The foreground colour , the background

31

The options are:

pic_u & pic_v Straight forward picture

mapping.

tile_u & tile_v Tiling of the picture

match_u & match_v Tiles, mirrors and matches

edges picture

RADIANCE also supplies a number of functions for

mapping a picture onto spheres, cylinders and other non

flat surfaces.

The colorpict primitive:

modifier colorpict identifier

7 + rfunc gfunc bfunc pictfile

funcfile x1 x2 ... xm transformations

Ø

n A1 A2 A3 ... An

Example.

void colorpict carpet_tiles

11 red green blue carpettile.pic

picture.cal tile_u tile_v -rz 9Ø -s 1Ø

Ø

1 1.48

30

2.4.3.2. Brightdata

The primitive type brightdata is similar to colordata

except that it is monochromatic. ie It only changes the

brightness of the material. As such only one data file is

required.

The brightdata primitive.

modifier brightdata identifier

3 + m + rfunc datafile

funcfile x1 x2 ... xm transformations

Ø

n A1 A2 A3 ... An

2.4.3.3. Colorpict

The primitive colorpict as already mentioned uses a two-

dimensional image stored in RADIANCE picture format to

produce a coloured pattern (or picture). The

dimensions of the image are normalised so that the

smaller dimension is always one unit in length with the

other dimension being the ratio between the larger and

the smaller. ie An image of 5ØØ x 388 would have the

box coordinate size of (Ø, Ø) to (1.48, 1). The

colorpict type normally uses a predefined function file

called picture.cal. This function file always maps the new

picture pattern in the xy plane with its origin at (Ø, Ø, Ø).

Thus more often than not the picture must be rotated,

transformed and scaled. This file provides a number of

options for tiling and mapping the picture onto flat

surfaces depending upon the arguments specified on the

string argument line.

29

specified in A3 is Ø.2, then the strip width would be one

fifth of the unit length. The pattern is then transformed by

scaling (-s 1Ø) so that in the end the pattern will have a

strip 2 units wide.

2.4.3. Data mapping patterns.

The primitive types brightdata and colordata are similar to

procedural functions in that they modify a materials reflectance

or transmittance. However instead of being defined

procedurally their patterns are defined in a data file. Colorpict is

a special type of colordata that takes a RADIANCE picture file

as the input rather than three separate data files.

2.4.3.1. Colordata

The primitive colordata uses three separate data files,

one for each colour, to modify a materials colour. This

interpolated data map is m-dimensional. The way that

the data is looked up and optionally filtered must be

defined in another separate file. This function file has

the original red green and blue colour values passed to it

as parameters.

The colordata primitive:

modifier colordata identifier

7+m+ rfunc gfunc bfunc

rdatafile gdatafile bdatafile

funcfile x1 x2 ... xm transformations

Ø

n A1 A2 A3 ... An

See section 2.5.2 (texdata) for an example of using data

files.

28

stripes.cal

-Start of function file ---

{ Stripes function

A1 = Brightness of stripe (Ø to 1)

A2 = Brightness of material (Ø to 1)

A3 = width of strip as fraction of unit length }

refl = if(A3 - frac(Px), A1, A2);

- EOF ---

Figure 3. Stripes.

Explanation:

This function file simply returns a reflectance value

brightness. If the x ray intersection point is inside a strip,

the function returns A1 (1), else it returns a A2 (.5).

The function works on a unit scale so that as the width

27

ten. The real argument, A1 is also used in the

calculation specifying a smoothness (in this case, Ø.Ø1).

The Px, Py and Pz values found in the function file are

variable that are predefined as the intersection point of a

surface and a ray. The noise3a in the function file is a

predefined standard noise function. The file rayinit.cal

contains all the standard functions and defined variables.

This procedural pattern primitive will basically randomly

associate a colour to any surface that is defined with this

material.

2.4.2.2. Brightfunc

The brightfunc primitive type is the same as colorfunc

except that it only changes the brightness of the material

colour not the colour itself.

The brightfunc primitive:

modifier brightfunc identifier

2 + reflectance funcfile transformations

Ø

n A1 A2 A3 ... An

Example:

void brightfunc stripes

4 refl stripes.cal -s 1Ø

Ø

3 1 Ø.5 Ø.2

26

speckle.cal

-Start of function file --

{ Hundreds and thousands colour function

A1 = degree of spottyness. }

red = noise3a(Px/A1, Py/A1, Pz/A1);

green = noise3b(Px/A1, Py/A1, Pz/A1);

blue = noise3c(Px/A1, Py/A1, Pz/A1);

- EOF --

Figure 2. Hundreds and Thousands

Explanation:

A hundreds and thousands colour pattern is being

described through a procedural pattern. The string

arguments red, green and blue are returned from the

calculation speckle.cal and used to change the materials

colour. The whole pattern is then scaled by a factor of

25

The ones most commonly used to transform materials are:

-t x y z translate the material along the vector x y z.

-rx (ry, rz) degrees Rotate the material degrees about an axis.

-s factor Scale the material by a factor.

2.4.2. Procedural Patterns

A procedural pattern as previously mentioned is a pattern that is

dependent upon a particular calculation. This calculation

usually takes values from the RADIANCE package, such as

surface normals or ray intersection points etc., and combines

them into a value that is then used to change the material's

colour. The two types of procedural pattern types are colofunc

and brightfunc.

2.4.2.1. Colorfunc

The colorfunc type primitive will change the colour (the

red green and blue value) of a material. It is defined in

terms of a function file (where the calculation occurs)

and numerous arguments required by that function. The

overall changed colour values may also be scaled and

transformed.

The colorfunc primitive:

modifier colorfunc identifier

4 + red green blue funcfile

transformations

Ø

n A1 A2 A3 ... An

Example:

void colorfunc hundreds_and_ thousands

6 red green blue speckle.cal -s 1Ø

Ø

1 .Ø1

24

Example:

void glass glass_window

Ø

Ø

3 .96 .96 .96

Acceptable values:

transmission [Ø:1],[Ø:1],[Ø:1] Min Ø,

 Max 1

black - transparent

2.3.4. BRDF materials

BRDF materials are primitive types with bidirectional

reflectance distribution functions (thus BRDF's). They

are specific plastic like materials that get accurate

specular distributions from either procedurally defined

functions or from data files. As such they are beyond the

scope of this manual. Information on the BRDF materials

may be found in the RADIANCE Reference manual.

2.4. Pattern modifiers.

A pattern is defined as a perturbation (shift) in a materials colour. It

effects the reflectance or transmittance properties of an object. There

are two ways of specifying a pattern. They are either through a

procedural function (ie a mathematical calculation based upon

RADIANCE information or random functions) or through a coordinate

mapping of data from files (ie the shift in colour is dependent upon the

data in one or a number of files).

2.4.1. Material Transformations

Patterns as well as textures often need transformations to scale,

move and rotate defined materials onto an objects surface. The

transformations available are the ones provided by XFORM.

23

Example:

void dielectric surface
Ø

Ø

8 .5 .5 .5 1.5

.7 .7 .7 1.9

Acceptable values:

interior transmission [Ø:1],[Ø:1],[Ø:1] Min

Ø, Max 1

black - transparent

interior refractive index (1:2> Min 1, Max 2

vacuum - diamond

exterior transmission [Ø:1],[Ø:1],[Ø:1] Min

Ø, Max 1

black - transparent

exterior refractive index (1:2> Min 1, Max 2

vacuum - diamond

2.3.3.3. Glass

The glass type primitive is a specially modified dielectric.

The material has been optimised to only produce one

reflected ray and one transmitted ray through a single

thin surface. In this way internal reflections are avoided.

The glass type has a standard refractive index of 1.52

and all that is needed to be defined is the transmission at

normal incidence.

The glass primitive:

modifier glass identifier

Ø

Ø

3 R1 G1 B1 <-(transmission

value 1)

22

Acceptable values:

transmission [Ø:1],[Ø:1],[Ø:1] Min Ø,

 Max Ø

black - transparent

refractive index (1:2> Min 1, Sug max

 2

vacuum - diamond

Hartmann's constant <-2Ø:3Ø> Min -2Ø,

Max 3Ø

negative dispersion - positive

dispersion

2.3.3.2. Interface

The interface primitive type is a boundary between two

dielectrics (ie water and crystal). Ordinary dielectics

are surrounded by a vacuum. The interface is defined by

two sets of transmission and refractive indexes, the first

being the inside, the second the outside.

The interface primitive:

modifier interface identifier

Ø

Ø

8 R1 G2 B3 <-(transmission

value 1)

n1 <-(refraction

index 1)

R2 G2 B2 <-(transmission

value 2)

n2 <-(refraction

index 2)

21

2.3.3. Dielectric materials

A dielectric material is a transparent material that refracts and

reflects light, such as water or crystal. The material thus has an

index of refraction and a specific spectral absorbance

RADIANCE has a number of dielectric primitive types such as

the interface type and glass type.

2.3.3.1. Dielectric

The dielectric primitive is as described above. It is

defined by the red, green and blue transmission in each

wave length and by its index of refraction. An optional

parameter, the Hartmann constant, (which is usually

zero) describes how the index of refraction changes as a

function of wavelength. A pattern will only modify the

refracted value.

The dielectric primitive:

modifier dielectric identifier

Ø

Ø

5 R G B <-(transmission

 value)

n Hc <-(refraction

index &

Hartmann

constant)

Example:

void dielectric crystal

Ø

Ø

5 .5 .5 .5 1.5 Ø

20

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø,Max

infinite

output brightness

2.3.2.4. Glow

The glow primitive is used for surfaces that are self-

luminous, but limited in their effect. The material is

defined with red, green and blue radiance values and

also a maximum radius for shadow testing.(ie any object

that is outside the radius will not cast a shadow from this

source).

The glow primitive:

modifier glow identifier

Ø

Ø

4 R G B <-(radiance value)

maxrad <-(maximum radius)

Example:

void glow aquarium

Ø

Ø

4 12 12 12 15ØØ

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø,

Max infinite

output brightness

maximum radius [Ø:inf) Min Ø,

Max Infinite

no shadows - always shadows

19

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø,

Max infinite

output brightness

angle [Ø:36Ø] Min Ø, Max 36Ø

no shadows - always shadows

direction (-inf:inf),(-inf:inf),(-inf:inf) Min &

Max infinite

any aimed orientation

2.3.2.3. Illum

The illum primitive is used for secondary light sources

with broad distributions. The secondary light source is

treated like any other light primitive except when it is

viewed directly. It then takes on the characteristics of a

different material, or becomes invisible. They are of the

most use when dealing with brightly illuminated surfaces

or windows.

The illum primitive:

modifier illum identifier

1 modifier <-(new material)

Ø

3 R G B <-(radiance

 value)

Example:

void illum window

1 glass

Ø

3 12 12 12

18

Example:

void light light_bulb

Ø

Ø

3 128 128 128

Acceptable values:

colour (Ø:inf),(Ø:inf),(Ø:inf) Min Ø, Max

infinite

output brightness

2.3.2.2. Spotlight

The spotlight primitive type is used for self-luminous

surfaces that require a directed output. It is defined with

red, green and blue radiance values as well as an

orientation (output direction) vector and a full cone

angle (in degrees). The orientation vector determines

the distance of effective focus behind the source centre (

ie the focal length).

The spotlight primitive:

modifier spotlight identifier

Ø

Ø

3 R G B <-(radiance

 value)

angle <-(cone angle)

x y z <-(direction

 vector)

Example:

void spotlight spot_light

Ø

Ø

3 128 128 128

17

Example:

void mirror silver_mirror

Ø

Ø

3 1 1 1

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1
black - silver

2.3.2. Lights

Lights are materials that are self-luminous or emissive surfaces.

They may be polygons, spheres, disks, sources or cylinders

(provided they are long enough). The variations of the light

type material are spotlight, illum and glow.

All the light types are defined by a red green and blue radiance

value. Ways of accurately obtaining these values are

discussed in section 3.Ø.

2.3.2.1. Light

The light primitive type is the basic material for light

emitting surfaces. Cones are currently not supported as

light sources. Modifiers (especially patterns) may be

used to specify a lights output distribution.

The light primitive:

modifier light identifier

Ø

Ø

3 R G B <-(radiance

 value)

16

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1
black - white

specularity [Ø:1] Min Ø, Sug. max

Ø.Ø7

matte - satin

roughness [Ø:1] Min Ø, Sug. max

Ø.Ø2

polished - low gloss

transmission [Ø:1] Min Ø, Max 1

opaque - transparent

transmitted specularity [Ø:1] Min Ø, Max 1

diffuse - clear

2.3.1.4. Mirror

The mirror material is used to produce secondary source

reflections. It can only be used on planar surfaces (eg

rings and polygons) and is defined by red, green and

blue reflectance values. An optional string argument

may be included in the primitive to specify a different

material to be used for shading non-source rays.

The mirror primitive:

modifier mirror identifier

Ø + modifier <-(Optional)

Ø

3 R G B <-(Colour)

15

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1
Ø-1ØØ% reflectance

specularity [Ø:1] Sug Min
Ø.5, Max 1

dirty - clean

roughness [Ø:1] Min Ø,
Sug Max Ø.5

polished - roughened

2.3.1.3. Trans

The trans material is basically a translucent plastic. It

takes the same parameters as plastic as well as

transmission factor and a transmitted specularity value.

The transmission factor is the fraction of penetrating light

that travels through the material. The fraction of

transmitted light that is not diffusely scattered is the

specular transmitted value. This material is infinitely thin

and will modify the colour of the scattered light.

The trans primitive:

modifier trans identifier
Ø
Ø
5 R G B <-(Colour)

spec rough <-(specularity &
roughness)

trans tspec <-(transmission
& transmitted
specularity)

Example:

void trans lamp_shade
Ø
Ø
5 .7 .3 .2

Ø Ø.Ø5
.5 .5

14

Acceptable values:

colour [Ø:1],[Ø:1],[Ø:1] Min Ø, Max 1

black - white

specularity [Ø:1] Min Ø, Sug. max

Ø.Ø7

matte - satin

roughness [Ø:1] Min Ø, Sug. max

Ø.Ø2

polished - low gloss

2.3.1.2. Metal

The metal material is similar to plastic except that its

highlights are modified by the material colour.

The metal primitive:

modifier metal identifier
Ø
Ø
5 R G B <-(Colour)

spec rough <-(specularity &
 roughness)

Example:

void metal brass

Ø
Ø
5 .68 .27 .ØØ2

.95 Ø

13

2.3.1. Normal materials

Normal materials can be classed as either plastic, metal, trans

or mirror. They are defined as having a diffuse and specular

component, a colour and a roughness factor. A purely specular

material would have a roughness factor of Ø. A totally diffuse

material is treated as a Lambertian surface. The mirror type is a

special case.

2.3.1.1. Plastic

Plastic is a material with uncoloured highlights. It is

defined by a red green and blue reflectance value, a

specularity value and by a roughness value. A positive

roughness value will display highlights (uncoloured by

the materials modifier) but not show any reflections from

other objects.

The plastic primitive:

modifier plastic identifier
Ø
Ø
5 R G B <-(Colour)

spec rough <-(specularity &
 roughness)

Example:

void plastic gloss_white_paint
Ø
Ø
5 1 1 1

.Ø3 .Ø1

12

Example:

red_material source sunsetsky
Ø
Ø
4 Ø Ø 1

18Ø

2.2.1Ø. Instance.

The instance primitive type is used for making multiple copies of

previously defined primitives. It is different from the alias type

as it makes copies of geometric objects, not just material

definitions. An instance uses a previously converted scene

description (called an octree see section 3.1) and

transformation information (see section 2.4.1 xform).

Instancing can quickly create a large complicated or repetitive

scene from the one simple object (eg. Instancing one seat to

create a theatre auditorium) without using the same amount of

memory.

The instance primitive:

modifier instance identifier
n + octree transformation <-(octree name
Ø & any no of
Ø trans)

Example:

void instance small_tree _copy
2 tree -s .5 t 1Ø Ø Ø <-(Scales and
Ø shifts the new
Ø copy of a tree)

2.3. Material Assignments.

In order to create a realistic image all scene geometry must be

assigned a material. This material, which can be a combination of a

number of other materials, determines how light will interact with the

geometric surface. RADIANCE offers four classes of materials:

11

2.2.8. Ring.

A ring is a circular disk defined by a centre point, a surface

normal direction vector and an inner and outer radius. The

sequence of the two radii does not matter and one of the radii

may be zero.

The ring primitive:

modifier ring identifier
Ø
Ø
8 xØ yØ zØ <-(starting point)

x1 y1 z1 <-(normal vector)
rØ r1 <-(inner radius

 & outer radius)

Example:

red_material ring dinner_plate
Ø
Ø
8 Ø Ø Ø

Ø Ø 1
1 Ø

2.2.9. Source.

A source is a special type of geometric primitive type. It is not

really a surface but more of a direction in the form of a disk. It

is used to represent objects (usually lights) that are very

distant. A source is described by a direction to its centre and by

the number of degrees subtended by its disk. It can be thought

of as the sky hemisphere.

The source primitive:

modifier source identifier
Ø
Ø (direction vector to
4 x y z <- object centre)

angle <-(angle subtended by
disk)

10

Example:

red_material cone megaphone
Ø
Ø
8 Ø Ø Ø

5 Ø Ø
1 3

2.2.5. Cup

A cup is simply a cone whose surface normal points inward. ie

a hollow cone.

2.2.6. Cylinder

A cylinder is similar to a cone, but its starting and ending radius

are equal.

The cylinder primitive:

modifier cylinder identifier
Ø
Ø
7 xØ yØ zØ <-(starting point)

x1 y1 z1 <-(ending point)
r <-(radius)

Example:

red_material cylinder wand
Ø
Ø
7 Ø Ø Ø

5 Ø Ø
1

2.2.7. Tube

A tube is a cylinder whose surface normal points inward.

9

There is no limit to the number of vertices. Self intersecting
polygons, (such as bow ties) should be avoided.

2.2.2. Sphere

A sphere is simply defined as a centre point and a radius. The

surface normal of a sphere points away from the centre.

The sphere primitive:

modifier sphere identifier
Ø
Ø
4 x y x <-(centre point)

r <-(radius)

Example:

red_material sphere ball
Ø
Ø
4 Ø 1Ø Ø

1

2.2.3. Bubble

A bubble is a sphere whose surface normal points towards its

centre. It can be thought of as a hollow sphere.

2.2.4. Cone

A cone is a cylinder with differing end diameters. One of the

ends may be a point. It is specified by two endpoints of its

central axis and a starting and ending radii.

The cone primitive:

modifier cone identifier
Ø
Ø
8 xØ yØ zØ <-(starting point)

x1 y1 z1 <-(ending point)
rØ r1 <-(starting radius

 & ending radius)

8

2.2.1. Polygon

Polygons are specified by a list of three dimensional vertices.

These vertices proceed in a counter-clockwise direction when

viewed from the front (ie into the surface normal). The last

vertex is connected to the first automatically. Holes may be

included in a polygon by using internal vertices connected to

the outer perimeter by coincident edges or seams.

Figure 1. Example of coincident edges or seam.

The polygon primitive:

modifier polygon identifier
Ø
Ø
n x1 y1 z1 <-(vertex one)

x2 y2 z2 <-(vertex two)
......
xn yn zn <-(vertex n)

Example:

red_material polygon ground_plate
Ø
Ø
12

Ø Ø Ø
1Ø Ø Ø
1Ø 1Ø Ø
Ø 1Ø Ø

7

A red cylinder called pipe <-(Comment)

red_material_copy cylinder pipe

Ø <-(No string arguments)

Ø

7 Ø Ø Ø <-(Seven arguments

Ø Ø 2 specifying start point (Ø,Ø,Ø),

1 end point (Ø,Ø,2) & diameter

(1))

2.2. 3D Geometry

The easiest way to create RADIANCE scene geometry is by using a

3D CAD system and importing the geometry through a conversion

program. If this is not possible RADIANCE provides a number of

object creation programs which can be used to create simple scenes.

The description of all of these programs is beyond the scope of this

manual. The other alternative, albeit a slow one, is to enter the

geometry straight into a text editor.

RADIANCE uses a right handed coordinate system. That is the z

vector or axis points up, the x vector or axis points east with the y

vector or axis pointing north. The choice of units is totally up to the

designer so long as the values are kept within a reasonable range

(about 1Ø-5 and 1Ø8 in size).

RADIANCE requires the user to be aware of the direction of each

objects surface normal. The surface normal specifies the front of the

object ie the side that it will be viewed from. An easy way to tell the

surface normal direction is to use a right hand rule. By following the

sequential direction of points around an object (ie clockwise or anti-

clockwise) with the index and middle finger, the thumb then is pointing

in the direction of the surface normal.

A scene is made up from a combination of simple geometry types.

RADIANCE uses the following object primitive types.

6

An example of a Basic RADIANCE Primitive description:

(Explanations in brackets are not part of the scene description).

A red material definition <-(Comment)

(modifier) (type) (identifier)

void plastic red_material

Ø <-(No string arguments)

Ø

5 1 Ø Ø Ø Ø <-(Five numeric arguments

specifying the colour red

(1 Ø Ø for RGB), reflectance

(Ø) and roughness (Ø))

A copy of the red material <-(Comment)

(modifier) (type) (identifier)

void alias red_material_copy

red_material <-(reference)

A red sphere called ball <-(Comment)

(modifier) (type) (identifier)

red_material sphere ball

Ø <-(No string arguments)

Ø

4 Ø Ø Ø 1 <-(four arguments specifying

position (Ø,Ø,Ø) & radius (1))

5

One special kind of primitive type is alias . This type allows any

number of identifier s to be defined to the one modifier .

The format is simply,

modifier alias identifier

reference

where the reference is a previously defined

identifier (ie object or material primitive). The alias type is basically

used to copy a primitives definition to a new name.

The number (n) and type of string and real arguments (ie words or

numbers separated by spaces following the initial n) depends upon

the primitives type . The string arguments are usually file names and

transformation information. The integer arguments are not currently

used by the RADIANCE program and as such is always Ø. The real

arguments are always numbers.

There are a few simple rules that must be followed in the description of

a scene.

An object primitive must have at least one material primitive. (ie an

object must be made from a material).

A modifier must be defined before it can be used.

Only the most recent definition of a modifier will be used. (ie if the

same name (identifier) has been used to label two different primitives

only the second definition will apply to any following primitives. Thus it

is possible to redefine an identifier once it has been used).

A comment line must begin with a hash sign # and end with a return.

Any line that begins with an exclamation mark ! will be treated as a

command and executed. The executed program's output will then be

taken as input into the RADIANCE program.

4

2.0 Scene description Input requirements.

Scene description (3D geometry and material properties) is passed to the

RADIANCE program in the form of any number of text files. These files

specify the size, position, shape and material type. These files can be

created by hand or produced by another program (a CAD package and

converter etc).

2.1. General file specification.

All scene description files have the same format, that is a combination

of individual primitives or building blocks. For example a material

primitive may be defined (say, as a red material), then an object

primitive may be defined (say, as a polygon) that uses the previously

defined material (ie producing a red polygon primitive).

All scene primitives have the following format:

An optional comment

modifier type identifier

n A number (n) of string arguments.

Ø A number (Ø) of integer arguments (not used at present)

n A number (n) of real (decimal) arguments

The modifier must be either the word void or a name (ie. an

identifier) of a previously defined primitive. The word void is used

when the primitive does not need to be modified by any other primitive.

The type must be one of RADIANCE's primitive types. They can be

either material types (eg plastic, glass, metal etc), object types (eg

polygons, spheres, cones etc) or one of the special types (eg pattern,

material or mixture).

The identifier is simply a unique name with which to label the

primitive. This name can then be used as a modifier in the

subsequent definition of any primitive.

3

1.0 Introduction to the LBL's RADIANCE Package.

RADIANCE is a computer software package developed by the Lighting

Systems Research group at Lawrence Berkeley Laboratory under the

direction of Greg Ward. It is a research tool for accurately calculating and

predicting the visible radiation in a space. The program uses three

dimensional (3D) geometric models as input, to generate spectral radiance

values in the form of photo realistic images. The package though is more

than just a photo-realistic renderer.

By using accurate input into the program, such as manufacturers photometric

data for specific lighting fixtures, designers are able to confidently evaluate

their designs without the risk of being led astray by visually appealing yet

totally inaccurate images. The RADIANCE software package is of most use

when dealing with innovative, experimental lighting designs. The program

can account for both specular and diffuse interreflections thus allowing both

the designer and client a genuine view of a finished space.

There are three steps to producing such an image.

1) The first involves creating or converting a three dimensional

description of a physical environment or scene (ie an office interior; rooms,

furniture lights etc) into simple geometric elements that can be interpreted by

the RADIANCE package. Such elements include polygons, spheres,

cylinders and cones.

2) These must then be assigned a specific material or property, for

example metal, glass, wood, marble etc. This second step also includes the

setting up of specific light sources, their strength, type and distribution if

necessary.

3) The final step is to render the scene to produce an image. This image

may then be "cleaned", "analysed", and "filtered" in a variety of ways

depending on the required application. This process is of course an iterative

one. The designer can easily go back and change the geometry or material

specifications until the required design has been reached.

2

2.5.1. Texfunc.. 37

2.5.2. Texdata ... 39

2.6. Miscellaneous primitive types. .. 42

2.6.1. Antimatter .. 42

2.6.2. Prism1 and Prism2 .. 42

2.6.3. Mixfunc .. 43

2.6.4. Mixdata.. 43

2.6.5. Mixtext ... 44

3. RADIANCE Light Specifications ... 45

3.1. Calculating radiance values.. 45

3.2. Using IES distribution data ... 47

3.2.1. Customisation of IES files ... 49

3.3. Daylighting .. 51

4. Image Rendering .. 53

4.1. Oconv.. 53

4.2. Rview .. 53

4.3. Rpict.. 56

4.4. Pfilt.. 58

5. References ... 60

Appendix A - Location of files and listing of programs ... 61

1

2.3.2. Lights... 18

2.3.2.1. Light ... 18

2.3.2.2. Spotlight... 19

2.3.2.3. Illum ... 20

2.3.2.4. Glow... 21

2.3.3. Dielectric materials.. 22

2.3.3.1. Dielectric.. 22

2.3.3.2. Interface... 23

2.3.3.3. Glass.. 24

2.3.4. BRDF materials ... 25

2.4. Pattern modifiers... 25

2.4.1. Material Transformations... 25

2.4.2. Procedural Patterns... 26

2.4.2.1. Colorfunc ... 26

2.4.2.2. Brightfunc... 28

2.4.3. Data mapping patterns. ... 30

2.4.3.1. Colordata ... 30

2.4.3.2. Brightdata .. 31

2.4.3.3. Colorpict... 31

2.4.4. Text Patterns ... 33

2.4.4.1. Colortext .. 33

2.4.4.2. Brighttext.. 36

2.5. Texture Modifiers. ... 37

0

Contents

Preface ... i

Contents ... 1

1.0 Introduction to the LBL's RADIANCE Package. ... 4

2.0 Scene description Input requirements. ... 5

2.1. General file specification. ... 5

2.2. 3D Geometry... 8

2.2.1. Polygon ... 9

2.2.2. Sphere... 10

2.2.3. Bubble ... 10

2.2.4. Cone.. 10

2.2.5. Cup.. 11

2.2.6. Cylinder ... 11

2.2.7. Tube .. 11

2.2.8. Ring. .. 12

2.2.9. Source. .. 12

2.2.1Ø. Instance. ... 13

2.3. Material Assignments.. 13

2.3.1. Normal materials ... 14

2.3.1.1. Plastic .. 14

2.3.1.2. Metal .. 15

2.3.1.3. Trans.. 16

2.3.1.4. Mirror ... 17

Preface

This users manual is intended to provide a concise condensed version of the

documentation that is available with the RADIANCE program. It contains

information gathered from the RADIANCE Users Manual (Draft), the

RADIANCE reference manual, the RADIANCE UNIX manual pages,

correspondence with the author, (Greg Ward at LBL) and much personal

experience.

Architectural Dissertation 599 November 1992

INTEGRATED LIGHTING SYSTEM

 DESIGN AND VISUALISATION.

The simulation and presentation of lighting effects.

Volume Two

RADIANCE USERS MANUAL

Simon Michael Dalrymple Crone.

Tutor Neville D'Cruz

Co Tutor Terry McMinn

Integrated Lighting System
Design And Visualisation.

"The simulation and presentation of lighting effects."

RADIANCE USERS MANUAL

VOLUME TWO

SIMON CRONE

ARCHITECTURAL DISSERTATION

NOVEMBER 1992

