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Abstract. This paper presents techniques to pinpoint differences between 
business processes. We say that two processes are different if they are not 
(completed trace) equivalent. We developed techniques to point out where two 
processes are different and to explain why they are different. This in contrast to 
techniques that provide simple true/false answers about whether two processes 
are equivalent or not. We developed the techniques by first formalizing 
frequently occurring differences that we discovered in practice and 
subsequently developing the algorithms that detect these differences. The 
techniques can be used for various purposes, such as detecting differences 
between processes in a merger between organizations. 
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1 Introduction 

In many practical cases it is necessary to check whether or not two processes are 
equivalent. For example, to determine if two organizations van merge their processes 
without changing them. Also, to determine if an organisation’s processes adhere to a 
standard process [13]. Or, to determine whether a service of an organization is 
correctly implemented by its internal processes [3]. 

There exist many techniques to determine whether or not two processes are 
equivalent. A detailed survey is done by van Glabbeek [18]. However, these 
techniques provide limited feedback when processes are not equivalent, while in most 
practical cases this feedback is more important than the equivalent/not-equivalent 
statement. For example, it is unlikely that the processes of two organizations that 
engage in a merger are equivalent. Therefore, feedback is needed to analyse and 
resolve the differences. (Of course equivalence checking techniques can be adapted to 
provide useful feedback, which is exactly what we will do in this paper.) 

There are two reasons for the fact that equivalence checking techniques provide 
limited feedback. Firstly, equivalence checking techniques are defined on the 
execution traces or the state-space of processes, while business processes are defined 
in terms of activities and relations between those activities. Hence, it is hard to 
pinpoint exactly where those processes are different in terms of the activities and 
relations. Secondly, when an equivalence checking technique determines that two 
processes are different, it provides little information as to why this may be. If it 
provides any diagnostic information at all (many state-based techniques return a 
simple true/false answer), it again returns an answer in terms of states or traces. 
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However, it is hard to translate this information into feedback that can be used to 
correct the difference. 

For example, consider the simple case in which two processes are different, 
because an activity exists in one process but not in the other. A trace-based technique 
would then return a set of traces that can be performed in one process but not in the 
other. However, a single notification that the activity does not exist could have been 
returned. Also, it is not possible to distinguish the reason why the processes are 
different. For example, if the trace [a b] can be performed in one process, but not in 
the other, it is not possible to say whether that is, because in the other process b does 
not exist, or because a and b are swapped, or because [a b] must be followed by c, or 
for some entirely different reason. A state-based technique would return equivalent 
states from which the processes start deviating. However, if the processes contain any 
more differences, these differences will not be returned. First one difference must be 
resolved, and then the algorithm can be run again to check for more differences. Also, 
as with trace-based techniques, there will be no distinction between this difference 
and various other differences. 

To overcome these difficulties, we developed feedback techniques that present 
differences between business processes in such a way that each difference: 
1. can be precisely pointed out in the business processes; and 
2. provides diagnostic information that can be used to resolve the difference. 

To meet these requirements, we made a classification of differences between 
business processes that we obtained from practice. The business processes originated 
from different departments with similar business functions, such as departments that 
serve different geographical areas and are geographically separated. We obtained 17 
classes of differences [11]. This paper formally defines each class and presents 
algorithms that can point them out the differences in each class. 

Using such a classification helps meet the requirements, because the differences 
are defined in terms of activities and relations, the same terms in which business 
processes are defined. Therefore, they can be precisely pointed out in processes. Also, 
because each difference can be classified into one of 17 different classes, it provides 
more diagnostic feedback to the user about why two processes are different. For 
example, because an activity does not exist in one process, because there is a loop in 
one process but not in the other, because there is a relation between two activities in 
one process but not in the other, etc. 

This paper focuses on differences between business processes with respect to 
activities and their relations. Also, this paper uses a completed trace semantics and 
can only detect differences that can be distinguished by such a semantics. It is known 
that more distinguishing semantics exist [18]. 

The remainder of this paper is structured as follows. Section 2 introduces the 
business process formalism that we use and shows how similarities between business 
processes can be discovered and specified. Section 3 defines the notion of completed 
trace semantics, necessary to understand the formalization of process differences. 
Section 4 formally defines the process differences and the algorithms that can detect 
them. This constitutes the core contribution of this paper. Section 5 presents a case-
study in which we applied our techniques. Section 6 discusses the relation between 
the differences from section 4 and existing equivalence checking techniques. Section 
7 presents related work. Section 8 presents conclusions and future work. 
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2 Business Processes and Similarities between them 

Business processes can be represented in many different notations. However, we want 
to define our difference detection techniques in a notation-independent manner, to 
allow for situations in which we want to detect differences between business 
processes that are defined in different notations (which includes many practical 
situations). Therefore, this section defines an abstraction of business processes. 
Different notations can be mapped onto this abstraction, to make the detection 
techniques work for that notation. 

First, this section defines the abstract business process notation. Second it presents 
the notation that is in the remainder of this paper and that is mapped to the abstract 
business process notation. Third, it explains how similarities between business 
processes can be expressed. The definition of similarities between business processes 
is necessary before differences can be detected. Fourth, it shows an example of two 
business processes and their similarities. This example will be used as a running 
example throughout this paper. 

2.1 Abstract Business Process Notation 

The abstract business process notation used in this paper corresponds to the class of 
(terminating) standard workflow models [20], claimed to be the ‘natural’ 
interpretation of business processes for use in workflow engines. A wide range of 
tools and techniques exists for this class of business processes. 

A business process in the abstract business process notation is defined as follows. 
 

Definition 1 (abstract business process). An abstract business process is defined by 
a tuple (Σ, C, R), where: 
• Σ is the set of activity nodes in the process; 
• C is a set of control nodes in the process; and 
• R ⊆ (Σ ∪ C) × (Σ ∪ C) is a relation between activities and control nodes. 
 
Note that we do not commit to a specific set of control nodes. We only assume that 
the control nodes that are used have a precise semantics (see below). Also note that 
we do not consider a hierarchy of processes and sub-processes. If such a hierarchy 
must be analysed, the processes in that hierarchy must be ‘flattened’ into a single 
process (which is what we did for a hierarchy of processes in the Business Process 
Modelling Notation [26]). 

 
Definition 2 (input). The input of an activity a∈Σ in a process P (denoted inP(a)) is 
the set consisting of a and the activities that directly precede a. An activity b directly 
precedes a iff (a, b) ∈ R or there exist c1, …, cn ∈ C, such that (a, c1), (c1, c2), …, (cn-

1, cn) ∈ R. 
 

Definition 3 (abstract business process semantics). The semantics of an abstract 
business process is defined by a tuple (S, Στ, →, s0, Sf)  where: 
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• S is the finite set of states that the process can be in; 
• Στ is the set of activities in the process, and a distinguished element τ ∈ Σ 

denoting an activity with no visible effect (i.e. a “silent activity”); 
• → ⊆ S × Στ × S is the transition relation of the process and the transition (s, a, s’) 

∈ → denotes that whenever the process is in a state s, the occurrence of some 
action a allows the process to transition into a state s’ (we assume that all 
activities a ≠ τ are used in the process); 

• s0 ∈ S is the single initial state of the process; and 
• Sf ⊆ S is the set of final states of the process. 
 
Notation. We write s1 →

a s2 to denote that (s1, a, s2) ∈ →. Σ* is the set of traces (i.e. 
lists) over an alphabet Σ. We write s →a to denote that there exists a state s’ such that 
(s, a, s’) ∈ →. There is a path of silent transitions from s to s’ (denoted s ⇒ s’) iff s = 
s’ or there exists an s1 such that s →τ s1 ⇒ s’. We write s ⇒ a s’ iff there exist an s1 
and s2 such that s ⇒ s1 →

a s2 ⇒ s’. For a trace σ = a1 a2 a3…an, there is a path from s 
to s’ (denoted s ⇒σ s’) iff there exist s1, s2, … such that s ⇒a1 s1 ⇒

a2 s2 ⇒
a3 … ⇒an 

s’. 
 
We assume that the business process is sound (derived from the soundness criteria for 
workflow nets [5] and corresponding to the notion of terminating standard workflow 
models [20]), meaning that processes eventually always complete in a final state. 
More precisely: 
• the initial state is a ‘source state’ (it only has outgoing transitions):  

¬∃ s’ ∈ S, a ∈ Σ : (s’, a, s0) ∈ →; 
• all final states are ‘sink states’ (they only have incoming transitions): 

∀sf ∈ Sf: ¬∃s’ ∈ S, a ∈ Σ : (sf, a, s’) ∈ →; 
• all states are reachable from the initial state:  

∀s ∈ S: ∃σ ∈ Σ*: s0 ⇒
σ s; and 

• from all states the process can complete in a final state:  
∀s ∈ S: ∃σ ∈ Σ*, sf ∈ Sf: s ⇒σ sf. 

In this way the notion of abstract business process model is closely related to that of 
workflow net and terminating workflow net, with the exception that it assumes a 
finite state-space. However, most processes in practice have a finite state-space. 

2.2 Business Processes in the Business Process Modelling Notation 

Although our techniques can be used for several concrete process modelling 
notations, we will use the Business Process Modelling Notation (BPMN) [26] in the 
remainder of this paper. 

Figure 1 shows the elements of the BPMN notation that we use for this paper. 
There is a single activity node (in terms of the definition of process above) called 
task, which represents an activity in the process. The relation between activities and 
control nodes is represented by a flow relation. A flow from one node to another 
represents that when the flow is enabled, it enables the node that it points to. Upon 
completion a task enables the flows that leave it. We use the following control nodes. 
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• Start event. Represents the start of a process. Flows leaving the start event are 
enabled at the start of the process. No flows can point to it. 

• End event. Represents the end of a process. No flows can leave from it. 
• Decision gateway. Represents a choice in the process. After it is enabled, it can 

enable exactly one flow that leaves from it. 
• Merge gateway. Represents a merge between several alternatives. It is enabled if 

one of the flows that point to it is enabled. After it is enabled, it can enable the 
flow that leaves it. 

• Fork gateway. Represents the start of parallel paths in a process. After it is 
enabled, it enables all flows that leave from it. 

• Join gateway. Represents the end of parallel paths in a process. It is enabled if all 
flows that point to it are enabled. After it is enabled it can enable the flow that 
leaves from it. 

task

Activity node

Control nodes

start event end event decision gateway

Flow relation
flow

merge gateway

fork gateway join gateway  

Figure 1. BPMN Notation 

In separate work we have defined a semantics of BPMN [12] as well as a tool chain 
that allows checking whether or not a given BPMN process model is sound and safe. 
In this paper, we will not discuss the formal semantics of the notation used, but 
instead we will rely on the reader’s intuitive understanding of the semantics of BPMN 
and refer to our previous work for the technical details of the BPMN semantics. 

2.3 Business Process Similarities and Activity Relations 

To analyse the differences between business processes, their similarities must first be 
defined. After all, without an indication as to where the processes correspond, it is 
impossible to precisely indicate where they are different. 

Logical points for indicating similarities between processes are the activities in 
those processes, because activities are clearly identifiable building blocks, which must 
be similar for the processes that contain them to be similar. Therefore, we use 
relations between activities to indicate similarities between processes. However, it is 
unlikely that activities between processes are equivalent in a 1-to-1 manner and that 
the names of equivalent activities are identical, such that determining equivalence is 
simply a matter of comparing names. Instead, the process analyst will have to define 
how activities are related. To aid him in this task, this section presents some 
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frequently occurring relations between activities, which we discovered in practice 
[11]. 

 
Equivalent activities. Two activities are equivalent for the purpose of the analysis if: 
1. the effect that they have on the environment is the same (e.g. the same information 

is recorded in a database or the same people are informed of a decision); and 
2. the way in which they achieve this effect is the same (e.g. the same database is 

used to record the information and the same means of communication is used to 
inform people of a decision). 

If these two criteria are met we say that the activities represent the same unit of work. 
The requirement that these activities or roles are equivalent for the purpose of the 

analysis is important, because depending on the purpose of the analysis different 
decisions can be made on equivalence. Moreover, depending on the purpose of the 
analysis, the second requirement for equivalence may be dropped. 

For example, if the purpose of the analysis is to develop a common information 
system, then the activity of entering personal information of a client in information 
system ‘A’ can be considered equivalent to entering this information in information 
system ‘B’, because once the common information system is in place, this activity 
will be exactly the same. However, if the purpose of the analysis is to merge 
departments, but not information systems, then the activities are different, because 
they will be different in the merged process; an employee trained on one system 
cannot use the other without the proper training and data stored in one system will not 
be available in the other. 

Note that the relation can be between any number of activities from the two 
processes. In particular two activities a1 and a2 from one process can be defined to be 
equivalent to one activity b from another process. In that case the occurrence of either 
a1 or a2 corresponds to the occurrence of b.  

Figure 2.i shows an example of equivalent activities. 
 

Subsumed activity. An activity in one process subsumes an activity in another 
process if it represents the same unit of work as the other activity, but includes 
another unit of work as well. Figure 2.ii shows an example. 

 
Partly corresponding activities. An activity in one process partly corresponds to an 
activity in another process, if these activities partly represent equivalent units of work, 
but both also represent other units of work. Figure 2.iii shows an example. 

 
Interchanged activities. Two activities are interchanged for the purpose of the 
analysis if: 
1. the effect that they have on the environment is the same (equivalence criterion 1 

above); but 
2. the way in which they achieve this effect is not the same (equivalence criterion 2 

above). 
The distinction between equivalent and interchanged activities is only relevant if both 
the equivalence criteria explained for the purpose of the analysis, because if only 
equivalence criterion (1) is used, interchanged activities are equivalent by definition. 
Figure 2.iv shows an example of interchanged activities. 
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Check credit history, 

documents and loans

Do all checks

i. Equivalent activities

Check credit history 

and documents

Check documents 

and loans

ii. Subsumed activity

iii. Partly corresponding activities

Check

credit history

Phone credit 

office

iv. Interchanged activities

Do all checks

Check credit history 

and documents

Do all checks Check loans
Check

credit history

Check

documents

Check

credit history

Check documents 

and loans
Check loans

v. Refined activity

vi. Corresponding activity sets

Check credit history 

and documents

 

Figure 2. Examples of Activity Relations 

Refined activity. A set of activities in one process refines a single activity in the 
other process, if: 
1. it corresponds to that activity according to one of the relations above (it is 

equivalent, subsumes, is subsumed by or partly corresponds to that activity); 
2. there is no relation between an activity in the set of activities and another activity 

in the other process; and 
3. the set of activities cannot be changed such that there is a closer correspondence. 
Where we consider: 
• equivalence to be a closer correspondence than subsumption; 
• subsumption to be a closer correspondence than partial correspondence; 
• a set of activities that represents more of the unit of work of the single activity to 

be a closer correspondence than a set that represents less; and 
• a set of activities that represents less of a unit of work that is not represented by 

the single activity to be a closer correspondence than a set that represents more. 
Or, put simply, the set of activities should represent as much as possible of what the 
single activity represents and as little as possible of what the single activity does not 
represent. 

We say that the set of activities refines the single activity, because it corresponds to 
the same unit of work, but describes that unit of work at a higher level of granularity. 

Figure 2.v shows an example of refined activities. 
 

Corresponding sets of activities. A set of activities in one process corresponds to a 
set of activities in another process, if: 
1. it corresponds to that set of activities according to one of the relations above (it is 

equivalent, subsumes, is subsumed by or partly corresponds to that set of 
activities); 
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2. there is no relation between an activity from either set and an activity that is not in 
the other set;  

3. it is not possible to split up the sets into multiple corresponding sets, refinements or 
singular activities; and 

4. the sets of activities cannot be changed such that there is a closer correspondence. 
Where we consider: 
• two sets of activities that represents more of the same unit of work to be a closer 

correspondence than two sets that represents less; and 
• a set of activities that represents less of a unit of work that is not represented by 

the other to be a closer correspondence to the other than a set that represents 
more. 

Figure 2.vi shows an example of corresponding sets of activities. 
 

Definition 4 (activity relation). An activity relation can be described by a tuple (r, 
type), where: 
• r ∈ ℘(Σ) × ℘(Σ) describes the relation between sets of activities (or single 

activities in case a set consists of only one activity); and 
• type ∈ {equivalent, partly, subsumes, interchanged} describes what type of 

relation exists between the sets of activities: an equivalence relation, a partial 
equivalence relation, a subsumes relation or an interchanged relation. 

We say that sets of activities that are related by r are similar, because we will treat 
them as equivalent for the purpose of further comparison of the processes. 
 
Now that we established the similarity between the processes through the relation, we 
can compute the differences between the behaviours that they represent. For the 
purpose of computing differences between the behaviours we compare the order of 
occurrences of related (sets of) activities. However, because of the way in which 
behavioural equivalence is defined, we can only compare the occurrence of single 
activities, not of sets of activities. Therefore, we require the process analyst to define 
the completion occurrence relation. 
 
Definition 5 (completion occurrence relation). The completion occurrence relation 
~ ⊆ Σ × Σ relates activities such that: (a, b) ∈ ~ represents that the completion of a is 
equivalent to the completion of b and if a or b is in a set, its occurrence also marks the 
completion of that set. ~ is an equivalence relation and therefore reflexive, symmetric 
and transitive. 
 
To make life easier for the process analyst, we can add (a, b) ∈ ~ if ({a}, {b}) ∈ r, 
because if two singular activities are defined to be similar, clearly their completion 
should coincide. It is possible to add the completion occurrence relations for some 
sets of activities too. For example: in case the set contains a sequence of activities, the 
completion of the last activity in the sequence corresponds to the completion of the 
set (Figure 3.i); and in case the set contains an exclusive choice between two or more 
activities (possibly preceded by a sequence), the completion of either one of the 
activities in the choice corresponds to the completion of the set (Figure 3.ii).  

There are also sets of activities for which it is impossible to specify the completion 
occurrence relation. These are the sets of activities in which multiple occurrences of 
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the same or different activity represent the completion of the set (because the 
completion occurrence relation is defined on any occurrence of a single activity). For 
example: in case the set contains a fork between two activities, only the completion of 
both activities corresponds to the completion of the set (Figure 3.iii); in case the set 
ends with a loop (Figure 3.iv), it is unclear if the occurrence of the last activity 
corresponds to the completion of the set or another iteration of the loop will be 
performed. If a process contains such constructs, it is possible to perform a pre-
processing step to remove these constructs. In the pre-processing step, stub-activities 
should be added after the problematic constructs, such that the stub-activities 
correspond to the completion of multiple other activities. Figure 3.v and Figure 3.vi 
show how these stub-activities can help solve the problems for the constructs from 
Figure 3.iii and Figure 3.iv, respectively. 

We leave a precise analysis of the completion of a set of activities and the extent to 
which the completion occurrence relation for a set can be (automatically) derived, for 
future work. 

A B C A

Completion of stub 

implies completion of 

{A,B,C}

Completion of stub 

implies completion of 

{A,B}

Completion of B or C 

does not imply 

completion of {A,B,C}

Completion of B or C 

implies completion of 

{A,B,C}

Completion of C 

implies completion of 

{A,B,C}

Completion of B does 

not imply completion 

of {A,B}

B

C

A

B

C

A B

A

B

C

A Bstub stub

i. Completion of sequence ii. Completion of decision

iii. Completion of fork iv. Completion of loop

v. Completion of fork with stub activity vi. Completion of loop with stub activity  

Figure 3. Examples of Activity Sets and their Completion 

Although the completion occurrence relation is an equivalence relation, in practice 
a process analyst may define a relation that is not reflexive, symmetric or transitive. 
Typically, we expect a process analyst to only define the relationships between 
activities from different processes and not between activities from the same process. 
However, we rely on the relation to be reflexive, symmetric and transitive in the 
remainder of this paper. Therefore, if the process analyst defines ~ such that it is not 
reflexive, symmetric or transitive, we compute the reflexive, symmetric and transitive 
closure to turn it into an equivalence relation. 
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2.4 Running Example: Business Processes and their Similarities 

Figure 4 shows the running example that we use in the remainder of this paper. The 
figure shows two business processes for mortgage processing. For the purpose of the 
example, we used identical names for equivalent activities. 

Plan 

appointment

Check 

complete

Add client

Produce 

offer

Check 

credit

Decide 

mandate

Make 

changes

Check 

changes

Print

Fiat

Check 

complete

Enter client and 

offer

Check 

credit

Decide 

mandate

Make 

changes

Check 

loans

Check 

changes
Print

Fiat
Notify 

sales

 

Figure 4. Running Example 

In the example equivalent names represent equivalent activities, ‘Enter client and 
offer’ refines ‘Add client’ and ‘Produce offer’. ‘Notify sales’ is interchanged with 
‘Plan appointment’. So the relations between activities in the processes are defined as: 

{ (({‘Check complete’},{‘Check complete’}), equivalent), 
 (({‘Plan appointment’},{‘Notify sales’}), interchanged), 
 (({‘Enter client and offer’},{‘Add client’, ‘Produce offer’}), equivalent), 
 (({‘Check credit’},{‘Check credit’}), equivalent), 
 (({‘Decide mandate’},{‘Decide mandate’}), equivalent), 
 (({‘Make changes’},{‘Make changes’}), equivalent), 
 (({‘Fiat’},{‘Fiat’}), equivalent), 
 (({‘Check changes’},{‘Check changes’}), equivalent), 
 (({‘Print’},{‘Print’}), equivalent)} 
We assume that each pair of equivalent or interchanged activities has a completion 

occurrence relation. We also assume ‘Enter client and offer’ has a completion 
occurrence relation with ‘Produce offer’. So the equivalence relation (~) is defined as: 

{ ({‘Check complete’},{‘Check complete’}),  
 ({‘Plan appointment’},{‘Notify sales’}), 
 ({‘Enter client and offer’},{‘Produce offer’}), 
 ({‘Check credit’},{‘Check credit’}),  
 ({‘Decide mandate’},{‘Decide mandate’}),  
 ({‘Make changes’},{‘Make changes’}), 
 ({‘Fiat’},{‘Fiat’}), 
 ({‘Check changes’},{‘Check changes’}), 
 ({‘Print’},{‘Print’})} 
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3 Completed Trace Equivalence 

The relations between activities from two business processes provide the basis for 
checking the differences between the organizational behaviour that is represented by 
the processes. We refer to behavioural differences as procedural differences. In this 
paper we define procedural differences in terms of (in)equivalences between the 
completed trace-based semantics of processes. We define the notion of completed 
trace-based semantics and equivalence below. 
 

Definition 6 (completed trace semantics). Given a process P = (S, Στ, →, s0, Sf), the 
completed trace semantics of P, written Tr(P), is defined as follows: Tr(P) = {σ ∈ Σ* | 
s0 ⇒

σ sf, sf ∈ Sf}. We denote the trace with length 0 (the empty trace) as ε. In the 
remainder of this paper we will assume completed trace semantics and use the terms 
trace semantics and completed trace semantics interchangeably. 
 
Definition 7 (completed trace equivalence). Two processes, P and Q, are defined to 
be completed trace-equivalent if they have equivalent sets of traces: Tr(P) = Tr(Q). In 
the remainder of this paper we will use completed trace equivalence and use the terms 
trace equivalence and completed trace equivalence interchangeably. 
 
In this paper we must consider the defined similarities between activities of P and Q. 
This means that two activities from P and Q, respectively, are similar if they are 
defined to be similar by the process analyst. However, the traditional notion of trace 
equivalence considers activities to be similar if they are ‘the same’. Therefore, we 
must define a notion of trace equivalence that considers similarities as they are 
defined by the process analyst. 

 
Definition 8 (activity equivalence). Given two processes P and Q, a relation ~ ⊆ ΣP 
× ΣQ, is an activity equivalence iff ~ is reflexive, symmetric and transitive. 
 

Given an activity equivalence relation ~ ⊆ ΣP × ΣQ between processes P and Q and an 
activity a ∈ ΣP ∪ ΣQ, the set of equivalent activities of a is represented by [a]~ (also 
known as the equivalence class of a for equivalence relation ~). 
 

Definition 9 (trace semantics modulo activity equivalence). Given an activity 
equivalence relation ~ between processes P and Q, the set of traces of P modulo ~, 
written [Tr(P)]~, is the set of traces obtained by replacing in every trace of Tr(P), 
every occurrence of an action a by its equivalence class [a]~. [Tr(Q)]~ is defined 
similarly.  

 
Definition 10. (trace equivalence modulo activity equivalence) Given an activity 
equivalence relation ~ between processes P and Q, P and Q are trace-equivalent, 
written P =~ Q, iff  [Tr(P)]~ = [Tr(Q)]~ 
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The procedural differences defined below focus on the context of single activities 
(and their equivalent activities). Therefore, we define an operator to restrict the set of 
traces to the part of those traces that is defined on a particular set of activities. 

 
Definition 11 (trace restriction). For a set of activities as, a trace σ and a set of 
traces Trs: 

• σ / as is the trace restriction of σ to as, obtained by removing from σ any 
activities that are not in as. 

• Trs / as = {σ / as | σ ∈ Trs} is trace set restriction. 

4 Procedural Differences between Business Processes 

This section first precisely defines frequently occurring behavioural differences 
between business processes (which we call procedural differences), which we 
discovered in practice [11]. Second, it presents techniques for detecting them in a 
certain sub-class of business processes. Third, it presents and proves relations 
between the procedural differences, which helps to return only the most 
distinguishing difference if multiple differences exist with respect to the same 
activity. Fourth it applies the techniques to the running example from Figure 4. 

4.1 Precise Definitions of Procedural Differences 

Definition 12 (skipped activity). A skipped activity is an activity for which there is 
no similar activity in the other process. More precisely, an activity from a process P is 
a skipped activity in the relation r between process P and Q, if it does not appear in 
any of the sets in the domain or co-domain of r. 
 
The running example (Figure 4) contains one skipped activities: ‘Check loans’. 
 
Different input dependencies. If two similar activities can be enabled by different 
sets of activities, we say that they have different input dependencies. It is possible 
(but unlikely) that the different input dependencies are irrelevant. However, they are a 
strong indication that one or more of the following differences exist: 
1. there is a procedural difference with respect to the activities, because the different 

sets of input dependencies allow the activities to be performed at different times 
in the execution of the processes; 

2. the information that is used for performing the activities is different, because the 
different sets of input dependencies provide different information; 

3. the actors that (are authorized to) perform these activities depend on the work 
done by different sets of actors. 
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Definition 13 (different input dependencies). An activity a in process P has 
different input dependencies than its equivalent in process Q, if there exist input 
activities that directly precedes it in some trace of process P, but in no trace of process 
Q, or if there exist input activities that directly precede it in some trace of process Q, 
but in no trace of process P. 

• [inP(a)]~ is the set of input activities of a in P, a itself, and all equivalents of these 
activities. 

• The input dependencies of an activity a in a process P is the set of activities xs, 
such that x ∈ xs iff there exists a trace σ ∈ [Tr(P)]~ / [inP(a)]~ such that σ = σ’ x 
[a]~ σ” (for some σ’, σ”). (Note that x is an equivalence class.) 

• let xs be the set of all input dependencies of a in P and ys be the set of all input 
dependencies of a in Q. 

• a in P and its equivalent in Q have different input dependencies iff xs ≠ ys. 

Figure 5.i illustrates the concept of different input dependencies. In this figure we 
assume that B1 and B2, and C1 and C2 have equivalent occurrence. The figure shows 
how we can compute the difference in dependencies for the equivalent activities C1 
and C2. 
 
Additional input dependencies. A special case of different input dependencies is the 
case in which one activity has additional input dependencies with respect to the other. 
Like with the different input dependencies this difference may indicate an 
uninteresting difference, but it can also indicate the more serious underlying 
differences indicated by the different input dependencies. In addition to that, 
additional input dependencies can indicate that additional information is used to 
perform an activity. 
 
Definition 14 (additional input dependencies). An activity a in process P has 
additional input dependencies than its equivalent in process Q, if there exists some 
input activity b that directly precedes it in some trace of process P, but in no trace of 
process Q. 

• for xs and ys defined as in definition 13. 

• a in P has additional dependencies with respect to its equivalent in Q iff  
xs ⊃ ys. 

• similarly, a in P has fewer dependencies with respect to its equivalent in Q iff 
xs ⊂ ys. 

Figure 5.ii illustrates the concept of additional input dependencies. In this figure we 
assume that B1 and B2, and C1 and C2 have equivalent occurrence. The figure shows 
how we can compute the additional input dependencies of C1 with respect to C2. 
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A

B1

Tr(P) = {A C1, B1 C1}

inP(C1) = {A, B1, C1}

[Tr(P)]~ = {{A}{C1,C2}, {B1, B2}{C1,C2}}

[Tr(P)]~ / [inP(C1)]~ = {{A}{C1,C2}, {B1, B2}{C1,C2}}

xs = {{A}, {B1, B2}}

P = 

Tr(Q) = {D C2, B2 C2}

inQ(C2) = {D, B2, C2}

[Tr(Q)]~ = {{D}{C1,C2}, {B1, B2}{C1,C2}}

[Tr(Q)]~ / [inQ(C2)]~ = {{D}{C1,C2}, {B1, B2}{C1,C2}}

ys = {{D}, {B1, B2}}

i. Different dependencies

Tr(P) = {A C1, B1 C1}

inP(C1) = {A, B1, C1}

[Tr(P)]~ = {{A}{C1,C2}, {B1, B2}{C1,C2}}

[Tr(P)]~ / [inP(C1)]~ = {{A}{C1,C2}, {B1, B2}{C1,C2}}

xs = {{A}, {B1, B2}}

Tr(Q) = {B2 C2}

inQ(C2) = {B2, C2}

[Tr(Q)]~ = {{B1, B2}{C1,C2}}

[Tr(Q)]~ / [inQ(C2)]~ = {{B1, B2}{C1,C2}}

ys = {{B1, B2}}

ii. Additional dependencies

C1

D

B2

Q = C2

A

B1

P = C1 B2Q = C2

 

Figure 5. Input Dependencies 

Different input conditions. If two related activities have different input conditions 
there is a procedural difference with respect to those activities, meaning that the states 
in which they can occur differ. 
 
Definition 15 (different input conditions). An activity a has different input 
conditions in P than its equivalent in Q, if the set of traces, restricted to inP(a), in P is 
different from the set of traces, restricted to inQ(a), in Q. (See definition 11 for 
restriction.) We distinguish between positive input conditions, which are traces in 
which a occurs, and negative input conditions, which are traces in which a does not 
occur. 

• If vs = [Tr(P)]~ / [inP(a)]~ is the input condition of a in P and ws = [Tr(Q)]~ / 
[inQ(a)]~ is the input condition of a in Q. 

• elements of vs and ws in which [a]~ appears are positive input conditions of a in 
P and Q, respectively, elements in which [a]~ does not appear are negative input 
conditions. 

• a has different input conditions in P than its equivalent in Q iff vs ≠ ws. 

Figure 6.i illustrates the concept of different input conditions. In this figure we 
assume that A1 and A2, B1 and B2, and C1 and C2 have equivalent occurrence. The 
figure shows how we can compute the difference for equivalent activities C1 and C2. 
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Definition 16 (additional input conditions). A special case of a difference between 
input conditions is when a has additional input conditions in one of the processes. If 
the additional input conditions are only positive input conditions, we say that the 
input condition is stricter in the other process. 

• if vs and ws are the input conditions for a in P and Q, respectively. 

• a has additional input conditions in P than its equivalent in Q iff vs ⊂ ws, 
similarly, a has additional input conditions in Q iff vs ⊃ ws. 

• if vs ⊂ ws and ws – vs only contains positive input conditions then the input 
condition for a in P is stricter, similarly, if ws ⊂ vs and vs – ws only contains 
positive input conditions then the input condition for a in Q is stricter. 

Figure 6.ii illustrates the concept of additional input conditions. In this figure we 
assume that A1, A2 and A3, B1 and B2, and C1 and C2 have equivalent occurrence. The 
figure shows how we can compute the difference for equivalent activities C1 and C2. 
 
Definition 17 (different moments). Another special case of a difference between 
input conditions is the case in which a occurs in P in no case in which its equivalent 
occurs in Q and (the equivalent of) a occurs in Q in no case in which a occurs in P. 

• if ts and us are the positive input conditions for a in P and Q, respectively. 

• a occurs at different moments in P than in Q iff 
ts ∩ us = ∅. 

Figure 6.iii illustrates the concept of different moments. In this figure we assume that 
A1 and A2, B1 and B2, and C1 and C2 have equivalent occurrence. The figure shows 
how we can compute the difference for the equivalent activities C1 and C2. 
 
Definition 18 (different start of process). The last special case of difference between 
input conditions is the case in which a can occur from the start in P, but not in Q, or 
vice versa. 

• if vs and ws are the input conditions for a in P and Q, respectively. 

• if there exists a trace σ1, such that [a]~σ1 ∈ vs, but there exists no trace σ2, such 
that [a]~σ2 ∈ ws then P has a different start for activity a. 

Figure 6.iv illustrates the concept of different start. In this figure we assume that A1 
and A2 and B1 and B2 have equivalent occurrence. The figure shows how we can 
compute the difference for the equivalent activities B1 and B2. 
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A1

B1

Tr(P) ={A1 B1 C1,  B1 A1 C1}

vs ={{A1,A2}{B1,B2}{C1,C2}, {B1,B2}{A1,A2}{C1,C2}}

P = 

Tr(Q) ={A2 C2,  B2 C2}

ws ={{A1,A2}{C1,C2}, {B1,B2}{C1,C2}}

i. Different conditions

C1

A2

B2

Q = C2

A1

B1

Tr(P) ={A1 B1 C1,  B1 A1 C1}

vs ={{A1,A2,A3}{B1,B2}{C1,C2}, 

{B1,B2}{A1,A2,A3}{C1,C2}}

P = 

Tr(Q) ={A2 B2 C2,  B2 A2 C2,  A3 C2}

ws ={ {A1,A2,A3}{B1,B2}{C1,C2}, 

{B1,B2}{A1,A2,A3}{C1,C2},

{A1,A2,A3}{B1,B2}{C1,C2}}

ii. Additional conditions

C1

A2

B2Q = C2

A3

A1 B1

[Tr(P)]~ /[inP(C1)]~ = {{B1,B2}{C1,C2}}

P = 

iii. Different moments

C1 Q = A2 C2 B2

[Tr(Q)]~ /[inQ(C2)]~ = {{A1,A2}{C1,C2}}

A1 B1

[Tr(P)]~ /[inP(B1)]~ = {{A1,A2}{B1,B2}}

P = 

iv. Different start

Q = A2 B2

[Tr(Q)]~ /[inQ(B2)]~ = {{A1,A2}{B1,B2},  {B1,B2}}

 

Figure 6. Input Conditions 

Iterative vs. once-off occurrence. We distinguish a difference between an activity 
that can occur only once in one process and its equivalent that can occur repeatedly in 
another process. 
 
Definition 19 (iterative vs. once-off occurrence). If activity a appears in a trace σ 
that brings process P from a state back into the same state, but not process Q, then a 
occurs iteratively in process P, but once-off in process Q. 

• a occurs iteratively in process P but once-off in process Q iff  
there exists a state s of P and a trace σ in which [a]~ appears such that s ⇒σ s, 
while there is no state r of Q and trace ρ in which [a]~ appears such that r ⇒ρ r. 

4.2 Detection of Procedural Differences 

Since we restrict process models to process models that have a finite set of states, our 
abstract process model corresponds to a non-deterministic finite state automaton with 
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‘empty string’ moves (also known as NFA-ε), where we consider a τ transition to 
correspond to the ‘empty string’ move. 

An NFA-ε can be used to represent a set of traces, known as its language. We will 
use the property that an abstract process model with a finite set of states is an NFA-ε 
and show how the procedural differences can be detected in an NFA-ε. What remains 
to be shown are the relations between operations on abstract process models and 
operations on traces, which we used to define the procedural differences. 

Lemma 1. If P represents the set of traces Tr(P), then P’, which can be obtained from 
P by labelling all transitions on action a as transitions on action b, represents the set 
of traces Tr(P’), which can be obtained from Tr(P) by replacing all occurrences of 
action a with occurrences of action b. 

Proof. Via the construction of the set of strings accepted by P: in a state in which P 
can take transition a leading to the acceptance of strings that have a at position p, P’ 
can take transition b leading to the acceptance of strings that have b at the same 
position. 

Lemma 2. If P represents the set of traces Tr(P), then P’, which is obtained from P 
by labelling all transitions on action a silent, represents the set of traces Tr(P’), which 
can be obtained from Tr(P) by removing all occurrences of action a. 

Proof. Via the construction of the set of strings accepted by P: in any state in which P 
can take transition a leading to the acceptance of strings that have a and transitioning 
into a state s from which it can continue processing, P’ cannot take transition a, but 
can continue processing as if it were in state s, leading to the acceptance of strings 
that do not have a but are otherwise unchanged. 

Lemma 3. The set of dependencies of a in Tr(P) is vs, where x ∈ vs iff there exists s, 
s’ ∈ SP, such that s ⇒x s’→a.  

Proof. By definition, a trace σ = σ’ x a σ” can only exist if there exists s, s’ ∈ SP, 
such that s ⇒x s’→a. Vice versa, if there exists s, s’ ∈ SP, such that s ⇒x s’→a then 
there also exists a trace σ = σ’ x a σ”, because of the soundness property: it must be 
possible for s ⇒x 

s’ and s’→a to occur (i.e. there must exist a trace σ’ such that s0 ⇒
σ’ 

s) and when they occur this must lead to a final state (i.e. there must exist a state s” 
and a final state sf a trace σ” such that s’→a

 s” ⇒σ” 
sf). 

Because of lemmas 1, 2 and 3, we can obtain the set of input dependencies of [a]~ in 
[Tr(P)]~ / [inP(a)]~, by obtaining the set of input dependencies of [a]~ in [P]~ / 
[inP(a)]~ (where [P]~ is defined as the replacement of any action b in P by the action 
[b]~). Since the set of states in P is finite, these input dependencies can be found. We 
can use the definition of input dependencies to compute differences between 
processes with respect to input dependencies. 

The following properties of NFA-ε are well-known and proven [31]: 
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• A deterministic finite state automaton (DFA) P = (S, Σ, →, s0, Sf) is an automaton 
without ‘empty string’ moves that satisfies the property that for each combination 
s ∈ S, a ∈ Σ, there exists at most one s’ ∈ S, such that s →a

 s’. 

• For an NFA-ε, P, it is possible to compute a DFA, P’, such that Tr(P’) = Tr(P). 

• For a deterministic finite state automaton (DFA) P = (S, Σ, →, s0, Sf), a DFA PC 
that represents the language Tr(PC) = Σ* - Tr(P) is PC = (S, Σ, →, s0, S - Sf). 

• For an NFA-ε P = (SP, ΣP, →P, s0P, SfP) and Q = (SQ, ΣQ, →Q, s0Q, SfQ) an 
automaton P ∪ Q that represents the language Tr(P) ∪ Tr(P) is (S, Σ, →, s0, Sf), 
such that: 
- s0 ∉ SP ∪ SQ 
- S = SP ∪ SQ ∪ {s0}  
- Σ = ΣP ∪ ΣQ 
- → = →P ∪ →Q ∪ {s0→

τ 
 s0P, s0→

τ 
 s0Q} 

- Sf = SfP ∪ SfQ 

• For a set of traces that can be represented by a regular expression, it is possible to 
construct an NFA-ε that represents that set of traces. 

We can use these properties to represent the (positive) input condition of some 
activity a in a process P, in terms of an automaton.  

Proof. The input condition of a in P is represented by the NFA-ε: [P]~ / [inP(a)]~, 
which can be constructed using lemma’s 1 and 2. We call this automaton icP(a). The 
positive input condition is defined as the subset of traces of in which a occurs. It 
corresponds to: Tr(icP(a)) ∩ Tr(OccA), where Tr(OccA) is the set of traces in which a 
occurs, which can be represented by the regular expression (ΣP – {a})*

a(ΣP)*. Since 
Tr(OccA) is regular, the NFA-ε, OccA, that represents it can be constructed. Now 
since Tr(icP(a)) ∩ Tr(OccA) = (Tr(icP(a))C ∪ Tr(OccA)C)C, it follows that the 
automaton (icP(a)C ∪ OccA

C)C, which represents this set of traces, can be constructed. 

We can use automata that represent input conditions to determine if two processes 
have different input conditions for an activity a or if one process has a more strict 
input condition for an activity a. 

If icP(a) represents the input condition of a in P and icQ(a) represents the input 
condition of a in Q, we can determine whether Tr(icP(a)) ≠ Tr(icQ(a)) as follows. 
Tr(icP(a)) ≠ Tr(icQ(a)) is equal to the statement (Tr(icP(a))C ∪ Tr(icQ(a))C)C = ∅ ∧ 
Tr(icP(a)) ≠ ∅ ∧ Tr(icQ(a)) ≠ ∅, which, using the properties of automata above, is 
equal to the statement Tr((icP(a)C ∪ icQ(a)C)C) = ∅ ∧ Tr(icP(a)) ≠ ∅ ∧ Tr(icQ(a)) ≠ 
∅. This statement can easily be checked by constructing the automata and checking 
whether they represent the empty set of traces (which is the case if, whenever there is 
a path from the initial to a final state, this path consists only of silent transitions). 
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We can determine whether Tr(icP(a)) ⊂ Tr(icQ(a)) as follows. Tr(icP(a)) ⊂ Tr(icQ(a)) 
is equal to the statement Tr((icP(a)C ∪ icQ(a))C) = ∅ ∧ Tr(icP(a)) ≠ Tr(icQ(a)). 
Tr(icP(a)) ≠ Tr(icQ(a)) can be checked using the procedure from the previous 
paragraph and Tr((icP(a)C ∪ icQ(a))C) = ∅ can be checked by constructing the 
automaton an checking whether it represents the empty set of traces. 

An iterative vs. once-off difference between processes P and Q can be detected by 
noting that P and Q are connected graphs. Finding the set of cycles (the cycle space) 
in those graphs is a well-known problem in graph theory. They can be found by 
finding a spanning tree in the graph. Each edge that is in the graph, but not in the 
spanning tree forms a fundamental cycle when combined with the tree. Together, the 
fundamental cycles form a basis for the cycle space. 

4.3 Relations between Procedural Differences 

There exist implication relations between the procedural differences, such that if one 
procedural difference exists another procedural difference will always exist (diff1 → 
diff2). It is good to know where these relations are, such that we can avoid reporting 
‘logical’ differences as much as possible. For example, if diff1 and diff1 → diff2 then 
we can avoid reporting diff2. Figure 7 summarizes the implication relations between 
the differences. 

additional 

dependencies

different 

dependencies

different 

conditions

additional 

conditions

different 

moments

different 

start

* if there is an additional conditions (there may not be), it is caused by the other difference

skipped activity
additional dependencies, different dependencies, 

additional conditions, different moments, different conditions

iterative vs. 

once-off

* *

 

Figure 7. Relations between differences 

The relations between additional dependencies and different dependencies, additional 
conditions and different conditions and between different start and different 
conditions follow directly from their respective definitions. 

If a is skipped in process P with respect to process Q, then there is no trace σ in 
[Tr(P)]~ / [inP(a)]~ such that σ = σ’ [a]~ σ” (for some σ’, σ”). Therefore the set of 
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input dependencies xs of a in P is empty. However, the set of input dependencies ys 
of a in Q is only empty if the only condition for the occurrence of a is the start 
condition (i.e. only [a]~ σ’ in [Tr(Q)]~ / [inQ(a)]~ for some σ’). Hence a skipped 
activity implies additional dependencies and different dependencies, under the 
condition that there are other conditions for the occurrence of the skipped activity 
than the start condition. Using similar reasoning a skipped activity implies different 
conditions, additional conditions and different moments. Also, if another activity 
depends on a skipped activity, then this may cause various differences. 

Because obviously skipped activities cause a plethora of other differences between 
processes, we chose not to consider them when checking for other differences. To do 
this, skipped activities are labelled silent (τ) before checking for other activities. 

An activity occurs at a different moment in P than in Q if its sets of positive 
conditions in P and Q, ts and us respectively, are disjoint: ts ∩ us = ∅. The sets of 
positive conditions are the intersection between the sets of conditions (vs in P and ws 
in Q) and the set of all possible traces in which the activity occurs: as. Hence ts = vs 
∩ as and us = ws ∩ as. Therefore, different moments (ts ∩ us = ∅) means that 

(vs ∩ as) ∩ (ws ∩ as) = ∅ 
⇒ (because of soundness we know that (vs ∩ as) ≠ ∅ and (ws ∩ as) ≠ ∅) 
(vs ∩ as) ≠ (ws ∩ as) 
⇒ 
vs ≠ ws 

and, therefore, that there are different conditions as well. 
Suppose the sets of conditions of a in P and a in Q are vs and ws respectively. 

Then we can define the sets of dependencies of a in P and a in Q as xs = {x | σ x [a]~ 
σ’ ∈ vs} and ys = {y | ρ y [a]~ ρ’ ∈ ws} respectively. So, clearly, if xs ≠ ys then also 
vs ≠ ws. Meaning that if there is a different dependency, then there also is a different 
condition. 

Now, if there is an additional dependency for a in Q then 
xs ⊂ ys 
⇒ 
for all σ x [a]~ σ’ ∈ vs there exists a ρ x [a]~ ρ’ ∈ ws and 
there exists a ρ x [a]~ ρ’ ∈ ws such that there is no σ x [a]~ σ’ ∈ vs 
⇒ 
vs ≠ ws and, if the traces in vs do not differ from those in ws at another position 
(than the position directly preceding a), vs ⊂ ws. 

Therefore, there is a different condition as well. If the conditions of a in P do not 
differ from those in Q at other positions (than the position directly preceding a) then 
there is an additional conditions. Hence, since an additional conditions in a will be the 
result of an additional dependencies, we do not report it. The implication of additional 
dependencies for a in P is determined in the same way. 

If a appears in a trace in P and not in Q, then there is a trace in P in a appears 
infinitely many times while there is no such trace in Q. Clearly this leads to different 
conditions. If there are no other differences, this will lead to additional conditions. 
Hence we do not report additional conditions in this case either. The implication of 
iterative versus once-off for a in Q is determined in the same way. 
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4.4 Running Example Continued 

Figure 8 illustrates our techniques for detecting differences by applying them to the 
running example. Three differences can be found: one additional cycle, one additional 
dependency and one skipped activity. 
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Figure 8. Differences in the Running Example 

5 Case Study 

To show the practical applicability of our approach we analysed the differences 
between processes at a financial services provider. We studied 5 processes, each of 
which involved on average 10 activities and 2 roles. The processes were studied in 2 
departments that had the same function, but were originally parts of different 
organizations. The goal of the analysis was to discover and resolve the differences 
between the processes in order to merge the departments into a single department. 

First, we defined the similarities between the processes. Table 1 summarizes the 
non-trivial similarities (similarities other than equivalence) that we found in the 
processes. Second, we analysed the differences between the processes. Table 2 
summarizes the result of this exercise. The case study used a slightly larger collection 
of differences [11]. Here we only report differences that are described in this paper. 

Table 1. Similarities (other than equivalence) in case study 

Similarity Instances found 

Interchanged activities 7 
Refined activity 2 

Partly corresponding collections of activities 1 
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Table 2. Differences in case study 

Difference Instances found 

Skipped activity 14 
Different dependencies 1 

Additional dependencies 2 

Activities at different moments in processes 1 

Iterative vs. once-off occurrence 3 

Different conditions for occurrence 2 

Different start of process 3 

The case study shows that it is possible in practice to distinguish differences in non-
equivalent processes. These differences provide business process analysts with 
important feedback, since they can help answer the question where they should 
modify the existing processes to accomplish the merger. The case study also shows 
that our classification of differences if not exhaustive for practical purposes, because 
we identified three types of differences that could not be classified according to our 
classification [11]. However, the differences that can be identified remain valuable. 

6 Differences and Non-Equivalence 

This section proves that the techniques outlined in the previous section only return a 
difference between two processes if those processes are not trace equivalent. Since 
section 4.3 shows that all differences imply a ‘different conditions’ difference, it is 
sufficient to show that: if there is a ‘different conditions’ between two processes then 
the two processes are not equivalent. We can assume that the two processes have the 
same alphabet, because we replaced each activity by its set of equivalent activities 
and removed each activity for which there was no equivalent in the other process (and 
reported it as a skipped activity). 

Lemma 4. For any trace σ∈Σ*, process P, and set of traces Tr(P) of P it holds that:  
if σ∈Tr(P) then ∀x∈Σ: σ/ inP(x) ∈ Tr(P)/in(x). 

Proof. This follows from the definition of trace restriction (definition 11). 

Using this lemma we can easily prove that if two processes are trace equivalent (Tr(P) 
= Tr(Q)), then there is no ‘different conditions’ (∀x∈Σ: Tr(P)/inP(x) = Tr(Q)/inQ(x)). 

Proof.  Tr(P) = Tr(Q) 
 ⇔ 
 σ ∈ Tr(P) ↔ σ ∈ Tr(Q) 
 ⇒ (because of lemma 4) 
 ∀x∈Σ: σ/ inP(x) ∈ Tr(P)/in(x) ↔ ∀x∈Σ: σ/ inQ(x) ∈ Tr(Q)/in(x) 
 ⇔ 
 ∀x∈Σ: σ/ inP(x) ∈ Tr(P)/in(x) ↔ σ/ inQ(x) ∈ Tr(Q)/in(x) 
 ⇔ 
 ∀x∈Σ: Tr(P)/in(x) = Tr(Q)/in(x) 
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A limitation of the proof is that it only proves that our techniques only return a 
difference if two processes are not trace equivalent. It does not prove that we will 
return a difference if the processes are not trace equivalent. We have found one 
example of a situation in which two processes are not trace equivalent, but our 
techniques do not return a difference. However, this example involves a process that 
can perform the empty trace and that situation can easily be solved. 

Experimentation has given us the impression that there are not many interesting 
cases in which processes are not trace equivalent, while our techniques do not return a 
difference. 

7 Related Work 

Our work is related to the large body of research in the area of equivalence and 
difference between business processes. 

The work in this paper is based on the formal notions of behavioural equivalence. 
A survey on different notions of behavioural equivalence is given in [18]. Essentially, 
two processes have a ‘difference’ if they are ‘non-equivalent’ according to one of 
these notions. Also, work on detecting differences based on the non-equivalence 
exists [9]. Our work contributes to the work on behavioural equivalence by providing 
more feedback as to where and why processes are not equivalent. We do this by 
classifying non-equivalences. More loose forms of (partial) equivalence, such as 
behavioural compatibility [7,16,22,23] and behaviour inheritance [3] have a similar 
relation to our work. Moreover, [2] shows how behaviour inheritance can be used to 
detect differences between a prescribed process and a process as it is performed in an 
organization. Differences with respect to compatibility of processes are given in 
[6,14]. 

Only recently detection of non-equivalence is being approached from the angle 
described in this paper, from which differences between processes are classified and 
detection techniques for classes of differences are defined. Benatallah et al. [6] and 
Dumas et al. [14] make a classification of differences between interacting business 
processes. Motari Nezhad et al. [25] also define detection techniques for such 
differences. Our work differs from theirs in that we focus on similar business 
processes, while their work focuses on interacting business processes. Each of their 
‘differences’ corresponds to an adapter pattern that will resolve the difference in 
communication. 

A related approach is used in the area of business processes integration 
[17,19,24,27]. However, the work in that area focuses on the merging business 
processes in spite of their differences. Our work focuses on detecting differences. 
When it comes to detecting these differences, [27] does identify differences, which 
they call heterogeneities. [17,19] classify correspondences between business 
processes. Such a classification also inspires the classification of differences. 

The area of business process evolution [4,15,8,28,29] deals with evolutionary 
changes in a business process specification. Such changes result in differences 
between the original and the evolved business process. (Some of these differences can 
be recognized in the differences above.) However, the goal of workflow evolution is 
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to develop evolution approaches that keep the differences to a minimum. We accept 
all possible differences that can arise. 

Business process reference models [21] are standard business process models that 
can be tailored to the needs of a specific company. It is useful to identify how 
reference models can be tailored to the client, which can be done by describing 
configuration options for the reference models [1,30]. These options pre-define what 
differences can exist between clients and are therefore related to our classification. 

Current tools for business process modelling and analysis also have functionality to 
analyze differences between processes (we looked at Oracle’s Business Process 
Analysis Suite and MetaStorm’s ProVision). This functionality focuses on facilitating 
multiple people that work on the same process repository. It shows updates of 
processes (additions, deletions and modifications) since the last synchronization with 
the process repository. 

8 Conclusions and Future Work 

This paper presents techniques that help find the procedural differences between 
business processes that are not (completed trace) equivalent. Procedural differences 
are differences concerning the behavioural aspect of the processes. We implemented 
the techniques in a tool [10]. 

The techniques help find the differences by reporting them in the terms in which 
the business processes are defined (activities and relations). They also help by 
providing diagnostic information about each difference by indicating what type of 
difference it is. 

The paper shows that differences are only returned in case two processes are not 
(completed trace) equivalent. The practical relevance of the techniques is illustrated 
by showing their application to a case study. 

A limitation of the techniques is that they do not detect all possible procedural 
differences between business processes, because: 
• the techniques are defined on the notion of completed trace equivalence, while it 

is known that stronger notions of equivalence (notions that detect more 
differences) exist [18]; 

• the techniques make assumptions about the semantics underlying the business 
processes, in particular they assume that a semantics exists in terms of a finite 
state space, while such a semantics may not exist or be possible; and 

• we have not proven that a difference will always be returned if two processes are 
not (completed trace) equivalent. Moreover, we know of a situation in which no 
difference will be returned for two processes that are not equivalent.  

However, even if our techniques cannot detect all possible differences between 
business processes, the differences that we can detect remain useful. Moreover, based 
on experience with business processes from practice, we claim that there will not be 
many practical cases in which no difference will be returned for two non (completed 
trace) equivalent processes. 

We are currently applying our techniques to more case studies with the goal of 
refining them further. We are also investigating application of the techniques to 



Feedback on Differences between Business Processes      25 

construct configurable reference models based on differences found between non-
configurable reference models and we are investigating application of the techniques 
to detect incompatibility in the interaction between business processes. Finally, we 
aim to expand our work to other aspects of business processes. In particular we want 
to investigate differences between the use of resources in business process and 
differences between the use of information in business processes. 
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