
Iv. DISCRETE VERSION OF THE BODE PROCEDURE 

a) Let  us first  consider the case  where all p o l e s  of H(z) are 
simple. It can be shown  that HR(z) in (3) can be expanded in the 
following form: 

where k i  can be evaluated from 

The required  transfer function H(z) is then identified as 

an  expression which only requires the calculation of { k i }  in accor- 
dance with (9). 

b)  When multiple order  poles  are involved,  the Bode method is 
computationally somewhat  more involved than the Brune-Cewertz 
method extended  by Mitra and  Vaidyanathan [2] along with sim- 
plifications thereof  recently proposed by Dutta Roy [6]. However, 
for the sake of completeness, we note the following steps.  The 
"partial fraction expansion" of HR(z) takes the form 

k i ,  + kyrj-,)(z-' - pi) + ... + k,(z-' - +c 
i (z- l  - pi)" 

(11) 
where the pole at pi is of multiplicity ri and 

H(z) is deduced  therefrom as 

+ 2 c  
ki ,  + kicri-,)(Z - p;) + * - *  + k,(z - 

i (I - pi) ri 

V. EXAMPLE 

We  consider the same  example as in [2]. 

HR(e'  ) -  17 - 8cos2w 
'&+, - 1 +cos w +  cos2w 

D ( z )  = 17 - 4(Z2 + z - ~ )  = 17 - 8C2(u/2) 

= 17 - 8[2(u/2)' - 11 

Q( U) = 25 - 4 d .  

The  zeros of Q(u) are u, = 5/2 abd y = -5/2. The two equations 
z + = f5/2 yield the roots *1/2 and f2 and  we  select the 
values p1 = 1/2; = -1/2 for the  poles  of H(z). 

From (9) 

Now 

1 + t ( Z  + z-1) + {(t + 2-2) 
- 82 + 8 ~ - ~  2-1/2 

Likewise 

N( - ;)/a( - t )  = -1/32. 

Hence 

H(z )  = -1/8 + + - + - + - -1/32 7/48 -1/16 
- - -  2-1 
2 2 2 z + +  
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A Prony Method for Noisy Data:  Choosing 
the Signal  Components  and  Selecting the 
Order in Exponential  Signal  Models 
RAMDAS  KUMARESAN,  DONALD W. TUFTS, AND 
LOUIS L. SCHARF 

Prony's method is a simple procedure for determining  the values 
of parameters of a linear combination of exponential functions. 
Until recently, even the  modern variants of this method have 
performed  poorly  in  the presence of noise. We have discovered 
improvements to Prony's method  which are  based on  lowrank 
approximations to data matrices or estimated correlation matrices 
[6]-[6], [15]-[27], [34]. Here we present a different,  often simpler 
procedure for estimation of  the signal parameters in  the presence 
of noise. This procedure has received only  limited dissemination 
13.51. It is  very close in  form  and assumptions to Prony's method. 
However, in  preliminary tests, the performance of  the  method is 
close to that of the best available, more complicated, approaches 
which are  based on maximum likelihood or on the use of eigenvec- 
tor or singular value decompositions. 

I. INTRODUCTION 

Nearly two hundred years  ago,  Prony developed a simple  proce- 
dure  for determining the values of parameters  of a linear  combina- 
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tion of  exponential  functions  from uniformly spaced  samples [I]. 
Today  "Prony's method" is usually  taken to mean the least  squares 
extension  of  the  method as presented,  for  example,  by Hildebrand 

A short  record  of a data  sequence y(n), n = 1,2; .., N, is  as- 
sumed to be  composed of uniformly spaced  samples of a sum of 
exponential signals x ( n )  and  measurement  noise w(n). That is, 

y ( n ) - x ( n ) +  w(n) ,  forn-l,2;..,N (1 1 

[2, pp. 378-3821, 

where 
M 

k=l 

N >  2M (3) 

C( k )  = exp (s( k ) ) .  (4) 

The  values of the signal  parameters a ( k )  and s ( k )  for K = 1,2; . . , M 
are unknown complex  numbers. Often the value of M is also 
unknown. However, let us initially assume that  the value of M is 
known. 

Following the derivation of Hildebrand [2, formula 9.4.6.,  p.  3791 
we note  that the signal x(n)  satisfies a linear,  homogeneous dif- 
ference  equation with constant  coefficients 

M 

c b ( k ) x ( n - k ) = O ,  f o r M < n d N  (5) 
k = O  

where 

6(O) = 1 .  (6) 

The  roots  of the prediction-error-filter polynomial B ( 2 )  provide the 
values of  the  exponent parameters C( k ) ,  and  hence s( k )  

M 

B ( 2 )  = 6 ( k ) ~ - ~  
... 

~ 

k = O  

M 

= n [l - C ( k ) z - l ]  
k = l  

Hildebrand explicitly considers  noisy  data  and  specifies  Prony's 

1. Using the method of least  squares, minimize the  approxima- 
method by the following three  steps: 

tion error 

by  best choice  of the coefficients 6 ( k )  [3].  For N > 2 M  and for 
noisy data, the solution will be unique with high probability. 
However, if the resulting set of normal  equations is singular, then 
the pseudo-inverse  of the coefficient matrix  can be used to choose 
the minimum norm  solution: 

2. After  the M values  of b(k) are determined, the roots of the 
prediction-error-filter polynomial 6( Z) are found,  using 6(0) = 1. 

M M 

The corresponding  exponent values z ( k )  can then be found from 
(4). 

3. Having  determined the values ?(k )  for k = 1,2;..,M, the 
error in approximating  the  observed  data  by a linear combination of 
exponential  signal  components then becomes linear in the M 
values of  a(k), the complex  signal scale  factors ." 

k = l  

The M estimates a(&) can be determined  by minimizing the 
summed,  magnitude-squared  error 

It is well known that  the errors in signal  parameters which are 
estimated  by  Prony's method can be discouragingly large  [2],  [3].  For 
insight into this  phenomenon we recommend calculation and  study 
of the Cramer-Rao  (CR)  bounds  for the variance of the error in the 
estimated  parameters  and  comparison of  the  threshold  of  estima- 
tion of  the Prony method with that  of  the maximum-likelihood 
method [6]-[9]. By the  threshold  of  estimation, we  mean the value 
of  signal-to-noise ratio (SNR) at which the variance of an estimation 
error  of an  unbiased  estimate  begins to depart  very rapidly  from  the 
corresponding  CR-bound  value. 

As another  example of  the application of  Prony's method, con- 
sider the problem  of  estimating  the parameters of a zero-mean, 
autoregressive, moving average  (ARMA)  stationary  random  se- 
quence  from  estimates  of its covariance  values.  Various  investiga- 
tors  have recognized  that,  after a finite number  of lags, the  true 
underlying covariance  values satisfy a linear,  homogeneous, dif- 
ference  equation with constant  coefficients  [lo]-[13].  That is, after a 
finite number  of lags, the  estimated  covariance sequence  can  be 
represented as a linear combination of  exponentials (i.e., the  true, 
underlying covariance  sequence which satisfies the homogeneous 
difference  equation)  plus measurement  noise.  This  measurement 
noise  may  be only the error  sequence in estimating  the  covariance 
values from a finite observation of the ARMA  sequence. Part of it 
might also  be  due to additive  noise in the observation  of the ARMA 
sequence.  Some  of  these  ideas  have  been  restated  by  Cadzow  [13], 
~ 4 1 .  

1 1 .  PRONY METHODS FOR NOISY DATA 
In previous  and  related  work,  we have shown how one  can 

extend  the  threshold  of  estimation  of Prony's method to much 
lower values of SNR and how one  can improve parameter  estima- 
tion at values of SNR above this  threshold [6]-[9],  [15]-[21].  The 
major  source for these improvements is the use of information 
about  the  rank M of a matrix  of  signal  covariance  values  or a matrix 
of samples of the signal. If there is no prior information about  this 
rank, it is estimated from the data using  singular  value  decomposi- 
tion (SVD).  The  most important computational step is a preprocess- 
ing step, before application of Prony's method.  A prediction order L 
which is larger than the value of M is chosen.  The  measured  data 
matrix  or the  matrix  of  estimated  covariance  values is replaced  by a 
matrix  of  the  prescribed  rank M which is the best  least  squares 
approximation to the  given  matrix. Other investigators  have pre- 
sented  closely  related  approaches  [22]-[28]  and  [36]. 

In this  work we  advocate a simpler  procedure which appears to 
provide the same  desirable attributes to nearly the same extent. 
This procedure consists of the following two steps: 

1. Use  Prony's method on  the  given data, but  with a prediction 
order L which i s  larger than the maximum  number  of  exponentials 
which are  expected in the signal.  The result is a set of L exponen- 
tials which are  candidates for signal components. 

2. Out of  the L exponential  functions which are provided by the 
high-order Prony calculation,  determine the best subset of size M. 
A best  subset of M exponentials is one  for which a linear  combina- 
tion of  the M exponentials  best  approximates the observed  data 
using a least  squares criterion. One can  check all of  the 
possible  subsets of size M of the L exponential  functions to find the 
best combination. 

A  simpler  approach to step  2 is to use the  procedure of Hocking 
and Leslie [29]  as we have previously suggested [X].  In the proce- 
dure  of Hocking and  Leslie, a best subset  can  usually be found 
without searching  over all possible  subsets. Hocking and  Leslie 
accomplish  this  by  first  solving  a  related, but different, problem. 
They  search for  the basis functions  (exponentials, in our  applica- 
tion) which contribute most to the summed  magnitude-squared 
errors  by their deletion. This provides an initial importance ordering 
of the exponentials. Hocking and  Leslie prove  that the fitting errors 
associated with these single-deletion sets provide convenient 
threshold values of the error for recognizing the global optimality 
of  a  particular combination of M exponentials beiqg tested. 

If M is not known a priori, an  estimate of M, (M), can  be found 
as follows. Choose M = 1, and find the best  subset of size unity 
that best fits the data. Call the  corresponding minimum enor E,. 

(h) 
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Then,  choose 4 -  2 and find the best  subset of size two and the 
corresponding minimum error E2.  Repeat the  procedure” until the 
rate of decrease of the error with increasing  values of M is small, 
consistent with the modeling of  broad-band  noise. The integer i at 
+ich Ei shows the significant drop in rate of decrease is taken as 
M. We now give a simulation example. 

111. SIMULATION RESULTS 

If the data  are known to be  composed  of  undamped  sinusoids, as 
we  assume in this example, forward and  backward prediction 
equations can  be  used simultaneously to obtain extra prediction 
equations  for  Hildebrand‘s  least  squares form of the Prony method 

A sequence y(n) consisting of two complex  sinusoids  and  white, 
complex  Gaussian  noise wfn)  was generated  using the formula 
below 

(31)-[33]. 

n=0,1,2 ... ,24. 

Here a, = a2 = 1, o1 = 2a(0.52), w2 = 2n(0.5),  and j = f i .  The 
variance of the real or imaginary part of wfn) is u2. SNR is defined 
as IOlog,,, (a$/2u2). The coefficients of the polynomial B(z) were 
found by solving the forward-backward  linear prediction equations 
as in [34] in the least  squares  sense. L was  chosen to be 12 (N/2). 
The 12 zeros of C(z) were found and the best  subset of 2 out of 
the 12 which minimized E in (1.1) was,computed.  The  frequency 
estimates of the two sinewaves, fl and f2, are the angles of the two 
chosen  exponents (divided by 2a). This simulation was repeated 
500 times  and the root mean  square  (rms)  value of the frequency 
estimation  error was computed at  SNR values in the range of 30 to 7 
dB. They  are given in Table 1 along with the  appropriate CR bounds 
and  SVD-method  values which were  taken from [34]. Comparing 
these  figures with those in [34], we note  that the SVD-based 
methods are slightly better in performance.  This  difference is due to 
the signal  enhancement  achieved  by  SVD. 

Table 1 Mean  Square  Error of the Frequency ( f l )  Estimation 
Error  versus  SNR.  (CRB  stands for the Cramer-Rao bound 
which is the lower bound on the standard deviation of the 
frequency  estimation error for an  unbiased  estimator.  The 
bias in the  frequency  estimates was insignificant except 
at SNR = 7 dB. Below 7 dB, the mean  square  error is large  due 
to the presence  of outliers. For  the proposed subset selection 
method, the prediction order is twelve ( L  = 12). For com- 
parison, two values of the error  for the SVD method are 
provided [34].) 

30 

20 

15 

12 

10 

7 

~~~ 

,/Mean  Square  Error  CRB 
0.427 x  IO-^ 0.311 X 

(SVD)  0.403 X L = 12) 

0.130 X 0.984 x 10 -~  

0.238 x 10-2 0.175 X 

0.373 X 0.276 X 
(SVD)O.313 X 10-’(1 = 12) 

0.417 X 0.311 X 

0.601 x 10-2 0.490 X 

Fig. 1 shows the minimum subset  error €a for different choices of 
A at different SNR values.  The  value €o at M = 0 is the data 
“energy“ 

N c Iy(n)I2. 
n=l  

Note the clear drop in the  rate  of  change of E at f i  = 2. 

I 2 3 4 3 6 

k 
fig. 1. Minimum subset  error  versus  hypothesized  subset  size 
(the estimated  number of exponential  signal  components). 

Iv. DISCUSSION AND CONCLUSIONS 
Ideally, to fit exponentials to a data  sequence y(n), one has to 

minimize the  error 

with respect to &‘s and 3k’s simultaneously. This is a difficult 
problem even i f  the  value  of M is known. Instead,  we find the 
exponents s ( k )  separately as is often done.  However, we have 
made  use  of the fact  that, if the data  are  composed of  exponentials 
and  noise, overestimating the degree 1 (> M )  of the polynomial 
B(z) improves  the  accuracy of the M signal-zero  locations. Subse- 
quently, we  select the M out of  the L exponentials  that  best  explain 
the data.  The new  procedure extends the threshold  of the 
forward-backward  covariance method [31]-(33]  and is only slightly 
inferior to SVD  based methods [;Z [34]. 

REFERENCES 
[l] R. de Prony, “ESsai experimentale et analytique,” 1. Ecole  Polytech- 

[2] F. 8. Hildebrand, introduction to Numerical Analysis. New York: 

[3] C. Lanuos, Applied Analysis.  Englewood  Cliffs, NJ: Prentice-Hall, 

[4] L. E. Brennan,  “Angular  accuracy of a  phased  array  radar,” /RE 

[SI D. C. Rife  and R. R.  Boorrtyn, “Multiple tone  parameter  estimation 
Trans. Antennas  Propagat.,  vol.  AP-9,  pp. 268-275, May 1961. 

from  discrete time observations,” Bell Syst. Tech. I., pp. 1389-1410, 
Nov. 1976. 

[6] D. W. Tufts  and R. Kumaresan, “Improved spectral  resolution 11,” 
in Proc. 7450 /€E€ Int. Conf. on  Acoustics,  Speech, and Signal 

[;7 -, “Estimation  of  frequencies of multiple sinusoids: Making 
Processing (ICASSP So), pp. 592-597, Apr. 1980. 

linear prediction perform like maximum likelihood,” Proc. /€€E, 

[8] R.  Kumaresan and D. W. Tufts,  “Accurate  parameter  estimation of 
noisy  speech-like  signals,” in Proc. 7582 /€E€ lnt. Conf. on  Acous- 
tics,  Speech, and Signal  Processing  (ICASSP 82), pp. 1357-1361. 

[9] -, “Estimating the parameters of exponentially damped 
sinusoids  and pole-zero modeling in noise,” / € E €  Trans.  Acoust., 

niqw (Paris), pp. 24-76,1795, 

McCraw-Hill, 1956. 

1956, p ~ .  272-280. 

VOI. 70, pp. 975-909, Sept. 1902. 

23 2 PROCEEDINGS OF THE IEEE, VOL.  72, NO. 2, FEBRUARY 1984 



Speech, Signal Process., vol. ASSP-30, no. 6, pp. 833-840, Dec. 
1982. 
W. Cersh, “Estimation of the autoregressive  parameters of a mixed 
autoregressive moving average time series,” I€€€ Trans. Automat. 
Contr., vol. AC-15, p. 583, Oct. 1970. 

with applications to Kalman filtering,” I€€€ Trans. Automat. Contr., 
R. K. Mehra, “On-line  identification of linear dynamic systems 

vol. AC-16,  p.  12,  Feb.  1971. 
A. A. Beex and L. L. Scharf,  “Covariance  sequence approximation 
for parametric spectrum modeling,” I€€€ Trans. Acoust.,  Speech, 
Signal  Process., vol. ASSP-29, p. 1042, Oct. 1981. 
I .  A.  Cadzow,  “Spectral estimation: An overdetermined rational 
model  equation approach,” Proc. /€€E,  vol. 70, pp. 907-939,  Sept. 
1982. 
_, “High performance spectral estimation-A new ARMA 
method,” I€€€ Trans.  Acoust.,  Speech, Signal Process., vol. ASP-28, 
pp. 524-529, Oct. 1980. 
R. Kumaresan and D. W. Tufts, “Improved spectral resolution 111: 
Efficient realization,” Proc.  /€€€.(Lett.), vol. 68, pp. 1334-1335, Oct. 
1980. 
-, “Data-adaptive principal component signal  Processing,” in 
Proc. 79th I€€€ Conf. on Decision  and  Control (Albuquerque, 
NM), Dec. 1980. 
-, “Singular value decomposition and spectral analysis,” in 
Proc. 1st / €E€  ASSP Workshop on Spectral €stirnation (Hamilton, 
Ont., Canada), pp. 6.4.1-6.4.12,  Aug.  1981. 

estimation,”  Proc. /€€€(Lett.), vol. 69, pp. 1515-1517, Nov. 19w. 
-, “A two-dimensional technique for frequency-wavenumber 

_, “Singular value decomposition and spectral analysis,” in 
Proc. 20th /€E€ Conf. on Decision  and  Control (San Diego, CA), 
pp. 1-1  1, Dec.  1981. 

estimation,“ in Proc. 16th Annu. Princeton Conf. on Information 
D. W. Tufts, R. Kumaresan, and I. Kioteins, “Data-adaptive signal 

684-685, June 1982. 
Sciences and Systems (Mar. 1982) and Proc. /€€€(Lett.), vol. 70, pp. 

R. Kumaresan, “Accurate frequency estimation using an all-pole 
filter  with mostly zero coefficients,” Proc. I€€€, vol. 70, no. 8, Aug. 
1982. 
T. L. Henderson, “Geometric methods for determining system 
poles from transient response,” / € € E  Trans. Acoust.,  Speech, Signal 
Process., vol. ASSP-29, pp. 982-988, Oct. 1981. 
S. 5. Reddi, “Multiple source location-A digital approach,” / €E€  

A. Cantoni and L. C. Codara, “Resolving the directions of sources 
Trans. Aerosp.  Elec. Syst., vol. AES-15, no. 1, pp. 95-105. 

in a correlated field  incident  on an array,” 1. Acoust. Soc. Amer., 
vol. 67, no. 4, pp. 1247-1255, Apr. 1980. 
W. S. Liggett, “Passive  sonar: Fitting models to multiple  time 

York: Academic Press,  1973. 
series,” in Signal Processing, J. W. R. Criffiths et a/.,  Eds. New 

N. L. Owsley, “A recent trend in adaptive spatial processing for 

J. W. R. Criffiths et dl., Eds. New York: Academic Press,  1973. 
sensor  arrays: Constrained adaptation,“ in Signal Processing, 

C. Bienvenu and L. Kopp, “Adaptivity to background noise spatial 
coherence for  high  resolution passive  methods,” in Proc. 7450 /€E€ 
Int.  Conf.  on Acoustics, Speech, and Signal Processing (ICASSP 
1%), pp. 307-310, Apr. 1980. 
R .  Schmidt, “Multiple  emitter  location and signal parameter esti- 
mation,’’ in Proc. RADC Spectral Estimation Workshop,  (Rome, 

regression  analysis,” Technometrics, vol. 9, pp. 537-540,  1967. 
R. R. Hocking and L. L. Leslie, “Selection of the best  subset in 

D. W. Tufts and R. Kumaresan, “Improved spectral resolution,” 
Proc. /€€€(Lett.), vol. 68, pp. 419-420, Mar. 1980. 

data points via maximum  entropy  and  linear  predictive 
A. H. Nuttall, “Spectral  analysis of a univariate process with bad 

techniques,” in NUSC Scientific and Engineering Studies, Spectral 
Otimation.  New London, CT:  NUSC, Mar. 1976. 
T. J. Ulrych and R. W. Clayton, “Time series modeling and maxi- 
mum entropy,” Physics  Earth Planetary Interiors, vol. 12, pp. 

S. W. Lang and J. H. McClellan, “Frequency estimation with maxi- 

Signal Process., vol. ASSP-28, no. 6, Dec.  1980, pp. M6-724. 
mum  entropy spectral estimators,” /€€E Trans. Acoust.,  Speech, 

D. W. Tufts and R. Kumaresan,  “Singular  value decomposition and 

Acoust., Speech, Signal Process., vol. ASSP-30, pp. 671-675,  Aug. 
improved frequency estimation using linear prediction,” I€€€ Trans. 

1982. 
R. Kumaresan, D. W. Tufts, and L. L. Scharf, “A Prony method for 
noisy data: Choosing the signal components and selecting the 
order in exponential signal  models,”  Tech.  Rep., Dept. Elec.  Eng., 

J.  N. Holt and R. J. Antill,  “Determining the number of terms in a 
Univ.  of Rhode  Island, Kingston, RI, 02881, Dec.  1982. 

Prony Algorithm exponential fit,” Math. Biosci., vol. 36, pp. 
319-332,1979. 

NY), pp. 243-258,1979. 

188-200, Aug. 1976. 

Sensitivity  Analysis of the Ampacities of 
Self-contained,  Oil-Paper-Insulated, 
Naturally  Cooled,  and  Forced  Cooled 300-kV 
Underground  Cables 
C. S. INDULKAR 

The  effects of the various  parameters on the  ampacity of m k V  
oil-paper-insulated,  naturally  cooled, and forced cooled under- 
ground cable  systems  are  considered, and sensitivity  values  are 
tabulated. 

INTRODUCTION 

The  highest  safe  operating  temperature  of  the  oil-paper  insula- 
tion, the  cable  dimensions,  and  the  insulating  and  thermal  proper- 
ties of the  materials  of  cable  construction  set  a limit to the  current 
that  the  cable  conductor may be allowed to carry.  Ampacity  com- 
putations  are in general  tedious,  and it is therefore  preferable to 
have  a  sensitivity  analysis  carried  out  at  the  design  stage in order  to 
determine  the  sensitivity of the  cable  ampacity to the  various 
parameters. In this letter, such a  sensitivity  analysis  has  been  carried 
out  for  a  typical 3 W k V  cable  and  the  results  are  tabulated. 

AMPACIW [I J 

imulated cable is given  by 
The  current-carrying  capacity  of  a  self-contained  oil-paper- 

where 

conductor  temperature 
soil  surface  temperature 
dielectric loss 
thermal  resistance  of  internal  insulation 
thermal  resistance  of  external  insulation 
soil  thermal  resistance 
thermal  proximity  factor 
ac  resistance  of  cable  conductor 
resistance  of  sheath. 

Furthermore, 

R i  = -In- 
291 r, 
Pi 5 

R, = -In- Pi r4 

2n r, 

Re =-In- Pe 2 0  
2n r, 

and 

( 4 d  + 9 )  
In c2 

L = 1  I J 

where 

pi thermal  resistivity of oil-paper  insulation 
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