
Querying Object-Oriented Databases�Michael KiferyDepartment of Computer ScienceUniversity of TorontoToronto, Ontario M5S 1A4, Canadakifer@cs.sunysb.edu Won KimUniSQL, Inc.9390 Research Blvd.Austin, TX 78759, U.S.A.execu!sequoia!unisql!kim@cs.utexas.eduYehoshua SagivDepartment of Computer ScienceThe Hebrew UniversityJerusalem 91904, Israelsagiv@cs.huji.ac.ilAbstractWe present a novel language for querying object-oriented databases. The language is builtaround the idea of extended path expressions that substantially generalize [ZAN83], and on an adap-tation of the �rst-order formalization of object-oriented languages from [KW89, KLW90, KW92].The language incorporates features not found in earlier proposals; it is easier to use and has greaterexpressive power. Some of the salient features of our language are:� Precise model-theoretic semantics.� A very expressive form of path expressions that not only can do joins, selections and unnesting,but can also be used to explore the database schema.� Views can be de�ned and manipulated in a much more uniform way than in other proposals.� Database schema can be explored in the very same language that is used to retrieve data.Unlike in relational languages, the user needs not know anything about the system tables thatstore schema information.� The notions of a type and type-correctness have precise meaning. It accommodates a widevariety of queries that might be deemed well- or ill-typed under di�erent circumstances. Inparticular, we show that there is more than one way of settling the issue of type correctness.For expository purposes and due to space limitation, we chose to make a number of simplifyingassumptions and left some features out. A more complete account can be found in [KSK92].�Appeared in ACM SIGMOD Conference on Management of Data, San Diego, CA, June 1992, pages 393{402yWork supported in part by the NSF grants IRI-8903507 and CCR-9102159. On sabbatical leave from Stony BrookUniversity. 0

1 IntroductionIn recent years, several papers [BANC90, BEEC88, CLUE89, DLR88, KS90, 1] have proposed querylanguages for object-oriented databases. However, none of these languages captures (or even attemptsto deal) with all the aspects of the object-oriented model. In this paper, we present a new querylanguage that incorporates features not found in earlier languages. The proposed language, henceforthreferred to asXSQL , is easier to use and has more expressive power than previous languages. It shouldbe emphasized that it is not our goal here to introduce the full-edged syntax and semantics of XSQL.Rather, we use the familiar SQL-like syntax to illustrate certain philosophy in designing object-orientedlanguages|a philosophy put forward in [KIM89b, KS90] and [CW89, KW89, KW92, KLW90]. Beforediscussing the novelties found in our language, we should point out some of the di�erences betweenthe object-oriented model and the relational model.The di�erent features of these two models induce di�erent modes of representing information andquerying it. A detailed discussion of these issues is found in [KIM89b]; we will describe some of theimportant aspects through an example. Suppose that a database includes information about enginesand their types (e.g., turbo engines, diesel engines, etc.). In a relational database, there would likely bean attribute EngineType having the various engine types as its possible values. In an object-orienteddatabase, there would likely be a class Engines having the various engine types as its subclasses. Thisis a fundamental di�erence, because it shifts the information about engine types from the data to theschema. For example, suppose we want to know what are all the engine types.1 In the relationalmodel, we simply project onto the attribute EngineType. In the object-oriented model, we have tointerrogate the schema rather than the data (and there is hardly any language for doing that).The above example shows the need for features not available in relational query languages. Inparticular, since an object-oriented schema is likely to have much more information than a relationalschema, querying the schema (as well as querying the data without a complete knowledge of theschema) becomes an important issue. We also need to deal easily with nested structures.XSQL provides these (and other) features through path expressions. Although the idea of path ex-pressions is not new (it �rst appeared in [ZAN83] and had many incarnations since then), our extendedpath expressions have the following features and expressive power not found in earlier incarnations ofthis idea.1. Path expressions may have variables that range over classes and attributes (and even methods)rather than data, and hence, it is possible to query data without a complete knowledge ofthe schema. (Earlier query languages for object-oriented databases completely lack any similarfeature. The language of [KLK91] has some similar features, but it was designed for the relationalmodel.) Note that in spite of having variables that range over classes, attributes, and methods,the language is still �rst order, since it is based on F-logic [KLW90].2. Path expressions also have selectors that could select either some speci�c data or some speci�cpart of the schema (from which data is to be retrieved).3. Path expressions may incorporate both attributes and methods in a uniform way that is moregeneral than just composing methods as function applications (as found in functional querylanguages).1Actually, this example is rather intricate. One may want to know all the engine types that are currently installed insome vehicles, or one may want to know all the engine types that exist, including those that are currently not installedin any vehicle. The language we propose can handle easily each one of these possibilities.1

4. Path expressions \atten" any nested structure in one sweep, and therefore, there is no needto break a path of the schema into several path expressions and apply a \collapse" operator toeach one.All the above features increase the expressive power of XSQL and also make it easier to read andwrite queries. In many cases, queries can be expressed as one simple path expression, while in earlierproposals the same queries could be expressed only by using several path expressions and/or nestedsubqueries. Path expressions are discussed in Sections 3 and 5.One drawback of earlier languages is that they violate encapsulation. As explained in [BANC90],violating encapsulation means that \objects can be considered as the values they encapsulate." Thisis not the case in our language. We use the approach of F-logic [KLW90] in order to give precisesemantics to XSQL without violating encapsulation.2 In essence, the language manipulates objects(and not the values they encapsulate), and is capable of creating new objects from existing ones.Therefore, XSQL also provides a powerful viewing mechanism, which is discussed in Section 4. Whencreating new objects, we adapt the approach of [KW89] that invents new object identi�ers by applyingfunction symbols to existing object identi�ers. This approach circumvents the problems with assigningid's to \imaginary objects" discussed in [AB91]. As in the relational model, views in our language areconstructed via queries, which is simpler and more uniform than in other proposals.Typing is one of the cornerstones of the object-oriented model. Earlier languages, however, hardlydiscussed the question of when a query is well-typed. We discuss this problem in the framework ofXSQL , and show that there is more than one way of settling the issue. The following example mayhelp crystalize some of the options. Consider a database that has information on the winners of NobelPrizes. In particular, there is an attribute (or possibly a method) WonNobelPrize that, for a givenobject, speci�es the area(s) in which that object won the prize. Suppose we want to �nd all winnersof Nobel Prizes. The problem is that winners are not necessarily members of one class. Generally,winners could be persons or organizations of various types.3 It is unlikely that a casual user wouldknow exactly all the classes in the database for which WonNobelPrize is de�ned. Nevertheless, inXSQL one may simply write the querySELECT XWHERE X.WonNobelPrizeand the answer would be all objects for which WonNobelPrize is de�ned and its value is nonempty. Itis not clear, however, whether this query should be considered as well-typed.4 Obviously, if we allowqueries of this form, the expressive power of the language is enhanced considerably. However, toomuch expressive power might violate the principle behind typing, and might result in users gettingunexpected results (to ill conceived queries) rather than type errors. In Section 6, we discuss typingand outline a spectrum of approaches between a conservative approach that considers the above queryas ill-typed, and a liberal approach that considers it as well-typed. The conservative approach doesnot really permit a query about winners of Nobel Prizes without specifying the classes for whichWonNobelPrize is de�ned. This raises the need for querying the schema (rather than the data). Someof this is discussed in Section 3, but more information can be found in [KSK92].2Familiarity with F-logic is not necessary for understanding this paper, except for Theorem 3.1 and the expressivenessresult mentioned in the concluding section.3For example, UNICEF (United Nations International Children's Emergency Fund) won the Nobel Peace Prize.4It could be argued that since the type of X is not declared, the query is not well-typed.2

2 Data Model ReviewSince conceptual data model is an integral part of any query language, we �rst review the object-oriented data model used throughout this paper. This model was put together into a coherent logicalsystem in [KLW90], although some of its elements have appeared earlier, in [KW89, CW89, KIM89a,KL89] and other papers and systems.Objects and object identity. Objects are abstract or concrete entities in the real world. In ourmodel, the programmer refers to objects via their logical object ids , which are nothing but syntacticterms in the query language. For instance, 324, johnP23, secretary(dept77) are logical object ids.We follow [KW89, KL89, KLW90] and use explicit id-functions (such as secretary above) to get ourhands on a su�cient supply of such ids. This mechanism will be primarily used to de�ne user views.Any logical oid uniquely identi�es an object. However, unlike most approaches (that confuse theimplementational and conceptual issues) we do not require an object to have a unique id at the logicallevel. For instance, mary65 and secretary(dept77) may refer to the same object.Physical object identity is a purely implementational notion|a surrogate or a pointer to an object.Logical oids can be implemented as physical object identities, but unlike physical pointers logical oidsmay carry certain semantic information. For instance, we consider `20' to be a logical id of the abstractobject with the usual properties of the number 20. Likewise, \Ford Motor Co." is a logical id of theobject with the usual properties of a string consisting of the characters `F', `o', `r', `d', ` ', etc., in thatorder.Since this paper touches upon language issues only, we will be using the words \object identity"or even just \object" to refer to ids at the logical level.Attributes. Objects are described via attributes. An attribute may be either de�ned, unde�ned,or inapplicable for an object obj. If an attribute is de�ned, then it also has a value for obj; otherwise,it has no value. If an attribute is not applicable to obj, then it is also unde�ned for obj, but unde-�nedness does not imply inapplicability. Intuitively, inapplicability captures the idea of type error|asituation when an attribute is used in the scope of an object to which it does not apply. In contrast,unde�nedness of an attribute is analogous to the null value in the relational model. The issue of typingwill be formally taken up in Section 6.Unlike some other approaches [LR89], our model does not divide the world into set-objects andtuple-objects. Essentially, all our objects are tuple-objects. Each entry in a tuple-object is the valueof one attribute. If the attribute is scalar, then the value is a single object id; if the attribute is set-valued, then the value is a set of object id's. Set-objects are described in our model as tuple-objectshaving a single, set-valued attribute. As explained in [KW89, CW89], this approach achieves moreuniformity than other proposals, and modeling sets of arbitrary nesting depth becomes quite easy.Following [KL89, KLW90], we do not completely isolate the space of attribute names from thespace of other logical oids. In other words, any logical oid, depending on its syntactic position ina query, may play the role of an attribute or that of an object. Theoretical underpinnings of thisapproach appear in [KLW90]; its practical bene�ts|as we shall see|are that the user can now askquestions about the structure of the database in a very natural way, without knowing the systemtables that represent the database schema. In practice, it is useful to distinguish attribute names fromother objects by placing them in a subdomain of the domain of all objects, dedicated speci�cally toattribute- and method-objects. This can be handily achieved by making the system catalogue part ofthe class hierarchy. Details are unimportant here, but can be found in [KSK92].3

Classes. Classes have the function of organizing objects into sets of related entities. However,classes are also objects. They can have attributes just like regular objects and can be queried as regularobjects. To distinguish objects in the regular sense from classes, we will call the former individualobjects or just individuals .There is a pair of special binary relationships de�ned on objects. The �rst one, instance-of, isde�ned between individuals and classes; it determines which individuals belong to which classes. Thesecond relationship, called IS-A or subclass relationship, is de�ned between classes and is acyclic. Ifa class C is a subclass of another class C 0, then all instances of C must also belong to C 0. However,the converse is not necessarily true; for example, if at some point the only students registered in thedatabase are teaching assistants, this does not make the class Student a subclass of the class TA.Representing classes as objects achieves a great deal of uniformity, allows to query the class hier-archy (examples in Section 3.1), and eliminates the need for metaclasses (see [KLW90, KSK92]).Methods. A method is a pair consisting of a symbol, called the name of the method, and a partialfunction, called the implementation of the method. When confusion does not arise, we will use theterm \method" to refer either to the name or to the implementation of a method, depending on thecontext.When invoked in the scope of an object on a tuple of arguments, a method returns an answer and,possibly, changes the internal state of that object (e.g., by changing the value of an attribute). As afunction, each method has arity|the number of its arguments.Like attributes, methods can be scalar or set-valued, depending on the kind of result they return.Again like attributes, method names are logical oids and therefore can be returned as query answers,which is useful for schema exploration by the user. Furthermore, we do not really distinguish betweenmethods and attributes and simply view the latter as 0-ary methods, i.e., they do not require argumentsto be invoked.We thus see that the space of all objects is divided into three subdomains: individual-objects, class-objects, and method-objects (the latter includes attribute-objects). We assume that the universe ofclass-objects is disjoint from the other two universes. Classes will be used to classify not just individualobjects, but also objects that describe meta-data, such as methods and attributes. We may or maynot require the universes of individual-objects and method-objects to be disjoint. If we do, we gain adegree of syntactic safety by imposing stricter rules for syntactic correctness. If we do not, the user hasan added exibility in choosing names for individual-objects, attributes, and methods. As mentionedearlier, this matter concerns the representation of the system catalogue and can be found in [KSK92].Being a partial function, a method (just like an attribute) may have no value for some arguments.As in the case of an attribute, we distinguish between a method being unde�ned (i.e., its value is null)and being inapplicable (i.e., a type error). The formal de�nitions are postponed till Section 6.Types. In object-oriented languages, the abstract values of interest are objects; types provide oneof the important means of classifying objects. Another means of classi�cation is the concept of a classdiscussed earlier. While types are generally used to classify objects by structure, objects are groupedinto classes based on semantic criteria. Often|if not about always|objects that are instances of thesame class also share common structural features. Thus, grouping objects into classes implies typingbut not the other way around. This suggests that the concept of a class should be the primary meansof classi�cation in object-oriented languages.The type of a class is determined by the types of its methods (recall that attributes are 0-ary4

methods). The type of a method in a class C is described as a signature of the formMthd : Arg1; . . . ; Argk) Resultor Mthd : Arg1; . . . ; Argk)) Resultthat is attached to the de�nition of class C, where Argi and Result are class names. The singlearrow,), is used in the declarations of scalar methods, while the double arrow,)), is used for setmethods. As explained above, attributes are identi�ed with 0-ary methods and therefore they arecovered by the above de�nition. For aesthetic reasons, we will write their signatures as attr) class(or attr)) class) instead of attr :) class (resp., attr :)) class).The above signature is meant to say that when the method Mthd is passed arguments that areinstances of classes Arg1; . . . ; Argk, respectively, the result is expected to be an instance or a set ofinstances of the class Result, depending on whether Mthd is scalar or set-valued. Note that there areactually k + 1 (rather than k) arguments, since the method is invoked in the scope of some object,and that object could be viewed as the 0th argument. However, the class of the 0th argument is theone for which the signature is de�ned, and hence it is redundant to include the 0th argument in thesignature.A method can have several signatures, each constraining the behavior of the method on di�erentsets of arguments. When this is the case, the method is said to have polymorphic type. Polymorphicmethods are further discussed in Section 6. However, we do not discuss parametric polymorphismin this paper; the interested reader can consult [KLW90, KW90] for more details. A method canalso have di�erent signatures for the same type of arguments. For instance, suppose the followingsignatures are speci�ed for the class department :workstudy : semester)) student; workstudy : semester)) employeeThis states that workstudy is a unary method that, when invoked in the scope of an instance ofclass department with an argument of class semester , returns a set of this department's work-studystudents in the given semester; besides being students, these individuals are also employees of theuniversity. When more than one signature is speci�ed in this way we can save writing by combiningthem as follows: workstudy : semester)) fstudent; employeeg. Signatures are further discussed inSection 6.Inheritance. Methods de�ned in the scope of a class C are inherited by each of the subclasses ofC and by all of its instances. This means that even though a function may not be explicitly de�ned ona class-object or an individual object o, it may still be implicitly de�ned, provided that this functionis de�ned for a superclass of o. The same holds for attributes: even though an attribute may have noexplicitly de�ned value for a class or on an individual, this attribute is assumed to inherit the value ithas in an appropriate superclass.5 This kind of inheritance is called behavioral . There is a potentialproblem resulting frommultiple inheritance, i.e., when an object belongs to a pair of superclasses thatare incomparable with respect to the IS-A relationship. Another aspect of behavioral inheritance isoverriding of method de�nitions. These issues will be touched upon in Section 6.There is another aspect of inheritance, called structural inheritance, which is distinct from behav-ioral inheritance. As explained above, all objects in a class share some structural commonality. If C5It is common to distinguish so-called \default" attributes from the rest. It is only the default attributes that areinherited from superclasses. In this paper we are interested in default attributes only.5

is a subclass of C 0 then all objects in C share the structural commonality pertaining to the objects inC as well as that of C 0. Informally, we can say that C inherits the common structure of instances ofclass C 0. We deal with structural inheritance in Section 6.Relations. It has been argued many times in the literature [KW89, AK89, BEER89, KLW90]that objects do not always model real world in the most natural way, and there are situations whenthe use of relations on a par with objects leads to more natural representation. Relations are moreconvenient, for example, when a symmetric binary relationship between predicates is called for, or|asit is common with query languages|when query answer is a set of tuples of objects involved in thequery. Another argument for having relations in an object-oriented extension of a language like SQLis that it makes upward compatibility with the standard, relational SQL more natural. Althoughrelations can always be encoded as objects, this is not the most natural way of introducing relationsand so we prefer to have relations as �rst-class language constructs.3 Path Expressions3.1 De�nitionsFigure 1 shows an object-oriented schema.6 Thick arrows describe the IS-A hierarchy and thin ar-rows describe the composition (aggregation) hierarchy. (Attribute names that end with an asteriskdenote set-valued attributes; other attributes are scalar.) Path expressions describe paths along thecomposition hierarchy, and can be viewed as compositions of methods. For example, the expressionmary123:Residence:City (1)describes a path that starts in the object of class Person denoted by mary123, continues to theresidence of mary123, and ends in the city of that residence. In (1), \mary123" is called a selector,and \Residence" and \City" are called attribute expressions.Path expressions can be more general than the one above. Formally, a path expression is of theform selector0:AttEx1f[selector1]g: � � � :AttExmf[selectorm]g (2)where m � 0, and braces denote optional terms (i.e., only the �rst selector is mandatory). A selectoris either ground (abbr. g-selector) or variable (abbr. v-selector). A g-selector is just an object id,and a v-selector is an individual variable that ranges over id's of individual objects. The attributeexpressions AttEx1; . . . ; AttExm in (2) are either attribute names or attribute variables that rangeover attribute names. (We usually omit the classi�ers, \individual" or \attribute", of variables whenthey are clear from the context.) Note that \higher-order" variables do not make the underlying logicsecond-order (see [CKW89, KLW90]). Also note that any selector is also a (trivial) path; this followsfrom the above de�nition when m = 0.The formal de�nition of the meaning of a path expression requires several concepts which will bede�ned next. A database path (or just path when confusion does not arise) is any �nite sequence ofdatabase objects o0; o1; . . . ; on (n � 0); the object o0 is the head of the path and on is called its tail.A ground instance of a path expression is obtained by substituting an object id for each v-selector, andan attribute name for each attribute variable. Formally, a path expression E describes a set consistingof all database paths p, such that p satis�es some ground instance of E. A path o0; o1; . . . ; om, where6Figure 1 appears at the end of the paper. 6

the oi's are objects, satis�es the ground instance sel0:attr1f[sel1]g: � � � :attrmf[selm]g if all of thefollowing hold.� o0 = sel0.� For every j = 1; . . . ; m, if the selector selj is speci�ed in the above path expression (recall thatthese selectors are optional, by de�nition) then oj = selj .� For all i = 1; . . . ; m, the attribute attri must be de�ned on oi�1. Furthermore, if attri is scalar,then oi must equal the value of attri on object oi�1; if attri is set-valued then oi must belong tothe value of attri on oi�1.The set of database paths satisfying ground instances of the path expression E could be empty.This may happen because of a type error or because the path expression describes an empty set ofpaths in the current state of the database. For example, if E is the path expression (1) and mary123is not an object of the database, then the set of paths described by E is empty. In contrast, if E is thepath expression mary123.Residence.Salary, then this is a type error, since the result of Residenceis an object of class Address, but Salary is not an attribute of that class.Since the path expression (1) is ground (i.e., has no variables) and all its attributes are scalar, itis satis�ed by at most one database path. In comparison, the path expressionuniSQL.President.FamMembers.Namewould normally be satis�ed on database paths that begin with the Company-object uniSQL, passthrough uniSQL's president, a family member of that president, and end in the object representingthe name of this family member. If uniSQL's president had several family members, then there willbe several such database paths.If the expression (1) is slightly modi�ed, it can be utilized in the following query:SELECT YFROM Person XWHERE X.Residence[Y].City['newyork']Now we should consider all ground instances of the path expression in the WHERE clause. For eachground instance x:Residence[y]:City['newyork'], we should �rst check consistency with the FROMclause; in this case, consistency means that x should be an oid of a person.7 If the ground instanceis consistent, then y is in the answer provided that (at least) one database path satis�es the groundinstance.8 Observe that a path expression is used as a Boolean predicate, and a ground instance of apath expression is either true or false depending on whether it is satis�ed by some database path ornot.Quite often queries involve path expressions with intermediate v-selectors, where the purpose ofthese selectors is to limit intermediate objects in the path to instances of some class. For example,the following querySELECT ZFROM Employee X, Automobile YWHERE X.OwnedVehicles[Y].Drivetrain.Engine[Z]7A priori, consistency does not impose any restriction on y, since Y is not mentioned in the FROM clause. However,no database path would satisfy this ground instance unless y is an oid of class Address.8In this case, there is at most one database path satisfying the ground instance, since all attributes are scalar.7

retrieves all engines installed in the automobiles owned by employees. Here, the purpose of the variableY is to restrict the search through employee-owned vehicles to just automobiles.As explained in Section 2, attribute names are also logical object ids. This allows us to usevariables for querying database schema without having to know the internal representation of thesystem catalogue. For instance, inSELECT YFROM Person X (3)WHERE X.Y.City['newyork']X:Y:City['newyork'] is a legal path expression, since Y , being a variable, is an attribute expression.The answer to this query is the set of all attributes y, such that for some object x of class Personthe ground instance x:y:City['newyork'] is true (i.e., is satis�ed by some database path). Observethat if the selector ['newyork'] were omitted in the WHERE clause, the above query would have(potentially) returned more attributes y as an answer, since (for some databases) the ground instancex:y:City could be true even if x:y:City['newyork'] were false. For instance, if all people in thedatabase lived in Austin or San Francisco and none in New York, the above query would return noanswer; if the selector ['newyork'] were deleted, however, the attribute Residence would have beenreturned.We could extend our syntax by permitting path variables. We could then replace the path expres-sion in (3) by X: � Y:City['newyork'], where �Y can be bound to any sequence of attributes. Theresult would be that, unlike in (3), the user will not even have to know that there must be preciselyone attribute in the path from Person to City . Details of this extension are easy and we will notpursue this issue any further.In the previous examples, we used individual variables to range over the objects representing reg-ular data, such as persons, cities, etc., as well as meta-data, such as attributes. Although consideringattributes as objects is convenient for browsing database schemas, it is nevertheless clear that an at-tribute (or a method name) is a special kind of an object, henceforth called amethod-object. Therefore,a variable ranging over method-objects is called a method variable, and is pre�xed with a double-quote(e.g., "Y). Strictly speaking, this would make the path expression in (3) syntactically incorrect; thecorrect version would be X: "Y:City['newyork'].Attribute variables in path expressions let us ask questions about attributes and methods thatare de�ned for certain objects. Often it is also desirable to ask questions about attributes that areapplicable to an object. As noted in Section 2, attributes need not always be de�ned for all objects towhich they are applicable, since their value may be a null. In order to ask queries about applicableattributes one needs type variables|an issue discussed in [KSK92].The next example uses class variables , i.e., variables that range over id's of classes. To distinguishsuch variables we will pre�x their name with the \]"-sign.SELECT]X (4)WHERE TurboEngine subclassOf]XThe subclassOf relation is interpreted as a strict relation, i.e., Cl subclassOf Cl is always false.This query is evaluated, as before, by considering all assignments of oid's to variables. In this case,we must �nd all oid's of classes that|when substituted for]X|make the predicate in the WHEREclause true. Thus, the answer to this query consists of the following class names: FourStrokeEngine,PistonEngine, and Object (where Object is the class containing all individual objects as its instances).8

Using the following query template, we can formulate more sophisticated queries that, e.g., retrieveall classes]X of individual objects Y that satisfy certain properties:SELECT]XFROM]X YWHERE some condition on Y and]XTo summarize, not only did we classify the objects into three di�erent categories|classes, methods,and individual objects, but also the variables can be of the following variety: class-variables, method-variables, and individual-variables.3.2 Comparing Path ExpressionsPath expressions can be compared using the comparators =, ! =, >, and the like. Since path ex-pressions represent sets, these comparators may have to be modi�ed with the quanti�ers some orall. We de�ne the value of a ground path expression � to be the set of the tail objects of the databasepaths satisfying �. A comparison involving a pair of ground path expressions is evaluated by com-paring the values of these path expressions according to the speci�ed comparator. For example, thecomparison john13.FamMembers.Age some> 20is true when some family members of john13 are older than 20. Notice that we used the quanti�ersome to say that the expression is to be considered true if just one family member of john has theright age. To the right of \>" we have a path expression, 20, whose value is the singleton set f 20 g.Therefore, no quanti�er is needed.The query that �nds all employees with a family member who is over 20 years old is as follows:SELECT XFROM Employee XWHERE X.FamMembers.Age some> 20Formally, the result of this query is a set of objects from class Employee. An object o is in the resultif the ground instance o.FamMembers.Age is evaluated to a set containing at least one number greaterthan 20.Clearly, comparisons can be combined using Boolean connectives (e.g., and, or, not). In addition,since path expressions are evaluated to sets they can be compared using such standard set-comparatorsas contains , containsEq , subset , subsetEq , etc. We can also apply union, intersection, and set-di�erenceto path expressions. For example, the next query �nds all automobile companies managed by youngpresidents who own both blue and red vehicles:SELECT XFROM Automobile YWHERE Y.Manufacturer[X]and X.President.OwnedVehicles.Color containsEq f'blue', 'red'gand X.President.Age < 30 9

Note that it is not necessary to de�ne the range of X since it can be inferred from the path expressionthatX is of type Company. This query is evaluated similarly to the previous cases: For every Company-object x and an Automobile-object y that are substituted for X and Y, respectively, check if the valueof the ground path expression y:Manufacturer[x] is non-empty; if it is, evaluate the comparisonsx.President.OwnedVehicles.Color containsEq f'blue', 'red'g and x.President.Age < 30. If both aretrue, place the Company-object x in the answer. Other interesting examples of elementary comparisonsinclude: X.Residence.City =all X.FamMembers.Residence.Citywhich can be used to select Person-objects all whose family members reside in the same city; andY.FamMembers.Age all<all X.FamMembers.Agewhich is handy for �nding pairs of persons such that all family members of one person are strictlyolder than every family member of the other person.Finally, we remark that it also makes perfect sense to allow passing path expressions as argumentsto aggregate functions, such as sum, count, average, and use the result in comparisons. Thus, thequery to �nd all employees that make less than $35,000 and have family of more than 4 members allof which live in the same house is written as follows:SELECT XFROM Employee XWHERE count(X.FamMembers) > 4and X.Residence =all X.FamMembers.Residenceand X.Salary < 350003.3 Constructing and Manipulating RelationsSo far, we have dealt with queries that selected objects from one class of the database according to aspeci�ed condition. Conditions for selection could be rather complicated, but the results of the querieswere always sets of object id's from the database (that is, the SELECT clause always had a singlevariable).There is no reason to restrict the SELECT clause just to a single variable. Moreover, instead ofwriting a variable in the SELECT clause, it is possible to write any number of scalar path expressions(that is, expressions that produce single values once variables are bound to speci�c object id's). Forexample, consider the following query:SELECT X.Name, W.SalaryFROM Company X (5)WHERE X.Divisions.Employees[W]The result is a relation with two columns. The �rst column is a name of a company, and the second isthe salary of some employee of a division of that company. The above query is evaluated as follows: foreach assignment of object id's x and w to variablesX andW , respectively, a tuple <x.Name,w.Salary>is added to the result, provided that the condition in the WHERE clause, which forces w to be anemployee of some division of company x, is satis�ed.Since, in general, the SELECT clause can contain any list of scalar path expressions and theWHERE clause can be any Boolean combination of conditions, we essentially have the ability tospecify any join, including the implicit and explicit joins discussed in the query model of [KIM89b].An example of an explicit join is the following query:10

SELECT X, YFROM Company X (6)WHERE X.Name =some X.Divisions.Employees[Y].NameThis query produces tuples consisting of a company-object and an employee-object such that theemployee has the same name as the company he works in. In [KIM89b], a join of this type is calledexplicit, since it involves a comparison of two attributes that share a common domain, rather thanbeing based solely on the composition hierarchy.As usual in SQL, relations computed by queries can be manipulated by relational algebra operators,e.g., UNION, MINUS, etc.3.4 Semantics of Queries with Path ExpressionsThe formal semantics of queries considered thus far can be easily de�ned. Given a query Q, all sub-stitutions of oid's for variables should be considered, provided that they respect the sorts (individual,class, or method) of the variables. For each substitution that is consistent with the FROM clause, allground path expressions are evaluated. Next, the WHERE clause is evaluated as follows. A stand-alone ground path expression is true if its value is non-empty; a comparison is true if the values ofthe ground path expressions involved in it stand in the speci�ed relationship (such as \=", \some >",\= all"). The Boolean operators (and, or, and not) are evaluated in the usual way. If the WHEREclause evaluates to true, then the scalar ground path expressions in the SELECT clause are evaluated.The result of this evaluation is a tuple of oid's that is added to the answer of the query.The following theorem shows that the semantics of our langauge is rooted in F-logic [KLW90].Theorem 3.1 There exists an e�ective procedure P that for any given XSQL query � (of the formconsidered thus far) returns an equivalent �rst-order query in F-logic P(�).4 Creating New ObjectsQueries considered so far return relations, i.e., sets of tuples of object id's. The tuples themselvesdo not have object id's and duplicates are not allowed. In this section, we de�ne queries that returncomplex objects (rather than just tuples) and show how to assign oid's to the newly created objects.4.1 Assigning Object Id's to Query ResultInstead of merely viewing the result of a query as an ordinary relation, we can also view tuplesproduced by queries as new objects. This necessitates assigning object id's to the new tuples producedby queries. In addition, since attribute names are crucial to the composition of a complex object, weneed to extend our syntax to accommodate explicit assignment of values to attributes. Consider thefollowing query:SELECT EmpSalary = W.SalaryFROM Company XOID FUNCTION OF X,WWHERE X.Divisions.Employees[W] 11

This query has two new features. First, the SELECT clause gives explicit names to attributes ofthe output relation (in this case, there is a single attribute, called EmpSalary). Second, the OIDFUNCTION OF clause determines an object id for each tuple in the result. Note that a tuple of theresult is generated from a pair of object id's, say x and w, that are assigned to variables X and W,respectively. We follow the idea of [KW89] that the object id of a tuple generated from x and w shouldbe a function of x and w. In other words, associated with the query there is some partial function f,called id-function, such that the object id of the tuple generated from x and w is f(x,w). The userdoes not have to know what the function f is. In fact, it can be any partial function provided that foreach pair of oid's x and w, the value of f(x; w) is unique, if de�ned, and does not occur elsewhere inthe database. Also note that the function is not required to have a short mathematical form (such as2x3w). In fact, the function can be stored as a table showing explicitly the oid created for each pairof object id's x and w.Although the result of the above query does not contain oid's of class Employee (it only containssalaries of employees), the id-function provides a correspondence between employees and objects ofthe result. Since the id-function depends on both x and w, any object o of class Employee will havemore than one corresponding object in the result, if o represents an employee that works for morethan one company.If each employee works for only one company, then we may as well write the following query.SELECT EmpSalary = W.SalaryFROM Company XOID FUNCTION OF WWHERE X.Divisions.Employees[W]In this query, the id-function depends only on w, and therefore, for each object of class Employee,there will be a unique tuple in the result.One might wonder what would happen if we use the following query:SELECT CompName = X.Name, EmpSalary = W.SalaryFROM Company XOID FUNCTION OF XWHERE X.Divisions.Employees[W]In the answer to this query, two tuples corresponding to distinct salaries in the same company willbe assigned the same id (since the id-function depends only on the company). Since an object isde�ned solely by its object id, this is a contradiction. Therefore, the two tuples with distinct salariesin the same company are two conicting descriptions of the same object. We view this situation asan ill-de�ned query (a run-time error).So far, we have seen queries that create objects with only scalar attributes. We can also de�neobjects that have set attributes. As an example, suppose we want to create objects that have a scalarattribute for a company name and a set attribute whose value is the set of all employees of thatcompany. This can be accomplished as follows:SELECT CompName = Y.Name,Employees = Y.Divisions.Employees (7)FROM Company YOID FUNCTION OF Y 12

The precise meaning of this query is as follows. For each object id y assigned to Y, a new object iscreated in the result. The value of the attribute CompName of the new object is the company nameof the object assigned to Y. The value of the attribute Employees of the new object is the value ofthe ground path expression y:Divisions:Employees, which is a set of employees.For another example of the use of set attributes in the target list of a query, suppose that companiesneed to maintain rosters of bene�ciaries, where a bene�ciary of a company is either a retiree or adependent of an employee. This can be accomplished via the following query:9SELECT CompName = Y.Name, Beneficiaries = fWgFROM Company YOID FUNCTION OF Y (8)WHERE Y.Retirees[W]or Y.Divisions.Employees.Dependents[W]The braces in the SELECT clause indicate that the value of the attribute Bene�ciaries is the setof all w that, when substituted for W , satisfy the WHERE clause, given an assignment y for Y . Itcan be seen clearly from this example that the clause OID FUNCTION OF can play the role of theGROUP BY clause of SQL. Notice the ease with which the value of Bene�ciaries is speci�ed. Othersimilar proposals (e.g., O2 [BANC90]) would require a nested SELECT -clause in order to specify thevalue of Bene�ciaries .4.2 ViewsA complete discussion of views in object-oriented databases is beyond the scope of this paper. In thissection we illustrate a few salient aspects of querying and updating views that are not available inprevious proposals for object-oriented query languages. First, consider the following view de�nition.CREATE VIEW CompSalaries AS SUBCLASS OF ObjectSIGNATURE CompName) String, DivName) String, Salary) NumeralSELECT CompName = X.Name, DivName = Y.Name, Salary = W.SalaryFROM Company XOID FUNCTION OF X,WWHERE X.Divisions[Y].Employees[W]It declares a new view, CompSalaries , as a subclass of the class Object , which we will take to meanthe class of all individual objects. The SIGNATURE clause speci�es the type of each attribute of theview. Note that for each employee w of a company x, the view has an object consisting of the nameof company x, the name of division y in which employee w works, and the salary of w (but no otherinformation about employee w).10 Two distinct objects in the view could be equal on all attributesif they correspond to two employees of the same company that have the same salary. Thus, we havea view that could provide aggregate information about companies and salaries without containingexplicit information about the employees having those salaries (and, obviously, it could be used as asecurity measure).The above view can be also used in queries that involve other classes of the database schema. Forexample, the following query �nds all names of automobile companies that have some employees whoearn more than $35,000.9The attributes Retirees and Dependents of the classes Company and Employee, respectively, are not shown inFigure 1.10It is assumed that an employee cannot work in two distinct divisions of the same company.13

SELECT X.Manufacturer.NameFROM Automobile X, Employee WWHERE CompSalaries(X.Manufacturer,W).Salary > 35000 (10)Here, the expression CompSalaries(X.Manufacturer,W) denotes an object whose id is obtained asa result of an application of the id-function associated with the view CompSalaries to whateverAutomobile and Employee object ids are substituted for X and W , respectively. Whenever the resultof the application is de�ned (recall that CompSalaries is a partial function), we reach an employeesalary accessible through the attribute EmpSalary of the corresponding object in the view, and checkthat the salary is greater than $35,000. If the comparison is true, then the name of the company isadded to the answer.The form of the head selector in the path expression in (10) necessitates an extension of the syntaxof such selectors. An id-term [KW89] is either an oid, a variable (class, method, or individual), oran expression of the form f(t1; . . . ; tn), where f is a symbol denoting an id-function of n argumentsand t1; . . . ; tn are id-terms. Now, we allow selectors in path expressions to be id-terms instead ofjust oid's or variables. Note that the id-term CompSalaries(X:Manufacturer;W) in (10) does notquite satisfy the given de�nition of id-terms, but can be made to satisfy it after replacing it withCompSalaries(Y;W), where Y is a new variable, and adding the conjunct X:Manufacturer[Y] tothe WHERE clause.We conclude this section with an illustration of how the mechanism of assigning object id's toobjects in the views can be used to translate view updates to database updates. Consider again theview CompSalaries de�ned in (9). If we assume that each employee works in just one company, thenobjects in the view stand in the one-to-one correspondence with objects of class Employee from whichthe value of the attribute Salary is derived. Thus, an update made through the view on the Salaryattribute (for example, increase salaries of employees of UniSQL, Inc. by 10%) can be translated intoan update on the database.In general, an update on a view can be translated to an update on the database if there is someclass C of the database, such that objects of the view are in the one-to-one correspondence with objectsof class C. We will not de�ne a formal syntax for updating through a view, since these details arebeyond the scope of this paper. The main point, however, is that due to the explicit correspondencebetween objects in views and objects in database classes, we have a more powerful mechanism for viewupdate as compared to the relational model and other proposals for object-oriented query languages.A brief discussion of our treatment of views compared to [AB91] is in order. Besides the obvioussyntactic di�erences, the main distinction is that our queries create sets of objects while in [AB91] theycreate relations. Therefore, we can use queries to de�ne views, just as in the relational model, while[AB91] goes outside the query language to convert tuples into objects. Apart from the non-uniformity,this approach faces di�culties when the objects to be created are to have set attributes. Moreover,our explicit use of the clause \OID FUNCTION OF" circumvents the problems of [AB91] related tothe assignment of oid's to \imaginary" objects in views. Query (10) above also shows that, due toour taking id-functions seriously, views and non-views can be used in one query, like in the relationalmodel. It is unclear how this can be achieved in [AB91] without changing the philosophy underlyingthe language.Our discussion of views is incomplete, however. In agreement with [AB91], we believe that anobject-oriented view is not just a new virtual class as the discussion in this section may seem tosuggest. In general, a view would include a separate class hierarchy (which may share classes withthe \o�cial" class hierarchy of the database|see [AB91] for more discussion). However, since classes14

are also objects, in our language all work can be done using queries only, while [AB91] has to workaround the limitations of the query language at hand. View hierarchies will be treated in [KSK92].5 MethodsIn the presence of methods, path expressions have a format similar to the one used earlier, except thatattribute expressions are replaced by more general method expressions.A k-ary method expression is a statement of the form (Mthd@Arg1; . . . ; Argk), where Mthdis a method name of a method variable; Arg1; . . . ; Argk are oid's or variables that play the role ofarguments.11 A method expression is ground if it contains no variables. For 0-ary method expressions,i.e., for attribute expressions, we will write Attr instead of (Attr @), to save space and to make ourextended notation consistent with the old one.A Path expression now has the formselector0:MthdEx1f[selector1]g: � � � :MthdExmf[selectorm]g (11)where m � 0 and MthdEx1; . . . ; MthdExm are method expressions. Again, braces in (11) are usedto single out the optional selectors.The de�nition of satisfaction of path expressions by database paths is an obvious modi�cation ofthe de�nition in Section 3.1. A database path o0; o1; . . . ; om satis�es a ground path expressionsel0:(mthd1@a1;1; . . . ; a1;k1)f[sel1]g: � � � :(mthdm@am;1; . . . ; am;km)f[selm]gif all of the following hold:� o0 = sel0.� For every j = 1; . . . ; m, if the selector selj is speci�ed in the above path expression, thenoj = selj .� For all i = 1; . . . ; m, the method mthdi is de�ned on the arguments ai;1; . . . ; ai;ki in the scopeof object oi�1. Furthermore, if mthdi is scalar, then oi is the result of this method when it isinvoked on the above arguments in the scope of oi�1, i.e., oi = mthdi(oi�1; ai;1; . . . ; ai;ki) ; ifmthdi is set-valued, then oi 2 mthdi(oi�1; ai;1; . . . ; ai;ki).The value of a ground path expression is, as before, the set of all objects occurring as the tails of thedatabase paths satisfying the path expression.With the above extension of the syntax and the meaning of path expressions, the semantics ofqueries carries over from Section 3.4 without change. Theorem 3.1 holds true for this more generalcase as well.Methods can be de�ned similarly to queries and views. For instance, the following query de�nes anew method, MngrSalary, that is applicable to every Company-object. When this method is invokedby a Company-object c with an argument d of type Division, it returns the salary of the manager ofdivision d in company c. Not that we use the ALTER clause, since we consider the method de�nitionto be an extension of the original de�nition of class Company . In other words, the following methodde�nition alters the de�nition of class Company, and the signature of the newly de�ned method isadded to the signatures that are already declared in this class.11In general, a method expression or an argument could even be an id-term; see [KSK92] for a full exposition of thistopic. 15

ALTER CLASS CompanyADD SIGNATURE MngrSalary : String) NumeralSELECT (MngrSalary @ Y.Name) = WFROM Company X (12)OID XWHERE X.Divisions[Y].Manager.Salary[W]Notice how we used the abbreviated clause \OID X " to specify the object (i.e., X) in whose scopethe method MngrSalary is de�ned. Also notice that the path name Y:name is used as an argumentof a method expression in the SELECT clause, even though|strictly speaking|this is not allowedby the de�nition. It should be viewed as a shorthand for writing (MngrSalary @ Z) in the SELECTclause and adding the path expression Y:Name[Z] to the WHERE clause, where Z is a new variable.The following query illustrates how methods could be used in path expressions. This query refersto the method de�ned in (12); it retrieves all vehicles that are manufactured by companies that payhighly to all their division managers.SELECT XFROM Vehicle XWHERE 200000 <all (SELECT W (13)FROM Division YWHERE X.Manufacturer.(MngrSalary @ Y.Name)[W])This query has the following meaning. For each vehicle x, the nested query is evaluated. If itsresult is a set that contains only numerals greater than $200,000, then x is added to the result of theoutermost query. The nested query is evaluated thus: For every instance y of the class Division, ifthe path expression x:Manufacturer:(MngrSalary@y:Name) evaluates to a nonempty set, add theonly element of this set to the result.12As mentioned, method arguments in path expressions can also be used as selectors. For instance,using (MngrSalary@ 'Advertizing') in (13) instead of (MngrSalary@ Y:Name) will direct the sys-tem to retrieve those vehicles whose manufacturers pay high salaries to their advertizing chiefs.We can also de�ne methods that update the database, e.g., increase the salaries of all divisionmanagers by a speci�ed percentage:ALTER CLASS CompanyADD SIGNATURE RaiseMngrSalary : Numeral) ObjectSELECT (RaiseMngrSalary @ W) = nilFROM Company X, Numeral WOID XWHERE W < 20and (UPDATE CLASS CompanySET X.Divisions[Y].Manager.Salary = (1 + W/100) *X.(MngrSalary @ Y.Name))Notice the special-looking object, nil; it expresses the fact that the scalar method RaiseMngrSalarydoes not return meaningful values. The purpose of this method is to cause a side-e�ect through thenested update in the WHERE clause. Also, note the use of the method MngrSalary , de�ned in (12).The above de�nition of RaiseMngrSalary speci�es what needs to be done, should the new methodbe called in the scope of a Company-object with a numeric argument specifying percentage of the12Since Manufacturer and MngrSalary are both scalar methods, this set is always either empty or a singleton.16

raise. Namely, for the given company and percentage, evaluate W < 20 (to guard against huge salaryincreases) and then evaluate the nested UPDATE clause. If successful, return nil. An UPDATEclause evaluates to true if and only if the update was successful. We also assume that the conjunctsin the WHERE clause are evaluated in the left-to-right manner.6 Signatures and Typing6.1 Types and Structural InheritanceA signature M : A1, . . . , An) R speci�ed for a class A0 consists of a method name, M , and a typeexpression A0; A1; . . . ; An ; R (14)where \;" stands for either \)" or \))", depending on whether M is scalar or set-valued. Thetype expression says that the method is de�ned in the scope of class A0, accepts arguments of typesA1; . . . ; An (in that order), and returns a result of type R.Note that signatures in method de�nitions, such as (12) above, do not specify classes in which thecorresponding methods are invoked, because these classes are clear from the ALTER (or CREATE)clauses. However, for the formal treatment of types we must indicate these classes explicitly, whichwe do by putting them as the �rst argument in the corresponding type expressions (cf. (14), (15)).Since signatures can be easily confused with type expressions, signatures will always be pre�xed withmethod names (e.g.,M : A;B) C) while type expressions will be not (cf. (14), (15)).Consider the following type expression.A00; A01; . . . ; A0n ; R0 (15)We say that (15) is a supertype of (14) and (14) is a subtype of (15) if each A0i is a (possibly nonstrict)subclass of Ai, the class R0 is a (possibly nonstrict) superclass of R, and both (14) and (15) use thesame kind of arrow (\)" or \))"). Note that \supertype" means \superset", that is, the set offunctions described by (15) is a superset of the set of functions described by (14).Recall that a method M may have several de�nitions, and consequently, may have multiple sig-natures (this is known as polymorphism). In addition, de�nitions of methods (as well as signatures)are inherited. We distinguish between behavioral inheritance and structural inheritance. Behavioralinheritance means that de�nitions of methods are inherited and also overwritten. Speci�cally, if C 0 isa subclass of C andM is a method de�ned for C, then the de�nition ofM is inherited by C 0. However,if M is rede�ned in C 0, then the new de�nition overrides the one that would have been inherited fromC. Structural inheritance means that types of methods (but not their de�nitions) are always inheritedand never overwritten. Speci�cally, if C 0 is a subclass of C, then C 0 inherits all the signatures ofM thatexist in C; in addition, class C 0 may also have new signatures for M (as a result of new declarationsof M in C 0). Thus, the set of signatures of M in C 0 consists of all signatures in the ancestors of C 0and all signatures in the new de�nitions of M in C 0. Structural inheritance, also called covariance,reects reality in most (if not all) cases, and it is a nearly standard assumption in the works on typetheory. A discussion of typing without covariance is beyond the scope of this paper.It should be clear that if the class hierarchy is a DAG and not just a tree, then C 0 may have severalincomparable superclasses. As explained above, multiple inheritance of types is fairly simple: the setof signatures of M in C 0 contains all signatures inherited from all superclasses of C 0. This means17

that, as a function, M belongs to the intersection of the sets de�ned by each type expression in thesesignatures. For instance, the method earns may be declared with the signature earns : project) payin the class employee and earns : course) grade in the class student . This means that earns hastwo type expressions, employee; project) pay and student; course) grade. In particular, in theclass workstudy which is a subclass of both student and employee, earns returns an object of classpay when it is passed an argument of type project ; if the argument is of the type course then theresult will be an object of type grade.The issue of multiple inheritance with respect to behavioral inheritance is much more complex.Suppose that C 0 is a subclass of both C1 and C2 (but neither C1 nor C2 is a subclass of the other),and M is de�ned in both C1 and C2. In this case, it is not clear which de�nition of M is inheritedin C0. There is a vast body of work devoted to this issue which we will not discuss here ([ER83,TOU86, THT87, HTT87, BRE87, KK89, KLW90] is just a tip of the iceberg). We adapt the approachof [MEY88], and require the user to resolve inheritance conicts explicitly (i.e., the user should statewhich de�nition ofM is inherited in C 0 as part of the schema de�nition). However, as explained above,regardless of which de�nition of M is inherited (and even in case M is rede�ned in C 0), structuralinheritance implies that C 0 inherits all signatures that M has in C1 and in C2.Suppose that (14) is a type expression occurring in the declaration of a method M , and (15) is asupertype of (14). As mentioned earlier, the set of functions de�ned by (15) contains the set de�nedby (14), and thus M must also belong to the former set (since by its declaration, it belongs to thelatter). Therefore, we have the following de�nition: If a signature of M has the type expression (14),then we say that M possesses type (15) if (15) is a supertype of (14). By this de�nition, the set oftypes possessed by any method is closed under the supertype relationship (and this closure reects thee�ect of structural inheritance). When a method M possesses type (14), we say that M is applicableto arguments of types A1; . . . ; An in the scope of the class A0.6.2 Well-typed Queries and Type ErrorsIn order to simplify the discussion of well-typed queries, we consider only queries in which theWHEREclause is a conjunction (i.e., and is the only Boolean operator), and the SELECT clause is a list ofvariables. Moreover, we assume that each path expression in the WHERE clause has only v-selectors,g-selectors, and method names (in particular, id-terms are not allowed and method variables cannotappear in the role of method expressions). We also assume that if a path expression � appears in acomparison, then either � is just an oid, or � ends in a variable selector (this assumption can alwaysbe satis�ed by modifying the query13).A type assignment A to a given query is an assignment of at most one type expression to eachoccurrence of a method name in the WHERE clause. Distinct occurrences of the same method namemay be assigned di�erent type expressions. A type assignment A could be either complete, in case alloccurrences of method names are assigned type expressions, or partial, in case only some occurrencesare assigned type expressions.So, consider a type assignment A, and letSel0:(mthd1@A1;1; . . . ; A1;k1)[Sel1]: � � � :(mthdm@Am;1; . . . ; Am;km)[Selm] (16)13The modi�cation is done as follows. Suppose that �1��2 is a comparison in the WHERE clause. If �i (i = 1; 2) endsin a g-selector o (i.e., o is an oid), then we replace �i with o in the comparison �1��2 and add �i as an new conjunct tothe WHERE clause. If �i does not end in any selector, then we add a v-selector W at the end of �i, where W is a newdistinct variable. 18

be a path expression in the WHERE clause, where Seli and Ai;j are object ids or variables, and mthdiare method names. Note that we assume that all selectors Seli (i = 0; . . . ; m) appear (this assumptioncan be easily satis�ed by adding new distinct v-selectors wherever selectors are originally missing; itis needed to simplify the following de�nitions).If A assigns a type expression � tomthdi, then � must match14 the number of arguments ofmthdi,and must be possessed by mthdi.The type assignment A forces type assignments to selectors and arguments in (16) as follows. Ifmthdi is assigned the type expression Ti;0; Ti;1; . . . ; Ti;ki;Ri, then� Ai;j (1 � j � ki) is assigned the type Ti;j ,� Seli�1 is assigned the type Ti;0, and� Seli is assigned the type Ri.Note that if both mthdi and mthdi+1 (1 � i < m) are assigned type expressions, then Seli is assignedtwo types, Ri and Ti+1;0, that are not necessarily the same.Since a variable X may have multiple occurrences in the WHERE clause, a type assignment Amay assign multiple types to X . Formally, we de�ne the range of X with respect to A, denoted A(X),as the set consisting of� Object (i.e., each individual variable is automatically restricted to be of type Object),15� all the types that A assigns to occurrences of X in the WHERE clause, and� all the types that are assigned to occurrences of X in the FROM clause.We say that an oid o is within the range A(X) if o is an instance of every class in the range A(X).We say that A(X) is empty if no oid could ever be in A(X). For example, if A(X) contains bothPerson and Company, then it is empty. How this is speci�ed is unimportant here. We assume thatschema de�nition provides su�cient information for determining whether A(X) is empty.We say that a type assignment A is valid if for each path expression of the form (16) above, thefollowing holds.� A assigns a type expression � to mthdi only if � is possessed by mthdi and matches the numberof arguments of mthdi.� If Seli is an oid and A assigns a type T to it, then Seli is an instance of T .� If Ai;j is an oid and A assigns a type T to it, then Ai;j is an instance of T .� If �1��2 is a comparison in the WHERE clause, where � is a comparator, then the following istrue. The comparison o1�o2 is well de�ned for all o1 and o2, such that oi (i = 1; 2) is either �i,in case �i is an oid, or oi is in A(W), in case �i is a path expression that ends in the v-selectorW . (Recall that according to an earlier assumption, a path expression in a comparison is eitheran oid or ends in a v-selector.)14Recall that due to polymorphism mthdi may have di�erent de�nitions with distinct numbers of arguments.15Recall that Object is the class containing all individual objects as its instances.19

We de�ne a query to be liberally well-typed if there is (at least) one valid and complete typeassignment A, such that for each variable X (of the WHERE clause) the range A(X) is not empty.Type-correctness in a logical language|whether it is Datalog or an SQL derivative|is usually ametalogical notion. This means that it does not a�ect the semantics of queries and any query (well-typed or not) can be evaluated. Therefore, to evaluate a liberally well-typed query we can use thenaive process described in Section 3.4 (and extended in Section 5). We might use various optimizationstrategies, including the type information. For instance, if a preliminary (liberal) type analysis showsthat a query is ill-typed then it is guaranteed that this query returns no answers regarding of thedatabase contents.Quite often queries are evaluated by nested loops; that is, each path expression is evaluated by asequence of nested loops (corresponding to a traversal of the path from left to right), and di�erentpath expressions are evaluated one-by-one (also in a sequence of nested loops). The problem hereis that as we evaluate the sequence of nested loops, variables become bound to oid's, and so whenwe evaluate a speci�c method occurrence, all its arguments must already be bound to oid's of theappropriate types. This imposes a stricter notion of well-typing, which will be de�ned next.An execution plan for a query is just a partial order on the path expressions in theWHERE clause.An execution plan speci�es the order of evaluating the path expressions. So, let P be an executionplan and let A be a type assignment for the given query. Consider a path expression � of the form (16)above. The restriction of A to a method occurrence mthdi in � is the type assignment A0 de�ned asfollows. A0 is identical to A for every method occurrence m that either appears in a path expression�0, such that �0 precedes � in the execution plan P , or m appears in � to the left of mthdi. A0 isunde�ned (i.e., assigns no type expressions) on all other method occurrences in the WHERE clause,including mthdi itself.We de�ne a query to be strictly well-typed if there is a valid and complete type assignment A andan execution plan P , such that the following holds.1. For each variable X (of the WHERE clause), the range A(X) is not empty.2. For each path expression � of the form (16) above, and for every mthdi of �, the following holds.Let A0 be the restriction of A to mthdi in � and let16 A(mthdi) = (T0; . . . ; Tki ; R). Then(a) If argument Ai;j (j = 1; . . . ; ki) ofmthdi is a variable, then the range A0(Ai;j) is a subrange(de�ned next) of the class Tj (note that Tj is the type that mthdi expects of Ai;j under thetype assignment A); and(b) If Seli�1 is a variable then the range A0(Seli�1) is a subrange of T0 (which, again, is thetype mthdi expects of Seli�1).The �rst condition above is the same as in the de�nition of well-typing. The second condition simplysays that when mthdi is evaluated, its arguments are bound to oid's of the appropriate types. If aplan and a type assignment satisfy the above conditions we will say that they are coherent with eachother.Recall that in the above de�nition, A0(Ai;j) is a range, i.e., a set of classes. We say that the rangeR is a subrange of a class T if every oid belonging to the range R is also an instance of T . WhetherR is a subrange of T can be determined from the schema de�nition [KSK92].16A(mthdi) denotes the type expression that A assigns to the method name mthdi. Recall that if X is a variable(and, hence, not a method name), then A(X) is the range of X with respect to A.20

To illustrate the notion of a coherent type assignment, consider the following simple query fragment(more examples later):FROM Person XWHERE X.NameThere is only one execution plan17|the graph containing one node and no arcs. A coherent typeassignment would be the one that assigns the expression Person) string to Name. An assignmentA such that A(Name) = (Employee) string) would not be coherent with the plan because if A0is the restriction of A to Name then A0(X) = fPersong. The latter is not a subrange of Employee,the type that Name expects of X according to A.The di�erence between a well-typed query and a strictly well-typed query was illustrated in theintroduction. The query on Nobel Prizes is liberally well-typed but not strictly well-typed (unless themethod WonNobelPrize is de�ned for every class in the database). It is important to understand thatthe concept of the execution plan is not part of the query semantics and the user does not have tothink in terms of these plans when writing queries. So, execution plans do not a�ect the declarativenature of XSQL.A strictly well-typed query can be evaluated just as a liberally typed query, using the semanticsin Sections 3.4 and 5. However, we can utilize much of the typing information to optimize execution.First we need to �nd an assignment A and an execution plan P such that A is valid, complete, andcoherent with P . For any such plan P , it is easy to write a nested loop program that evaluates theanswer to the query. In [KSK92] we show how to �nd coherent pairs (A; P). The following theorem(whose proof appears in [KSK92]) shows that it su�ces to evaluate the query with respect to just onesuch coherent pair. Moreover, for each v-selector X it su�ces to limit instantiations to oids takenfrom A(X). This potentially very powerful optimization is not possible with untyped queries and isnot always possible even with queries that are liberally (but not strictly) well-typed.Theorem 6.1 Let Q be a strictly well-typed query and A and A0 be a pair of valid and complete typeassignments for Q that are coherent with the execution plans P and P 0, respectively. Then:1. Evaluating Q with respect to any one of these plans yields the same result.2. In the evaluation of Q with respect to, say, the plan P , it su�ces to consider only those instan-tiations o of X such that o 2 A(X), for every v-selector X in Q.While the Nobel Prize example shows that strict well-typing may be too strict in some cases,liberal well-typing is too permissive, since it does not take into account the fact that path expressionsare usually evaluated in nested loops. To strike a better balance between these two notions we cande�ne well-typing with exemptions . Namely, whenever desired, we can exempt arguments of certainmethod occurrences from the second test in the de�nition of strict well-typing. For the Nobel Prizeexample, we can exempt the 0-th argument of WonNobelPrize, which will make the path expressionX.WonNobelPrize type-correct. Note that the liberal and the conservative notions of well-typing arejust the two extremes of the notion of well-typing with exemptions: the liberal notion exempts allarguments while the conservative exempts none.To illustrate the notion of strict well-typing, consider the following query fragment:17It is convenient to represent a plan as a DAG in which nodes correspond to path expressions and arcs describe thepartial order. 21

FROM Vehicle XWHERE X.Manufacturer[M] (17)and M.President.OwnedVehicles[X]We have two path expressions and three di�erent execution plans. The �rst plan has no arcs. Thesecond plan has an arc from the �rst path expression in (17) to the second. The third plan containsan arc going in the opposite direction. Consider the following valid and complete type assignment A:A(Manufacturer) = (V ehicle) Company);A(President) = (Company) Person);A(OwnedV ehicles) = (Person)) V ehicle): (18)It does not satisfy the second condition for strict well-typing with respect to the �rst and the thirdplans because M does not occur in FROM . Indeed, consider the restriction of A to President , call itA0. Then the range A0(M) that A0 assigns to the second occurrence ofM in (17) is fObjectg. On theother hand, the type that President expects of M under A is Company. However, fObjectg is not asubrange of Company , contrary to the second condition in the de�nition of coherence. The situationis di�erent if we consider the second execution plan: it is easy to verify that A is coherent with thatplan and so the query is strictly well-typed.Execution plans are not always as simple as the above example may suggest. Suppose the methodMember has a type expression Association;Numeral)) Organization and let President have onemore type expression: Organization) Person. Consider the following query fragment:FROM Numeral YearWHERE X.Manufacturer[M] (19)and M.President.OwnedVehicles[X]and OO Forum.(Member @ Year)[M].Now there are many execution plans, some of which have while others have no coherent type assign-ments. The only plan that has a coherent type assignment, call it A1,A1(Manufacturer) = (V ehicle) Company);A1(President) = (Organization) Person);A1(OwnedV ehicles) = (Person)) V ehicle): (20)is the plan containing the arcs from the third to the second and from the second to the �rst pathexpressions. This is because in other execution plans, either the restriction of A1 to Manufacturerassigns X the range fObjectg or the restriction of A1 to President does so for M . In either casefObjectg is not a subrange of the types that the Manufacturer and President expect of X and M(which are Vehicle and Organization, respectively).7 Conclusion and Related WorkWe presented some of the salient features of a new language for querying object-oriented databases.The language is capable of expressing sophisticated queries in a very concise way. This is achievedvia extended path expressions, which are more expressive than any of the previous manifestations (forexample, [ZAN83, BEEC88, CLUE89, DLR88]) of the dot notation for nested structures. We extendedpath expressions with the concept of selector, accommodated methods, and \higher-order" variables22

that range over method names and classes. The use of higher-order variables endows our languagewith truly novel capabilities that allow the user to browse database schema in a very intuitive way.The proposed language has a rigorously de�ned notion of well-typed queries (which is absent fromall previous proposals for object oriented query languages). In fact, we argued that there must beseveral such notions available and the user should have the option to choose the one most suitable forthe query at hand.Views in our language are constructed via queries, in line with the relational model. This is simplerand more uniform than the construction of views in [AB91], and circumvents certain problems thathave to be dealt with there. Furthermore, views and non-views can be referred to in the same query.The issues concerning the expressive power are beyond the scope of this paper. Su�ces it tomention that we can show that the proposed language has the expressive power of �rst-order queriesin F-logic [KLW90] (which are analogous to queries in Codd's relational calculus, but are built on anobject-oriented logic.)AcknowledgmentsPreliminary ideas concerning the use of path expressions for querying object-oriented databases camefrom the work of Zaniolo [ZAN83] and from the work that Won Kim did together with Jay Banerjee,Fausto Rabitti, and Elisa Bertino. Selectors in path expressions were �rst proposed in [KS90] and latermodi�ed based on the ideas in [CW89, KW89]. The use of �rst-order variables for schema browsingoriginates in [KL89, KLW90]. The authors would also like to express their gratitude to MarianoConsens, Georg Lausen and Rodney Topor for their insightful comments on the ideas presented herein.References[AB91] Abiteboul, S., A. Bonner, \Objects and Views," Proc. ACM SIGMOD Conf. on Manage-ment of Data, 1991.[AK89] Abiteboul, S., P. C. Kanellakis, \Object Identity as a Query Language Primitive,"Proc. ACM SIGMOD Conf. on Management of Data, 1989, pp. 143{153.[BANC90] Bancilhon, F., S. Cluet, and C. Delobel, \The O2 Query Language Syntax and Semantics,"Technical Report 45-90, GIP Altair, May 1990.[BEEC88] Beech, D., \A Foundation for the Evolution from Relational to Object Databases,"Proc. EDBT Conf., Venice, Italy, 1988, pp. 251{270.[BEER89] Beeri, C., \Formal Models for Object-Oriented Databases," Proc. First Int. Conf. onDeductive and Object-Oriented Databases, Kyoto, Japan, Dec. 1989, pp. 370{395.[BERT89] Bertino, E., and W. Kim, \Indexing Techniques for Queries on Nested Objects," IEEETrans. on Knowledge and Data Engineering, Dec. 1989.[BRE87] Brewka, G., \The Logic of Inheritance in Frame Systems," Proc. Intl. Joint Conf. onArti�cial Intelligence, pp. 483{488, 1987.23

[CKW89] Chen, W., M. Kifer, D. S. Warren, \HiLog: A First-Order Semantics for Higher-OrderLogic Programming Constructs," Proc. of North-American Conf. on Logic Programming,October 1989, Cleveland, Ohio.[CW89] Chen, W., D. S. Warren, \C-logic for Complex Objects," Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, 1989, pp. 369{378.[CLUE89] Cluet, S., C. Delobel, C. L�ecluse, and P. Richard, \Reloop, an Algebra Based QueryLanguage for an Object-Oriented Database System," Proc. First Int. Conf. on Deductiveand Object-Oriented Databases, Kyoto, Japan, Dec. 1989, pp. 294{313.[DLR88] Delobel, C., C. L�ecluse, P. Richard, \LOOQ: A Query Language for Object-OrientedDatabases, Informal Presentation," Proc. AFCET Conf. on Knowledge and Object-Oriented Database Systems, Paris, Dec. 1988.[ER83] Etherington, D. W., R. Reiter, \On Inheritance Hierarchies with Exceptions," Proc.National Conf. on Arti�cial Intelligence, pp. 104{108, Washington, D.C., 1983.[1] Gardarin G., P. Valduriez, \ESQL2: An Object-Oriented SQL with F-Logic Semantics,"Proc. of IEEE Intl. Conf. on Data Engineering, Phoenix, AZ, Feb. 1992.[HTT87] Horty, J.F., R.H. Thomason, D.S. Touretzky, \A Skeptical Theory of Inheritance inNonmonotonic Semantic Nets," National Conference on Arti�cial Intelligence, 1987, pp.358{363.[KL89] Kifer, M., G. Lausen, \F-Logic: A Higher-Order Language for Reasoning about Objects,Inheritance, and Schema," Proc. SIGMOD Conf. on Management of Data, 1989, pp.134{146.[KLW90] Kifer, M., G. Lausen, J. Wu, \Logical Foundations of Object-Oriented and Frame-BasedLanguages," Technical Report #90/14, Department of Computer Science, SUNY at StonyBrook, August 1990. to appear in J. of ACM.[KSK92] Kifer, M., Y. Sagiv, W. Kim, \A First-Order Query Language for Object-OrientedDatabases," UniSQL Tech. Report, 1992. in preparation.[KW89] Kifer, M., J. Wu, \A Logic for Object-Oriented Logic Programming (Maier's O-LogicRevisited)," Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of DatabaseSystems, 1989, pp. 379{393.[KW90] Kifer, M., J. Wu, \A First-Order Theory of Types and Polymorphism in Logic Program-ming," Technical Report #90/23, Department of Computer Science, SUNY at StonyBrook, July 1990. Also in Intl. Symp. on Logic in Computer Science (LICS-91), Amster-dam, July 1991.[KW92] Kifer, M., J. Wu, \A Logic for Programming with Complex Objects," Journal of Com-puter and System Science, 1992. to appear.[KIM89a] Kim, W., et al., \Features of the ORION Object-Oriented Database System," in Object-Oriented Concepts, Databases, and Applications, (W. Kim and F. Lochovsky, eds.) May1989, Addison-Wesley/ACM Press, pp. 251{282.24

[KIM89b] Kim, W., \A Model of Queries for Object-Oriented Databases," Proc. Intl. Conf. on VeryLarge Data Bases, August 1989, Amsterdam, the Netherlands, pp. 423{432.[KK89] Krishnaprasad, T., M. Kifer, \An Evidence-Based Framework for a Theory of Inheri-tance," Proc. Intl. Joint Conf. on Arti�cial Intelligence, 1989.[KLK91] Krishnamurthy, R., W. Litwin, and W. Kent, \Language Features for Interoperability ofDatabases with Schematic Discrepancies," Proc. ACM SIGMOD Conf. on Managementof Data, 1991, pp. 40{49.[KS90] Kim, W., Y. Sagiv, \A Query Language for Object-Oriented Databases," MCC ReportACT-OODS-087-90, February 1990.[LR89] Lecluse, C., P. Richard, \The O2 Database Programming Language," Proc. Conf. onVery Large Data Bases, Amsterdam, The Netherlands, Aug. 1989.[MEY88] Meyer, B., \Object-Oriented Software Construction," Prentice Hall, 1988.[MBW80] Mylopoulos, J., P.A. Bernstein and H.K.T. Wong, \A Language Facility for DesigningDatabase-Intensive Applications", ACM Transactions on Database Systems, 5:2, 1980,185{207.[RKB87] Roth, M. A., H. F. Korth, and D. S. Batory, \SQL/NF: A Query Language for :1NFRelational Databases," Information Systems, 12:1(1987), pp. 99{114.[SS86] Schek, H.-J., and M. H. Scholl, \An Algebra for the Relational Model with Relation-Valued Attributes," Information Systems, 11:2(1986), pp. 137{147.[TOU86] Touretzky, D.S., \The Mathematics of Inheritance," Morgan-Kaufmann, Los Altos, CA,1986.[THT87] Touretzky, D.S., J.F. Horty, R.H. Thomason, \A Clash of Intuitions: The Current Stateof Nonmonotonic Multiple Inheritance Systems," Proc. Intl. Joint Conf. on Arti�cialIntelligence, pp. 476{482, 1987.[ZAN83] Zaniolo, C., \The Database Language GEM," Proc. ACM SIGMOD Int. Conf. on Man-agement of Data, 1983, pp. 423{434.
25

??
-?

?

�
?

-?

-��XX
?

? ? ?

..........................JJ�� ���������� ���������� ���������� ���������� ���������� ��������� ��������� ��������� ��AA��....................... """"" """"" """"" """"" """"" """"" """"" """"" """"" """""TurboEngine DieselEngine

......................................@@̀̀̀aa...................AAA....................... ������ ������ ������ ������ ������ ������

Attribute-Domain LinkIS-A RelationshipLegend:FourStrokeEngineTwoStrokeEngine CylinderN (numeral)CCsize (numeral)HPpower (numeral)PistonEngineAutoBodyDoors (numeral)Chassis (string)Interior (string) (string)TransmissionEngineVehicleDrivetrain
Phone (numeral)State (string)City (string)Street (string)BicycleSize (numeral) AutomobileBodyDrivetrainMotorbikeDrivetrain

(string)NameLocationFunction (string)(string)(numeral)(string)
(numeral)(string)

PresidentDivisions�HeadquartersName
OwnedVehicles�ResidenceAgeName
Company

AddressPerson(string)(string)VehicleColorManufacturerModel
EmployeeSalaryFamMembers�Quali�cations�

DivisionManagerEmployees�
Figure 1: An Object-Oriented Database Schema26

