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Abstract

We present a novel language for querying object-oriented databases. The language is built
around the idea of extended path expressions that substantially generalize [ZAN83], and on an adap-
tation of the first-order formalization of object-oriented languages from [KW89, KLW90, KW92].
The language incorporates features not found in earlier proposals; it is easier to use and has greater
expressive power. Some of the salient features of our language are:

e Precise model-theoretic semantics.

e A very expressive form of path expressions that not only can do joins, selections and unnesting,
but can also be used to explore the database schema.

e Views can be defined and manipulated in a much more uniform way than in other proposals.

e Database schema can be explored in the very same language that is used to retrieve data.
Unlike in relational languages, the user needs not know anything about the system tables that
store schema information.

e The notions of a type and type-correctness have precise meaning. It accommodates a wide
variety of queries that might be deemed well- or ill-typed under different circumstances. In
particular, we show that there is more than one way of settling the issue of type correctness.

For expository purposes and due to space limitation, we chose to make a number of simplifying
assumptions and left some features out. A more complete account can be found in [KSK92].

*Appeared in ACM SIGMOD Conference on Management of Data, San Diego, CA, June 1992, pages 393-402
tWork supported in part by the NSF grants IRI-8903507 and CCR-9102159. On sabbatical leave from Stony Brook
University.



1 Introduction

In recent years, several papers [BANC90, BEEC88, CLUES89, DLR88, KS90, 1] have proposed query
languages for object-oriented databases. However, none of these languages captures (or even attempts
to deal) with all the aspects of the object-oriented model. In this paper, we present a new query
language that incorporates features not found in earlier languages. The proposed language, henceforth
referred to as X SQ L , is easier to use and has more expressive power than previous languages. It should
be emphasized that it is not our goal here to introduce the full-fledged syntax and semantics of XSQL.
Rather, we use the familiar SQL-like syntax to illustrate certain philosophy in designing object-oriented
languages—a philosophy put forward in [KIM89b, KS90] and [CW89, KW89, KW92, KLW90]. Before
discussing the novelties found in our language, we should point out some of the differences between
the object-oriented model and the relational model.

The different features of these two models induce different modes of representing information and
querying it. A detailed discussion of these issues is found in [KIM89b|; we will describe some of the
important aspects through an example. Suppose that a database includes information about engines
and their types (e.g., turbo engines, diesel engines, etc.). In a relational database, there would likely be
an attribute Engine Type having the various engine types as its possible values. In an object-oriented
database, there would likely be a class Engines having the various engine types as its subclasses. This
is a fundamental difference, because it shifts the information about engine types from the data to the
schema. For example, suppose we want to know what are all the engine types.! In the relational
model, we simply project onto the attribute FngineType. In the object-oriented model, we have to
interrogate the schema rather than the data (and there is hardly any language for doing that).

The above example shows the need for features not available in relational query languages. In
particular, since an object-oriented schema is likely to have much more information than a relational
schema, querying the schema (as well as querying the data without a complete knowledge of the
schema) becomes an important issue. We also need to deal easily with nested structures.

X 5QL provides these (and other) features through path ezpressions. Although the idea of path ex-
pressions is not new (it first appeared in [ZAN83] and had many incarnations since then), our eztended
path expressions have the following features and expressive power not found in earlier incarnations of
this idea.

1. Path expressions may have variables that range over classes and attributes (and even methods)
rather than data, and hence, it is possible to query data without a complete knowledge of
the schema. (Earlier query languages for object-oriented databases completely lack any similar
feature. The language of [KLK91] has some similar features, but it was designed for the relational
model.) Note that in spite of having variables that range over classes, attributes, and methods,
the language is still first order, since it is based on F-logic [KLW90].

2. Path expressions also have selectors that could select either some specific data or some specific
part of the schema (from which data is to be retrieved).

3. Path expressions may incorporate both attributes and methods in a uniform way that is more
general than just composing methods as function applications (as found in functional query
languages).

! Actually, this example is rather intricate. One may want to know all the engine types that are currently installed in
some vehicles, or one may want to know all the engine types that exist, including those that are currently not installed
in any vehicle. The language we propose can handle easily each one of these possibilities.



4. Path expressions “flatten” any nested structure in one sweep, and therefore, there is no need
to break a path of the schema into several path expressions and apply a “collapse” operator to
each one.

All the above features increase the expressive power of X SQL and also make it easier to read and
write queries. In many cases, queries can be expressed as one simple path expression, while in earlier
proposals the same queries could be expressed only by using several path expressions and/or nested
subqueries. Path expressions are discussed in Sections 3 and 5.

One drawback of earlier languages is that they violate encapsulation. As explained in [BANC90],
violating encapsulation means that “objects can be considered as the values they encapsulate.” This
is not the case in our language. We use the approach of F-logic [KLW90] in order to give precise
semantics to X SQL without violating encapsulation.? In essence, the language manipulates objects
(and not the values they encapsulate), and is capable of creating new objects from existing ones.
Therefore, X SQ L also provides a powerful viewing mechanism, which is discussed in Section 4. When
creating new objects, we adapt the approach of [KW89] that invents new object identifiers by applying
function symbols to existing object identifiers. This approach circumvents the problems with assigning
id’s to “imaginary objects” discussed in [AB91]. As in the relational model, views in our language are
constructed via queries, which is simpler and more uniform than in other proposals.

Typing is one of the cornerstones of the object-oriented model. Earlier languages, however, hardly
discussed the question of when a query is well-typed. We discuss this problem in the framework of
X SQL , and show that there is more than one way of settling the issue. The following example may
help crystalize some of the options. Consider a database that has information on the winners of Nobel
Prizes. In particular, there is an attribute (or possibly a method) WonNobelPrize that, for a given
object, specifies the area(s) in which that object won the prize. Suppose we want to find all winners
of Nobel Prizes. The problem is that winners are not necessarily members of one class. Generally,
winners could be persons or organizations of various types.® It is unlikely that a casual user would
know exactly all the classes in the database for which WonNobelPrize is defined. Nevertheless, in
X SQL one may simply write the query

SELECT X
WHERE X.WonllobelPrize

and the answer would be all objects for which WonNobelPrize is defined and its value is nonempty. It
is not clear, however, whether this query should be considered as well-typed.* Obviously, if we allow
queries of this form, the expressive power of the language is enhanced considerably. However, too
much expressive power might violate the principle behind typing, and might result in users getting
unexpected results (to ill conceived queries) rather than type errors. In Section 6, we discuss typing
and outline a spectrum of approaches between a conservative approach that considers the above query
as ill-typed, and a liberal approach that considers it as well-typed. The conservative approach does
not really permit a query about winners of Nobel Prizes without specifying the classes for which
WonNobelPrize is defined. This raises the need for querying the schema (rather than the data). Some
of this is discussed in Section 3, but more information can be found in [KSK92].

?Familiarity with F-logic is not necessary for understanding this paper, except for Theorem 3.1 and the expressiveness
result mentioned in the concluding section.

3For example, UNICEF (United Nations International Children’s Emergency Fund) won the Nobel Peace Prize.

*It could be argued that since the type of X is not declared, the query is not well-typed.



2 Data Model Review

Since conceptual data model is an integral part of any query language, we first review the object-
oriented data model used throughout this paper. This model was put together into a coherent logical
system in [KLW90], although some of its elements have appeared earlier, in [KW89, CW89, KIM89a,
KL89] and other papers and systems.

Objects and object identity. Objects are abstract or concrete entities in the real world. In our
model, the programmer refers to objects via their logical object ids, which are nothing but syntactic
terms in the query language. For instance, __324, johnP23, secretary(dept77) are logical object ids.
We follow [KW89, KL.89, KLW90] and use explicit id-functions (such as secretary above) to get our
hands on a sufficient supply of such ids. This mechanism will be primarily used to define user views.

Any logical oid uniquely identifies an object. However, unlike most approaches (that confuse the
implementational and conceptual issues) we do not require an object to have a unique id at the logical
level. For instance, _mary65 and secretary(dept77) may refer to the same object.

Physical object identity is a purely implementational notion—a surrogate or a pointer to an object.
Logical oids can be implemented as physical object identities, but unlike physical pointers logical oids
may carry certain semantic information. For instance, we consider ‘20’ to be a logical id of the abstract
object with the usual properties of the number 20. Likewise, “Ford Motor Co.” is a logical id of the
object with the usual properties of a string consisting of the characters ‘F’, ‘o’, ‘r’, ‘d’, ¢ ’, etc., in that
order.

Since this paper touches upon language issues only, we will be using the words “object identity”
or even just “object” to refer to ids at the logical level.

Attributes. Objects are described via attributes. An attribute may be either defined, undefined,
or tnapplicable for an object obj. If an attribute is defined, then it also has a value for o0bj; otherwise,
it has no value. If an attribute is not applicable to obj, then it is also undefined for obj, but unde-
finedness does not imply inapplicability. Intuitively, inapplicability captures the idea of type error—a
situation when an attribute is used in the scope of an object to which it does not apply. In contrast,
undefinedness of an attribute is analogous to the null value in the relational model. The issue of typing
will be formally taken up in Section 6.

Unlike some other approaches [LR89], our model does not divide the world into set-objects and
tuple-objects. Essentially, all our objects are tuple-objects. Each entry in a tuple-object is the value
of one attribute. If the attribute is scalar, then the value is a single object id; if the attribute is set-
valued, then the value is a set of object id’s. Set-objects are described in our model as tuple-objects
having a single, set-valued attribute. As explained in [KW89, CW89], this approach achieves more
uniformity than other proposals, and modeling sets of arbitrary nesting depth becomes quite easy.

Following [KL89, KLW90], we do not completely isolate the space of attribute names from the
space of other logical oids. In other words, any logical oid, depending on its syntactic position in
a query, may play the role of an attribute or that of an object. Theoretical underpinnings of this
approach appear in [KLW90]; its practical benefits—as we shall see—are that the user can now ask
questions about the structure of the database in a very natural way, without knowing the system
tables that represent the database schema. In practice, it is useful to distinguish attribute names from
other objects by placing them in a subdomain of the domain of all objects, dedicated specifically to
attribute- and method-objects. This can be handily achieved by making the system catalogue part of
the class hierarchy. Details are unimportant here, but can be found in [KSK92].



Classes. Classes have the function of organizing objects into sets of related entities. However,
classes are also objects. They can have attributes just like regular objects and can be queried as regular
objects. To distinguish objects in the regular sense from classes, we will call the former individual
objects or just individuals.

There is a pair of special binary relationships defined on objects. The first one, instance-of, is
defined between individuals and classes; it determines which individuals belong to which classes. The
second relationship, called IS-A or subclass relationship, is defined between classes and is acyclic. If
a class C is a subclass of another class C’, then all instances of C' must also belong to C'. However,
the converse is not necessarily true; for example, if at some point the only students registered in the
database are teaching assistants, this does not make the class Student a subclass of the class TA.

Representing classes as objects achieves a great deal of uniformity, allows to query the class hier-
archy (examples in Section 3.1), and eliminates the need for metaclasses (see [KLW90, KSK92]).

Methods. A method is a pair consisting of a symbol, called the name of the method, and a partial
function, called the implementation of the method. When confusion does not arise, we will use the
term “method” to refer either to the name or to the implementation of a method, depending on the
context.

When invoked in the scope of an object on a tuple of arguments, a method returns an answer and,
possibly, changes the internal state of that object (e.g., by changing the value of an attribute). As a
function, each method has arity—the number of its arguments.

Like attributes, methods can be scalar or set-valued, depending on the kind of result they return.
Again like attributes, method names are logical oids and therefore can be returned as query answers,
which is useful for schema exploration by the user. Furthermore, we do not really distinguish between
methods and attributes and simply view the latter as 0-ary methods, i.e., they do not require arguments
to be invoked.

We thus see that the space of all objects is divided into three subdomains: individual-objects, class-
objects, and method-objects (the latter includes attribute-objects). We assume that the universe of
class-objects is disjoint from the other two universes. Classes will be used to classify not just individual
objects, but also objects that describe meta-data, such as methods and attributes. We may or may
not require the universes of individual-objects and method-objects to be disjoint. If we do, we gain a
degree of syntactic safety by imposing stricter rules for syntactic correctness. If we do not, the user has
an added flexibility in choosing names for individual-objects, attributes, and methods. As mentioned
earlier, this matter concerns the representation of the system catalogue and can be found in [KSK92].

Being a partial function, a method (just like an attribute) may have no value for some arguments.
As in the case of an attribute, we distinguish between a method being undefined (i.e., its value is null)
and being inapplicable (i.e., a type error). The formal definitions are postponed till Section 6.

Types. In object-oriented languages, the abstract values of interest are objects; types provide one
of the important means of classifying objects. Another means of classification is the concept of a class
discussed earlier. While types are generally used to classify objects by structure, objects are grouped
into classes based on semantic criteria. Often—if not about always—objects that are instances of the
same class also share common structural features. Thus, grouping objects into classes implies typing
but not the other way around. This suggests that the concept of a class should be the primary means
of classification in object-oriented languages.

The type of a class is determined by the types of its methods (recall that attributes are 0-ary



methods). The type of a method in a class C is described as a signature of the form
Mthd : Arg4,...,Argr = Result

or
Mthd : Argj,...,Argy == Result

that is attached to the definition of class C, where Arg;, and Result are class names. The single
arrow, =, is used in the declarations of scalar methods, while the double arrow, ==, is used for set
methods. As explained above, attributes are identified with 0-ary methods and therefore they are
covered by the above definition. For aesthetic reasons, we will write their signatures as attr = class
(or attr =» class) instead of attr : = class (resp., attr : = class).

The above signature is meant to say that when the method Mthd is passed arguments that are
instances of classes Argy, ..., Argy, respectively, the result is expected to be an instance or a set of
instances of the class Result, depending on whether Mthd is scalar or set-valued. Note that there are
actually £ + 1 (rather than k) arguments, since the method is invoked in the scope of some object,

and that object could be viewed as the oth argument. However, the class of the oth argument is the

one for which the signature is defined, and hence it is redundant to include the oth argument in the
signature.

A method can have several signatures, each constraining the behavior of the method on different
sets of arguments. When this is the case, the method is said to have polymorphic type. Polymorphic
methods are further discussed in Section 6. However, we do not discuss parametric polymorphism
in this paper; the interested reader can consult [KLW90, KW90] for more details. A method can
also have different signatures for the same type of arguments. For instance, suppose the following
signatures are specified for the class department:

workstudy : semester —= student, workstudy : semester —=> employee

This states that workstudy is a unary method that, when invoked in the scope of an instance of
class department with an argument of class semester, returns a set of this department’s work-study
students in the given semester; besides being students, these individuals are also employees of the
university. When more than one signature is specified in this way we can save writing by combining
them as follows: workstudy : semester == {student,employee}. Signatures are further discussed in
Section 6.

Inheritance. Methods defined in the scope of a class C are inherited by each of the subclasses of
C and by all of its instances. This means that even though a function may not be explicitly defined on
a class-object or an individual object o, it may still be implicitly defined, provided that this function
is defined for a superclass of 0. The same holds for attributes: even though an attribute may have no
explicitly defined value for a class or on an individual, this attribute is assumed to inherit the value it
has in an appropriate superclass.® This kind of inheritance is called behavioral. There is a potential
problem resulting from multiple inheritance, i.e., when an object belongs to a pair of superclasses that
are incomparable with respect to the IS-A relationship. Another aspect of behavioral inheritance is
overriding of method definitions. These issues will be touched upon in Section 6.

There is another aspect of inheritance, called structural inheritance, which is distinct from behav-
ioral inheritance. As explained above, all objects in a class share some structural commonality. If C

®It is common to distinguish so-called “default” attributes from the rest. It is only the default attributes that are
inherited from superclasses. In this paper we are interested in default attributes only.



is a subclass of C’ then all objects in C share the structural commonality pertaining to the objects in
C as well as that of C'. Informally, we can say that C inherits the common structure of instances of
class C'. We deal with structural inheritance in Section 6.

Relations. It has been argued many times in the literature [KW89, AK89, BEER89, KLW90]
that objects do not always model real world in the most natural way, and there are situations when
the use of relations on a par with objects leads to more natural representation. Relations are more
convenient, for example, when a symmetric binary relationship between predicates is called for, or—as
it is common with query languages—when query answer is a set of tuples of objects involved in the
query. Another argument for having relations in an object-oriented extension of a language like SQL
is that it makes upward compatibility with the standard, relational SQL more natural. Although
relations can always be encoded as objects, this is not the most natural way of introducing relations
and so we prefer to have relations as first-class language constructs.

3 Path Expressions

3.1 Definitions

Figure 1 shows an object-oriented schema.® Thick arrows describe the IS-A hierarchy and thin ar-
rows describe the composition (aggregation) hierarchy. (Attribute names that end with an asterisk
denote set-valued attributes; other attributes are scalar.) Path expressions describe paths along the
composition hierarchy, and can be viewed as compositions of methods. For example, the expression

mary123.Residence.City (1)

describes a path that starts in the object of class Person denoted by maryl23, continues to the
residence of mary123, and ends in the city of that residence. In (1), “mary123” is called a selector,
and “Residence” and “City” are called attribute expressions.

Path expressions can be more general than the one above. Formally, a path ezpression is of the
form
selectorg.AttEx;{[selectors]}. - -- .AttExy{[selectory|} (2)

where m > 0, and braces denote optional terms (i.e., only the first selector is mandatory). A selector
is either ground (abbr. g-selector) or wvariable (abbr. v-selector). A g-selector is just an object id,
and a v-selector is an individual variable that ranges over id’s of individual objects. The attribute
expressions AttEzq, ..., AttEz,, in (2) are either attribute names or attribute variables that range
over attribute names. (We usually omit the classifiers, “individual” or “attribute”, of variables when
they are clear from the context.) Note that “higher-order” variables do not make the underlying logic
second-order (see [CKW89, KLW90]). Also note that any selector is also a (trivial) path; this follows
from the above definition when m = 0.

The formal definition of the meaning of a path expression requires several concepts which will be
defined next. A database path (or just path when confusion does not arise) is any finite sequence of
database objects og, 01, ..., 0, (n > 0); the object og is the head of the path and o, is called its ta:l.
A ground instance of a path expression is obtained by substituting an object id for each v-selector, and
an attribute name for each attribute variable. Formally, a path expression E describes a set consisting
of all database paths p, such that p satisfies some ground instance of E. A path 09,04, ..., 0,,, where

®Figure 1 appears at the end of the paper.



the o;’s are objects, satisfies the ground instance selg.attri{[sel1]}. --- .attr,,{[sely,]} if all of the
following hold.

o 0y = sely.

e For every j =1, ..., m, if the selector sel; is specified in the above path expression (recall that
these selectors are optional, by definition) then o; = sel;.

e Foralli =1, ..., m,the attribute attr; must be defined on o0;_;. Furthermore, if attr; is scalar,
then o; must equal the value of attr; on object 0;_1; if attr; is set-valued then o; must belong to
the value of attr; on 0;_1.

The set of database paths satisfying ground instances of the path expression E could be empty.
This may happen because of a type error or because the path expression describes an empty set of
paths in the current state of the database. For example, if F is the path expression (1) and mary123
is not an object of the database, then the set of paths described by F is empty. In contrast, if F is the
path expression mary123.Residence.Salary, then this is a type error, since the result of Residence
is an object of class Address, but Salary is not an attribute of that class.

Since the path expression (1) is ground (i.e., has no variables) and all its attributes are scalar, it
is satisfied by at most one database path. In comparison, the path expression

uniSQL.President.FamlMembers.Name

would normally be satisfied on database paths that begin with the Company-object uniSQL, pass
through uniSQ L’s president, a family member of that president, and end in the object representing
the name of this family member. If uniSQL’s president had several family members, then there will
be several such database paths.

If the expression (1) is slightly modified, it can be utilized in the following query:

SELECT Y
FROM Person X
WHERE X.Residence[Y].City[’newyork’]

Now we should consider all ground instances of the path expression in the WHERE clause. For each
ground instance z.Residence[y].City[ newyork’], we should first check consistency with the FROM
clause; in this case, consistency means that z should be an oid of a person.” If the ground instance
is consistent, then y is in the answer provided that (at least) one database path satisfies the ground
instance.® Observe that a path expression is used as a Boolean predicate, and a ground instance of a
path expression is either true or false depending on whether it is satisfied by some database path or
not.

Quite often queries involve path expressions with intermediate v-selectors, where the purpose of
these selectors is to limit intermediate objects in the path to instances of some class. For example,
the following query

SELECT Z
FROM Employee X, Automobile Y
WHERE X.OwnedVehicles[Y].Drivetrain.Engine[Z]

" A priori, consistency does not impose any restriction on y, since Y is not mentioned in the FROM clause. However,
no database path would satisfy this ground instance unless y is an oid of class Address.
81n this case, there is at most one database path satisfying the ground instance, since all attributes are scalar.



retrieves all engines installed in the automobiles owned by employees. Here, the purpose of the variable
Y is to restrict the search through employee-owned vehicles to just automobiles.

As explained in Section 2, attribute names are also logical object ids. This allows us to use
variables for querying database schema without having to know the internal representation of the
system catalogue. For instance, in

SELECT Y
FROM Person X (3)
WHERE X.Y.City[’newyork’]

X.Y.City[’newyork’] is a legal path expression, since Y, being a variable, is an attribute expression.
The answer to this query is the set of all attributes y, such that for some object z of class Person
the ground instance z.y.City[’newyork’] is true (i.e., is satisfied by some database path). Observe
that if the selector [’newyork’] were omitted in the WHERFE clause, the above query would have
(potentially) returned more attributes y as an answer, since (for some databases) the ground instance
z.y.City could be true even if z.y.City[’newyork’] were false. For instance, if all people in the
database lived in Austin or San Francisco and none in New York, the above query would return no
answer; if the selector [’newyork’] were deleted, however, the attribute Residence would have been
returned.

We could extend our syntax by permitting path variables. We could then replace the path expres-
sion in (3) by X. x Y.City[’newyork’], where xY can be bound to any sequence of attributes. The
result would be that, unlike in (3), the user will not even have to know that there must be precisely
one attribute in the path from Person to City. Details of this extension are easy and we will not
pursue this issue any further.

In the previous examples, we used individual variables to range over the objects representing reg-
ular data, such as persons, cities, etc., as well as meta-data, such as attributes. Although considering
attributes as objects is convenient for browsing database schemas, it is nevertheless clear that an at-
tribute (or a method name) is a special kind of an object, henceforth called a method-object. Therefore,
a variable ranging over method-objects is called a method variable, and is prefixed with a double-quote
(e.g., "Y). Strictly speaking, this would make the path expression in (3) syntactically incorrect; the
correct version would be X. "Y.City[’newyork’].

Attribute variables in path expressions let us ask questions about attributes and methods that
are defined for certain objects. Often it is also desirable to ask questions about attributes that are
applicable to an object. As noted in Section 2, attributes need not always be defined for all objects to
which they are applicable, since their value may be a null. In order to ask queries about applicable
attributes one needs type variables—an issue discussed in [KSK92].

The next example uses class variables, i.e., variables that range over id’s of classes. To distinguish
such variables we will prefix their name with the “§”-sign.

SELECT §X (4)
WHERE TurboEngine subclassOf fX

The subclassOf relation is interpreted as a sirict relation, i.e., Cl subclassOf Cl is always false.
This query is evaluated, as before, by considering all assignments of oid’s to variables. In this case,
we must find all 0id’s of classes that—when substituted for § X—make the predicate in the WHERF
clause true. Thus, the answer to this query consists of the following class names: FourStrokeEngine,
PistonEngine, and Object (where Object is the class containing all individual objects as its instances).



Using the following query template, we can formulate more sophisticated queries that, e.g., retrieve
all classes §X of individual objects Y that satisfy certain properties:

SELECT {X
FROM #X Y
WHERE some condition on Y and fX

To summarize, not only did we classify the objects into three different categories—classes, methods,
and individual objects, but also the variables can be of the following variety: class-variables, method-
variables, and individual-variables.

3.2 Comparing Path Expressions

Path expressions can be compared using the comparators =, ! =, >, and the like. Since path ex-
pressions represent sets, these comparators may have to be modified with the quantifiers some or

all.

We define the value of a ground path expression = to be the set of the tail objects of the database
paths satisfying #. A comparison involving a pair of ground path expressions is evaluated by com-
paring the values of these path expressions according to the specified comparator. For example, the
comparison

_john13.Famlembers.Age some> 20

is true when some family members of _john13 are older than 20. Notice that we used the quantifier
some to say that the expression is to be considered true if just one family member of john has the
right age. To the right of “>” we have a path expression, 20, whose value is the singleton set { 20 }.
Therefore, no quantifier is needed.

The query that finds all employees with a family member who is over 20 years old is as follows:

SELECT X
FROM Employee X
WHERE X.FamlMembers.Age some> 20

Formally, the result of this query is a set of objects from class Employee. An object o is in the result
if the ground instance o. FamMembers. Age is evaluated to a set containing at least one number greater
than 20.

Clearly, comparisons can be combined using Boolean connectives (e.g., and, or, not). In addition,
since path expressions are evaluated to sets they can be compared using such standard set-comparators
as contains, containsFEq, subset, subsetFq, etc. We can also apply union, intersection, and set-difference
to path expressions. For example, the next query finds all automobile companies managed by young
presidents who own both blue and red vehicles:

SELECT X

FROM Automobile Y

WHERE Y.Manufacturer [X]
and X.President.0OwnedVehicles.Color containsEq {’blue’, ’red’}
and X.President.Age < 30



Note that it is not necessary to define the range of X since it can be inferred from the path expression
that Xis of type Company. This query is evaluated similarly to the previous cases: For every Company-
object # and an Automobile-object y that are substituted for X and Y, respectively, check if the value
of the ground path expression y.Manufacturer[z] is non-empty; if it is, evaluate the comparisons
2. President. Owned Vehicles. Color containsEq {’blue’, red’} and @.President.Age < 30. If both are
true, place the Company-object zin the answer. Other interesting examples of elementary comparisons
include:

X.Residence.City —all X.FamMembers.Residence.City
which can be used to select Person-objects all whose family members reside in the same city; and
Y.FamMembers.Age all<all X.FamMembers.Age

which is handy for finding pairs of persons such that all family members of one person are strictly
older than every family member of the other person.

Finally, we remark that it also makes perfect sense to allow passing path expressions as arguments
to aggregate functions, such as sum, count, average, and use the result in comparisons. Thus, the
query to find all employees that make less than $35,000 and have family of more than 4 members all
of which live in the same house is written as follows:

SELECT X

FROM Employee X

WHERE count(X.FamMembers) > 4
and X.Residence =all X.FamMembers.Residence
and X.Salary < 35000

3.3 Constructing and Manipulating Relations

So far, we have dealt with queries that selected objects from one class of the database according to a
specified condition. Conditions for selection could be rather complicated, but the results of the queries
were always sets of object id’s from the database (that is, the SELECT clause always had a single
variable).

There is no reason to restrict the SELECT clause just to a single variable. Moreover, instead of
writing a variable in the SELECT clause, it is possible to write any number of scalar path expressions
(that is, expressions that produce single values once variables are bound to specific object id’s). For
example, consider the following query:

SELECT X.Name, W.Salary
FROM Company X (5)
WHERE X.Divisions.Employees[W]

The result is a relation with two columns. The first column is a name of a company, and the second is
the salary of some employee of a division of that company. The above query is evaluated as follows: for
each assignment of object id’s ¢ and w to variables X and W, respectively, a tuple <z.Name, w.Salary>
is added to the result, provided that the condition in the WHERFE clause, which forces w to be an
employee of some division of company , is satisfied.

Since, in general, the SELECT clause can contain any list of scalar path expressions and the
WHERE clause can be any Boolean combination of conditions, we essentially have the ability to
specify any join, including the implicit and explicit joins discussed in the query model of [KIM89b].
An example of an explicit join is the following query:
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SELECT X, Y
FROM Company X (6)
WHERE X.Name —=some X.Divisions.Employees[Y].Name

This query produces tuples consisting of a company-object and an employee-object such that the
employee has the same name as the company he works in. In [KIM89b], a join of this type is called
explicit, since it involves a comparison of two attributes that share a common domain, rather than
being based solely on the composition hierarchy.

As usual in SQL, relations computed by queries can be manipulated by relational algebra operators,
e.g., UNION, MINUS, etc.

3.4 Semantics of Queries with Path Expressions

The formal semantics of queries considered thus far can be easily defined. Given a query @, all sub-
stitutions of oid’s for variables should be considered, provided that they respect the sorts (individual,
class, or method) of the variables. For each substitution that is consistent with the FROM clause, all
ground path expressions are evaluated. Next, the WHERE clause is evaluated as follows. A stand-
alone ground path expression is true if its value is non-empty; a comparison is true if the values of
the ground path expressions involved in it stand in the specified relationship (such as “=", “some >,
“= all”). The Boolean operators (and, or, and not) are evaluated in the usual way. If the WHERE
clause evaluates to true, then the scalar ground path expressions in the SELECT clause are evaluated.
The result of this evaluation is a tuple of oid’s that is added to the answer of the query.

The following theorem shows that the semantics of our langauge is rooted in F-logic [KLW90].

Theorem 3.1 There exists an effective procedure P that for any given X SQL query ¢ (of the form
constdered thus far) returns an equivalent first-order query in F-logic P(¢).

4 Creating New Objects

Queries considered so far return relations, i.e., sets of tuples of object id’s. The tuples themselves
do not have object id’s and duplicates are not allowed. In this section, we define queries that return
complex objects (rather than just tuples) and show how to assign oid’s to the newly created objects.

4.1 Assigning Object Id’s to Query Result

Instead of merely viewing the result of a query as an ordinary relation, we can also view tuples
produced by queries as new objects. This necessitates assigning object id’s to the new tuples produced
by queries. In addition, since attribute names are crucial to the composition of a complex object, we
need to extend our syntax to accommodate explicit assignment of values to attributes. Consider the
following query:

SELECT EmpSalary = W.Salary
FROM Company X

0ID FUNCTION OF X,W

WHERE X.Divisions.Employees[W]
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This query has two new features. First, the SELECT clause gives explicit names to attributes of
the output relation (in this case, there is a single attribute, called EmpSalary). Second, the OID
FUNCTION OF clause determines an object id for each tuple in the result. Note that a tuple of the
result is generated from a pair of object id’s, say z and w, that are assigned to variables X and W,
respectively. We follow the idea of [KW89] that the object id of a tuple generated from z and w should
be a function of  and w. In other words, associated with the query there is some partial function f,
called id-function, such that the object id of the tuple generated from z and w is f(z,w). The user
does not have to know what the function f is. In fact, it can be any partial function provided that for
each pair of 0id’s ¢ and w, the value of f(z,w) is unique, if defined, and does not occur elsewhere in
the database. Also note that the function is not required to have a short mathematical form (such as
2°3%). In fact, the function can be stored as a table showing explicitly the oid created for each pair
of object id’s z and w.

Although the result of the above query does not contain oid’s of class Employee (it only contains
salaries of employees), the id-function provides a correspondence between employees and objects of
the result. Since the id-function depends on both # and w, any object o of class Employee will have
more than one corresponding object in the result, if o represents an employee that works for more
than one company.

If each employee works for only one company, then we may as well write the following query.

SELECT EmpSalary = W.Salary
FROM Company X

0ID FUNCTION OF W

WHERE X.Divisions.Employees[W]

In this query, the id-function depends only on w, and therefore, for each object of class Employee,
there will be a unique tuple in the result.

One might wonder what would happen if we use the following query:

SELECT CompName = X.Name, EmpSalary = W.Salary
FROM Company X

0ID FUNCTION OF X

WHERE X.Divisions.Employees[W]

In the answer to this query, two tuples corresponding to distinct salaries in the same company will
be assigned the same id (since the id-function depends only on the company). Since an object is
defined solely by its object id, this is a contradiction. Therefore, the two tuples with distinct salaries
in the same company are two conflicting descriptions of the same object. We view this situation as
an ill-defined query (a run-time error).

So far, we have seen queries that create objects with only scalar attributes. We can also define
objects that have set attributes. As an example, suppose we want to create objects that have a scalar
attribute for a company name and a set attribute whose value is the set of all employees of that
company. This can be accomplished as follows:

SELECT CompName = Y.Name,

Employees = Y.Divisions.Employees (7)
FROM Company Y
0ID FUNCTION OF Y
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The precise meaning of this query is as follows. For each object id y assigned to Y, a new object is
created in the result. The value of the attribute CompName of the new object is the company name
of the object assigned to Y. The value of the attribute Employees of the new object is the value of
the ground path expression y.Divisions. Employees, which is a set of employees.

For another example of the use of set attributes in the target list of a query, suppose that companies
need to maintain rosters of beneficiaries, where a beneficiary of a company is either a retiree or a
dependent of an employee. This can be accomplished via the following query:®

SELECT CompName = Y.Name, Beneficiaries = {W}
FROM Company Y
0ID FUNCTION OF Y (8)
WHERE Y.Retirees[W]
or Y.Divisions.Employees.Dependents[W]

The braces in the SELECT clause indicate that the value of the attribute Beneficiaries is the set
of all w that, when substituted for W, satisfy the WHERFE clause, given an assignment y for Y. It
can be seen clearly from this example that the clause OID FUNCTION OF can play the role of the
GROUP BY clause of SQL. Notice the ease with which the value of Beneficiaries is specified. Other
similar proposals (e.g., O [BANC90]) would require a nested SELECT-clause in order to specify the
value of Beneficiaries.

4.2 Views

A complete discussion of views in object-oriented databases is beyond the scope of this paper. In this
section we illustrate a few salient aspects of querying and updating views that are not available in
previous proposals for object-oriented query languages. First, consider the following view definition.

CREATE VIEW CompSalaries AS SUBCLASS OF Object

SIGNATURE CompName =- String, DivName = String, Salary = Numeral
SELECT ComplName = X.Name, DivName = Y.Name, Salary = W.Salary
FROM Company X

0ID FUNCTION OF X,W

WHERE X.Divisions[Y].Employees[W]

It declares a new view, CompSalaries, as a subclass of the class Object, which we will take to mean
the class of all individual objects. The SIGNATURE clause specifies the type of each attribute of the
view. Note that for each employee w of a company z, the view has an object consisting of the name
of company z, the name of division y in which employee w works, and the salary of w (but no other
information about employee w).1° Two distinct objects in the view could be equal on all attributes
if they correspond to two employees of the same company that have the same salary. Thus, we have
a view that could provide aggregate information about companies and salaries without containing
explicit information about the employees having those salaries (and, obviously, it could be used as a
security measure).

The above view can be also used in queries that involve other classes of the database schema. For
example, the following query finds all names of automobile companies that have some employees who
earn more than $35,000.

°The attributes Retirees and Dependents of the classes Company and Employee, respectively, are not shown in
Figure 1.
10Tt is assumed that an employee cannot work in two distinct divisions of the same company.
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SELECT X.Manufacturer.Name
FROM Automobile X, Employee W
WHERE CompSalaries(X.Manufacturer,W).Salary > 35000 (10)

Here, the expression CompSalaries(X.Manufacturer, W) denotes an object whose id is obtained as
a result of an application of the id-function associated with the view CompSalaries to whatever
Automobile and Employee object ids are substituted for X and W, respectively. Whenever the result
of the application is defined (recall that CompSalaries is a partial function), we reach an employee
salary accessible through the attribute EmpSalary of the corresponding object in the view, and check
that the salary is greater than $35,000. If the comparison is true, then the name of the company is
added to the answer.

The form of the head selector in the path expression in (10) necessitates an extension of the syntax
of such selectors. An id-term [KW89] is either an oid, a variable (class, method, or individual), or
an expression of the form f(¢1, ..., t,), where f is a symbol denoting an id-function of n arguments
and 1, ..., t, are id-terms. Now, we allow selectors in path expressions to be id-terms instead of
just oid’s or variables. Note that the id-term CompSalaries(X.Manufacturer, W) in (10) does not
quite satisfy the given definition of id-terms, but can be made to satisfy it after replacing it with
CompSalaries(Y,W), where Y is a new variable, and adding the conjunct X.Manufacturer[Y] to
the WHERE clause.

We conclude this section with an illustration of how the mechanism of assigning object id’s to
objects in the views can be used to translate view updates to database updates. Consider again the
view CompSalaries defined in (9). If we assume that each employee works in just one company, then
objects in the view stand in the one-to-one correspondence with objects of class Employee from which
the value of the attribute Salary is derived. Thus, an update made through the view on the Salary
attribute (for example, increase salaries of employees of UniSQL, Inc. by 10%) can be translated into
an update on the database.

In general, an update on a view can be translated to an update on the database if there is some
class Cof the database, such that objects of the view are in the one-to-one correspondence with objects
of class C. We will not define a formal syntax for updating through a view, since these details are
beyond the scope of this paper. The main point, however, is that due to the explicit correspondence
between objects in views and objects in database classes, we have a more powerful mechanism for view
update as compared to the relational model and other proposals for object-oriented query languages.

A brief discussion of our treatment of views compared to [AB91] is in order. Besides the obvious
syntactic differences, the main distinction is that our queries create sets of objects while in [AB91] they
create relations. Therefore, we can use queries to define views, just as in the relational model, while
[AB91] goes outside the query language to convert tuples into objects. Apart from the non-uniformity,
this approach faces difficulties when the objects to be created are to have set attributes. Moreover,
our explicit use of the clause “OID FUNCTION OF” circumvents the problems of [AB91] related to
the assignment of oid’s to “imaginary” objects in views. Query (10) above also shows that, due to
our taking id-functions seriously, views and non-views can be used in one query, like in the relational
model. It is unclear how this can be achieved in [AB91] without changing the philosophy underlying
the language.

Our discussion of views is incomplete, however. In agreement with [AB91], we believe that an
object-oriented view is not just a new virtual class as the discussion in this section may seem to
suggest. In general, a view would include a separate class hierarchy (which may share classes with
the “official” class hierarchy of the database—see [AB91] for more discussion). However, since classes
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are also objects, in our language all work can be done using queries only, while [AB91] has to work
around the limitations of the query language at hand. View hierarchies will be treated in [KSK92].

5 Methods

In the presence of methods, path expressions have a format similar to the one used earlier, except that
attribute expressions are replaced by more general method expressions.

A k-ary method expression is a statement of the form (Mthd@Arg, ..., Argr), where Mthd
is a method name of a method variable; Argi, ..., Argy are oid’s or variables that play the role of
arguments.'! A method expression is ground if it contains no variables. For 0-ary method expressions,
i.e., for attribute expressions, we will write Attr instead of (Attr @), to save space and to make our
extended notation consistent with the old one.

A Path expression now has the form
selector.MthdEx;i{[selectors|}. --- .MthdEx,{[selectory|} (11)

where m > 0 and MthdEz,, ..., MthdEz,, are method expressions. Again, braces in (11) are used
to single out the optional selectors.

The definition of satisfaction of path expressions by database paths is an obvious modification of
the definition in Section 3.1. A database path og, 01, ..., o, satisfies a ground path expression

selo.(mthd1@ay 1, ..., arx, ){[sel]}. - -.(mthdnQ@an,, ..., amkp){[se1ln|}
if all of the following hold:

o 0y = sely.

o For every j = 1, ..., m, if the selector sel; is specified in the above path expression, then
o; = sel;.

e Foralli =1, ..., m, the method mthd; is defined on the arguments a;1, ..., a;x, in the scope
of object 0;_1. Furthermore, if mthd; is scalar, then o; is the result of this method when it is
invoked on the above arguments in the scope of 0,_1, i.e., 0; = mthd;(0;—1,a;1, ..., a;;); if
mthd; is set-valued, then o; € mthd;(0;_1,a;1, ... , @i k;)-

The walue of a ground path expression is, as before, the set of all objects occurring as the tails of the
database paths satisfying the path expression.

With the above extension of the syntax and the meaning of path expressions, the semantics of
queries carries over from Section 3.4 without change. Theorem 3.1 holds true for this more general
case as well.

Methods can be defined similarly to queries and views. For instance, the following query defines a
new method, MngrSalary, that is applicable to every Company-object. When this method is invoked
by a Company-object ¢ with an argument d of type Division, it returns the salary of the manager of
division d in company c. Not that we use the ALTER clause, since we consider the method definition
to be an extension of the original definition of class Company. In other words, the following method
definition alters the definition of class Company, and the signature of the newly defined method is
added to the signatures that are already declared in this class.

1Tn general, a method expression or an argument could even be an id-term; see [KSK92] for a full exposition of this
topic.

15



ALTER CLASS Company

ADD SIGNATURE MngrSalary : String = Numeral

SELECT (MngrSalary @ Y.Name) = W

FROM Company X (12)
0ID X

WHERE X.Divisions[Y].Manager.Salary[W]

Notice how we used the abbreviated clause “OID X” to specify the object (i.e., X) in whose scope
the method MngrSalary is defined. Also notice that the path name Y.name is used as an argument
of a method expression in the SELECT clause, even though—strictly speaking—this is not allowed
by the definition. It should be viewed as a shorthand for writing (MngrSalary @ Z) in the SELECT
clause and adding the path expression Y.Name|Z] to the WHERF clause, where Z is a new variable.

The following query illustrates how methods could be used in path expressions. This query refers
to the method defined in (12); it retrieves all vehicles that are manufactured by companies that pay
highly to all their division managers.

SELECT X

FROM Vehicle X

WHERE 200000 <all (SELECT W (13)
FROM Division Y
WHERE X.Manufacturer.(MngrSalary @ Y.Name) [W] )

This query has the following meaning. For each vehicle #, the nested query is evaluated. If its
result is a set that contains only numerals greater than $200,000, then z is added to the result of the
outermost query. The nested query is evaluated thus: For every instance y of the class Division, if
the path expression z.Manufacturer.(MngrSalary@y.Name) evaluates to a nonempty set, add the
only element of this set to the result.!?

As mentioned, method arguments in path expressions can also be used as selectors. For instance,
using (MngrSalary @ * Advertizing’) in (13) instead of (MngrSalary @Y. Name) will direct the sys-
tem to retrieve those vehicles whose manufacturers pay high salaries to their advertizing chiefs.

We can also define methods that update the database, e.g., increase the salaries of all division
managers by a specified percentage:

ALTER CLASS Company
ADD SIGNATURE RaiseMngrSalary : Numeral = 0Object
SELECT (RaisellngrSalary @ W) = nil
FROM Company X, Numeral W
0ID X
WHERE W < 20

and (UPDATE CLASS Company

SET X.Divisions[Y].Manager.Salary = (1 + W/100) *X. (MngrSalary @ Y.Name) )

Notice the special-looking object, nil; it expresses the fact that the scalar method Raise MngrSalary
does not return meaningful values. The purpose of this method is to cause a side-effect through the
nested update in the WHERE clause. Also, note the use of the method MngrSalary, defined in (12).

The above definition of RaiseMngrSalary specifies what needs to be done, should the new method
be called in the scope of a Company-object with a numeric argument specifying percentage of the

128ince Manufacturer and MngrSalary are both scalar methods, this set is always either empty or a singleton.
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raise. Namely, for the given company and percentage, evaluate W < 20 (to guard against huge salary
increases) and then evaluate the nested UPDATE clause. If successful, return nil. An UPDATE
clause evaluates to true if and only if the update was successful. We also assume that the conjuncts
in the WHERE clause are evaluated in the left-to-right manner.

6 Signatures and Typing

6.1 Types and Structural Inheritance

A signature M : Ay, ..., A, = R specified for a class Ay consists of a method name, M, and a type
expression
Ao, A4, ..., Ay ~ R (14)

where “~»” stands for either “=" or “=%", depending on whether M is scalar or set-valued. The
type expression says that the method is defined in the scope of class Ay, accepts arguments of types
Ay, ..., A, (in that order), and returns a result of type R.

Note that signatures in method definitions, such as (12) above, do not specify classes in which the
corresponding methods are invoked, because these classes are clear from the ALTER (or CREATE)
clauses. However, for the formal treatment of types we must indicate these classes explicitly, which
we do by putting them as the first argument in the corresponding type expressions (cf. (14), (15)).
Since signatures can be easily confused with type expressions, signatures will always be prefixed with
method names (e.g., M : A, B = C') while type expressions will be not (cf. (14), (15)).

Consider the following type expression.
Ay, Ay, ..., AL ~ R (15)

We say that (15) is a supertype of (14) and (14) is a subtype of (15) if each A! is a (possibly nonstrict)
subclass of A;, the class R’ is a (possibly nonstrict) superclass of R, and both (14) and (15) use the
same kind of arrow (“=" or “=="). Note that “supertype” means “superset”, that is, the set of
functions described by (15) is a superset of the set of functions described by (14).

Recall that a method M may have several definitions, and consequently, may have multiple sig-
natures (this is known as polymorphism). In addition, definitions of methods (as well as signatures)
are inherited. We distinguish between behavioral inheritance and structural inheritance. Behavioral
inheritance means that definitions of methods are inherited and also overwritten. Specifically, if C’ is
a subclass of C and M is a method defined for C, then the definition of M is inherited by C'. However,
if M is redefined in C’, then the new definition overrides the one that would have been inherited from

C.

Structural inheritance means that types of methods (but not their definitions) are always inherited
and never overwritten. Specifically, if C’ is a subclass of C, then C' inherits all the signatures of M that
exist in C; in addition, class C' may also have new signatures for M (as a result of new declarations
of M in C'). Thus, the set of signatures of M in C' consists of all signatures in the ancestors of C’
and all signatures in the new definitions of M in C’. Structural inheritance, also called covariance,
reflects reality in most (if not all) cases, and it is a nearly standard assumption in the works on type
theory. A discussion of typing without covariance is beyond the scope of this paper.

It should be clear that if the class hierarchy is a DAG and not just a tree, then C' may have several
incomparable superclasses. As explained above, multiple inheritance of types is fairly simple: the set
of signatures of M in C' contains all signatures inherited from all superclasses of C’. This means
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that, as a function, M belongs to the intersection of the sets defined by each type expression in these
signatures. For instance, the method earns may be declared with the signature earns : project = pay
in the class employee and earns : course = grade in the class student. This means that earns has
two type expressions, employee, project = pay and student,course = grade. In particular, in the
class workstudy which is a subclass of both student and employee, earns returns an object of class
pay when it is passed an argument of type project; if the argument is of the type course then the
result will be an object of type grade.

The issue of multiple inheritance with respect to behavioral inheritance is much more complex.
Suppose that C’ is a subclass of both C; and Cy (but neither C; nor C; is a subclass of the other),
and M is defined in both C; and Cs. In this case, it is not clear which definition of M is inherited
in C'. There is a vast body of work devoted to this issue which we will not discuss here ([ER83,
TOU86, THT87, HTT87, BRE8T, KK89, KLW90] is just a tip of the iceberg). We adapt the approach
of [MEY88], and require the user to resolve inheritance conflicts explicitly (i.e., the user should state
which definition of M is inherited in C' as part of the schema definition). However, as explained above,
regardless of which definition of M is inherited (and even in case M is redefined in C'), structural
inheritance implies that C’ inherits all signatures that M has in C; and in Cj.

Suppose that (14) is a type expression occurring in the declaration of a method M, and (15) is a
supertype of (14). As mentioned earlier, the set of functions defined by (15) contains the set defined
by (14), and thus M must also belong to the former set (since by its declaration, it belongs to the
latter). Therefore, we have the following definition: If a signature of M has the type expression (14),
then we say that M possesses type (15) if (15) is a supertype of (14). By this definition, the set of
types possessed by any method is closed under the supertype relationship (and this closure reflects the
effect of structural inheritance). When a method M possesses type (14), we say that M is applicable
to arguments of types Aq,..., A, in the scope of the class Ao.

6.2 Well-typed Queries and Type Errors

In order to simplify the discussion of well-typed queries, we consider only queries in which the WHERFE
clause is a conjunction (i.e., and is the only Boolean operator), and the SELECT clause is a list of
variables. Moreover, we assume that each path expression in the WHEREFE clause has only v-selectors,
g-selectors, and method names (in particular, id-terms are not allowed and method variables cannot
appear in the role of method expressions). We also assume that if a path expression 7 appears in a
comparison, then either 7 is just an oid, or 7 ends in a variable selector (this assumption can always
be satisfied by modifying the query!?).

A type assignment A to a given query is an assignment of at most one type expression to each
occurrence of a method name in the WHERFE clause. Distinct occurrences of the same method name
may be assigned different type expressions. A type assignment A could be either complete, in case all
occurrences of method names are assigned type expressions, or partial, in case only some occurrences
are assigned type expressions.

So, consider a type assignment A, and let

Selo.(mthd1@A1,1, ceny A1,k1)[5611]. cee .(mthdm@Am,;l, ceny Am,km)[selm] (16)

13The modification is done as follows. Suppose that 716073 is a comparison in the WHERE clause. If =; (i=1,2) ends
in a g-selector o (i.e., 0 is an oid), then we replace x; with o in the comparison 7167 and add =; as an new conjunct to
the WHERE clause. If w; does not end in any selector, then we add a v-selector W at the end of x;, where W is a new
distinct variable.
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be a path expression in the WHERE clause, where Sel; and A; ; are object ids or variables, and mthd;
are method names. Note that we assume that all selectors Sel; (i = 0,...,m) appear (this assumption
can be easily satisfied by adding new distinct v-selectors wherever selectors are originally missing; it
is needed to simplify the following definitions).

If A assigns a type expression T to mthd;, then 7 must match'? the number of arguments of mthd;,
and must be possessed by mthd;.

The type assignment A forces type assignments to selectors and arguments in (16) as follows. If
mthd; is assigned the type expression T;9,T; 1, ... , T;p,~ R;, then

o A;; (1 <j<k)is assigned the type T; ;,
o Sel;_; is assigned the type T; o, and

e Sel; is assigned the type R;.

Note that if both mthd; and mthd; 1 (1 < ¢ < m) are assigned type expressions, then Sel; is assigned
two types, R; and T;,1, that are not necessarily the same.

Since a variable X may have multiple occurrences in the WHERE clause, a type assignment A
may assign multiple types to X. Formally, we define the range of X with respect to A, denoted A(X),
as the set consisting of

e Object (i.e., each individual variable is automatically restricted to be of type Object),!®
e all the types that A assigns to occurrences of X in the WHERE clause, and

e all the types that are assigned to occurrences of X in the FROM clause.

We say that an oid o is within the range A(X) if o is an instance of every class in the range A(X).
We say that A(X) is empty if no oid could ever be in A(X). For example, if A(X) contains both
Person and Company, then it is empty. How this is specified is unimportant here. We assume that
schema definition provides sufficient information for determining whether .A(X) is empty.

We say that a type assignment A is valid if for each path expression of the form (16) above, the
following holds.

o A assigns a type expression 7 to mthd; only if 7 is possessed by mihd; and matches the number
of arguments of mithd,;.

e If Sel; is an oid and A assigns a type T to it, then Sel; is an instance of T.
o If A;; is an oid and A assigns a type T to it, then A;; is an instance of 7.

o If 7107, is a comparison in the WHERFE clause, where 8 is a comparator, then the following is
true. The comparison 0100, is well defined for all 0; and o,, such that o; (¢ = 1, 2) is either =,
in case 7; is an oid, or o; is in A(W), in case 7; is a path expression that ends in the v-selector
W. (Recall that according to an earlier assumption, a path expression in a comparison is either
an oid or ends in a v-selector.)

4Recall that due to polymorphism mthd; may have different definitions with distinct numbers of arguments.
15Recall that Object is the class containing all individual objects as its instances.
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We define a query to be lberally well-typed if there is (at least) one valid and complete type
assignment A, such that for each variable X (of the WHERE clause) the range A(X) is not empty.

Type-correctness in a logical language—whether it is Datalog or an SQL derivative—is usually a
metalogical notion. This means that it does not affect the semantics of queries and any query (well-
typed or not) can be evaluated. Therefore, to evaluate a liberally well-typed query we can use the
naive process described in Section 3.4 (and extended in Section 5). We might use various optimization
strategies, including the type information. For instance, if a preliminary (liberal) type analysis shows
that a query is ill-typed then it is guaranteed that this query returns no answers regarding of the
database contents.

Quite often queries are evaluated by nested loops; that is, each path expression is evaluated by a
sequence of nested loops (corresponding to a traversal of the path from left to right), and different
path expressions are evaluated one-by-one (also in a sequence of nested loops). The problem here
is that as we evaluate the sequence of nested loops, variables become bound to oid’s, and so when
we evaluate a specific method occurrence, all its arguments must already be bound to oid’s of the
appropriate types. This imposes a stricter notion of well-typing, which will be defined next.

An ezecution plan for a query is just a partial order on the path expressions in the WHERE clause.
An execution plan specifies the order of evaluating the path expressions. So, let P be an execution
plan and let A be a type assignment for the given query. Consider a path expression 7 of the form (16)
above. The restriction of A to a method occurrence mthd; in 7 is the type assignment A’ defined as
follows. A’ is identical to A for every method occurrence m that either appears in a path expression
7', such that 7' precedes 7 in the execution plan P, or m appears in 7 to the left of mthd;. A’ is
undefined (i.e., assigns no type expressions) on all other method occurrences in the WHERE clause,

including mthd; itself.

We define a query to be strictly well-typed if there is a valid and complete type assignment A and
an execution plan P, such that the following holds.

1. For each variable X (of the WHERE clause), the range A(X) is not empty.

2. For each path expression 7 of the form (16) above, and for every mthd; of 7, the following holds.
Let A’ be the restriction of A to mthd; in = and let'® A(mthd;) = (To,...,Tk; ~ R). Then

(a) If argument A4, ; (7 = 1,..., k;) of mthd; is a variable, then the range .A’'(4; ;) is a subrange
(defined next) of the class T; (note that T} is the type that mthd; expects of A; ; under the
type assignment A); and

(b) If Sel;_; is a variable then the range A'(Sel;_1) is a subrange of Ty (which, again, is the
type mthd; expects of Sel;_1).

The first condition above is the same as in the definition of well-typing. The second condition simply
says that when mthd; is evaluated, its arguments are bound to oid’s of the appropriate types. If a
plan and a type assignment satisfy the above conditions we will say that they are coherent with each
other.

Recall that in the above definition, A'(4; ;) is a range, i.e., a set of classes. We say that the range
R is a subrange of a class T if every oid belonging to the range R is also an instance of 7. Whether
R is a subrange of T can be determined from the schema definition [KSK92].

16 A(mthd;) denotes the type expression that A assigns to the method name mthd;. Recall that if X is a variable
(and, hence, not a method name), then A(X) is the range of X with respect to A.
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To illustrate the notion of a coherent type assignment, consider the following simple query fragment
(more examples later):

FROM Person X
WHERE X.Name

There is only one execution plan'’—the graph containing one node and no arcs. A coherent type
assignment would be the one that assigns the expression Person = string to Name. An assignment
A such that A(Name) = ( Employee = string ) would not be coherent with the plan because if A’
is the restriction of A to Name then A'(X) = {Person}. The latter is not a subrange of Employee,
the type that Name expects of X according to A.

The difference between a well-typed query and a strictly well-typed query was illustrated in the
introduction. The query on Nobel Prizes is liberally well-typed but not strictly well-typed (unless the
method WonNobelPrize is defined for every class in the database). It is important to understand that
the concept of the execution plan is not part of the query semantics and the user does not have to

think in terms of these plans when writing queries. So, execution plans do not affect the declarative
nature of XSQL.

A strictly well-typed query can be evaluated just as a liberally typed query, using the semantics
in Sections 3.4 and 5. However, we can utilize much of the typing information to optimize execution.
First we need to find an assignment A and an execution plan P such that A is valid, complete, and
coherent with P. For any such plan P, it is easy to write a nested loop program that evaluates the
answer to the query. In [KSK92]| we show how to find coherent pairs (A, P). The following theorem
(whose proof appears in [KSK92]) shows that it suffices to evaluate the query with respect to just one
such coherent pair. Moreover, for each v-selector X it suffices to limit instantiations to oids taken
from A(X). This potentially very powerful optimization is not possible with untyped queries and is
not always possible even with queries that are liberally (but not strictly) well-typed.

Theorem 6.1 Let Q be a strictly well-typed query and A and A’ be a pair of valid and complete type
assignments for Q that are coherent with the execution plans P and P', respectively. Then:

1. Fvaluating Q with respect to any one of these plans yields the same result.

2. In the evaluation of Q with respect to, say, the plan P, it suffices to consider only those instan-
ttations o of X such that o € A(X), for every v-selector X in Q.

While the Nobel Prize example shows that strict well-typing may be too strict in some cases,
liberal well-typing is too permissive, since it does not take into account the fact that path expressions
are usually evaluated in nested loops. To strike a better balance between these two notions we can
define well-typing with exemptions. Namely, whenever desired, we can exempt arguments of certain
method occurrences from the second test in the definition of strict well-typing. For the Nobel Prize
example, we can exempt the 0-th argument of WonNobelPrize, which will make the path expression
X.WonNobelPrize type-correct. Note that the liberal and the conservative notions of well-typing are
just the two extremes of the notion of well-typing with exemptions: the liberal notion exempts all
arguments while the conservative exempts none.

To illustrate the notion of strict well-typing, consider the following query fragment:

171t is convenient to represent a plan as a DAG in which nodes correspond to path expressions and arcs describe the
partial order.
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FROM Vehicle X
WHERE X.Manufacturer [M] (17)
and M.President.0wnedVehicles [X]

We have two path expressions and three different execution plans. The first plan has no arcs. The
second plan has an arc from the first path expression in (17) to the second. The third plan contains
an arc going in the opposite direction. Consider the following valid and complete type assignment .A:

A(Manufacturer) = ( Vehicle = Company ),
A(President) = ( Company = Person), (18)
A(OwnedVehicles) = ( Person == Vehicle).

It does not satisfy the second condition for strict well-typing with respect to the first and the third
plans because M does not occur in FROM. Indeed, consider the restriction of A to President, call it
A’. Then the range A'(M) that A’ assigns to the second occurrence of M in (17) is {Object}. On the
other hand, the type that President expects of M under A is Company. However, {Object} is not a
subrange of Company, contrary to the second condition in the definition of coherence. The situation
is different if we consider the second execution plan: it is easy to verify that A is coherent with that
plan and so the query is strictly well-typed.

Execution plans are not always as simple as the above example may suggest. Suppose the method
Member has a type expression Assoctation, Numeral = Organization and let President have one
more type expression: Organization = Person. Consider the following query fragment:

FROM Numeral Year

WHERE X.Manufacturer [M] (19)
and M.President.0OwnedVehicles[X]
and OO_Forum. (Member @ Year) [M].

Now there are many execution plans, some of which have while others have no coherent type assign-
ments. The only plan that has a coherent type assignment, call it A4,

Ai(Manufacturer) = (Vehicle = Company ),
A;(President) = ( Organization = Person), (20)
A;(OwnedVehicles) = ( Person = Vehicle).

is the plan containing the arcs from the third to the second and from the second to the first path
expressions. This is because in other execution plans, either the restriction of A; to Manufacturer
assigns X the range {Object} or the restriction of A; to President does so for M. In either case
{Object} is not a subrange of the types that the Manufacturer and President expect of X and M
(which are Vehicle and Organization, respectively).

7 Conclusion and Related Work

We presented some of the salient features of a new language for querying object-oriented databases.
The language is capable of expressing sophisticated queries in a very concise way. This is achieved
via eztended path expressions, which are more expressive than any of the previous manifestations (for
example, [ZAN83, BEEC88, CLUES89, DLR88]) of the dot notation for nested structures. We extended
path expressions with the concept of selector, accommodated methods, and “higher-order” variables
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that range over method names and classes. The use of higher-order variables endows our language
with truly novel capabilities that allow the user to browse database schema in a very intuitive way.

The proposed language has a rigorously defined notion of well-typed queries (which is absent from
all previous proposals for object oriented query languages). In fact, we argued that there must be
several such notions available and the user should have the option to choose the one most suitable for
the query at hand.

Views in our language are constructed via queries, in line with the relational model. This is simpler
and more uniform than the construction of views in [AB91], and circumvents certain problems that
have to be dealt with there. Furthermore, views and non-views can be referred to in the same query.

The issues concerning the expressive power are beyond the scope of this paper. Suffices it to
mention that we can show that the proposed language has the expressive power of first-order queries
in F-logic [KLW90] (which are analogous to queries in Codd’s relational calculus, but are built on an
object-oriented logic.)
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Figure 1: An Object-Oriented Database Schema
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