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Abstract

This paper presents a series of experiments for evaluating theeriof of the
interaction between Network Interfaces (NIs) and host computeernsgson the
performance of a messaging system based on Myrinet. Major pointedsinare the
data transfer between user buffers and NI local memory and the egizetion
between host systems and NIs. The paper provides a taxonomy of varimfertra
modes and synchronization schemes, describes experiments for thermpede
evaluation, and analyzes the results on a specific platform aasvieetween different
platforms. Furthermore, this paper points out the affects of thewed data transfer
modes and synchronization schemes on the overall performance of Myrimet bas
message-passing systems and finally, proposes certain architsciutans in future
NICs for increasing the efficiency of their interaction with hmsnputer systems.
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Tutorial Section
Bypassing the Operating System, Memory M apping, and Programmed 1/0O

Modern high performance networks can transmit data at gigabit-per-seates|
introduce less than a microsecond of hardware latency, and haveodbipeybabilities in the
range of 10° [2]. At the same time, the computing power of workstations and personal
computers is continuously growing. As a result, clusters of workstatising gigabit networks
as interconnecting media quickly are becoming cost-effective platfoapable of performing
intensive concurrent scientific computations, high bandwidth multimedearst transfers,
distributed database management, and time-critical tasks. simeti environment, traditional
protocol stacks and message-passing models account for an intolerablystgh sverhead
[1]. Often, the software overhead of a kernel call to the operatypstem for processing an
incoming or outgoing message is higher than the time necessary for woekntg transmit the
message itself.

Bypassing the Operating System
A major source of performance gain in a message-passing systeducsng the role of
the host Operating System (OS) in the actual data transmissiorthasd minimizing the

software processing overhead on the critical data path. Bypassingstiea@s to a number of
benefits:

» Lower latency — overhead associated with kernel calls is avoided;
» Higher effective bandwidth — extra data copies are minimized;

» Higher predictability — more precise scheduling of communication aetvis possible.
Common operating systems are difficult to describe with matheshaticprobabilistic
models.

The software architecture of a messaging system that bypasges tisebased on user libraries
that implement functions for interacting with the NI adapter (Rifj). Among these functions

are the following: forwarding messages, receiving messages, queagengent, status reports,
and synchronization.
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Fig. Al. Software architecture of a messaging system bypa€ss.

Memory Mapping

Memory mapping of network host adapter resources, namely, memory, aewgfisiers,
and status registers, into user address space is a mechants@lldaivs user application



processes to bypass the host OS and directly access and manipydegesagesources. Some of
the newest NI adapters can decode a large range of addressesa(fgwtanegabytes). This
range is divided into areas for different resources: SRAM, EBWRaNd registers. At the OS
bootstrap, a network device driver maps the NI adapter addressisfzatiee system’s kernel
address space. If requested from a user process, a librariofupetforms an 1/0 control call
to the network driver that maps the system memory region correspondhrgyid adapter space
into the address space of the requesting process. When this sequepesbbns is completed,
user processes can directly access and manipulate the network édigpta2). Frequently, NI

adapters are implemented as microprocessor systems [2] capadteaniting custom control
programs. Such programs in Myrinet are called Myrinet Control Prog(&fa#s) [2]. So, for

instance, one of the operations that a user process can perfortmevith adapter is to load a
specific control program into the adapter's memory. Another operationpging user buffers
into adapter’s local memory and then signaling the NI control prograrPR@ARo transmit this

message to the network.
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Fig. A2. Memory mapping of NI adapter resources into useresddspace.

Programmed I/0O

Programmed 1/O is an approach for implementing a message-passie syisere the
host CPU is involved in data transfer operations as opposed to a spysighich the data
movement is performed by Direct Memory Access (DMA) engineslirgsieither on the mother
board of the host system or on the NI adapters. Myrinet NI adaptersheh DMA engines [2]
and offer several modes of Programmed 1/O:

« The host CPU directly manipulates adapter’s send/receive regigenilar to
working with parallel or serial ports);

 The host CPU copies user buffers into the NI adapter's memory arfiesdtie
control program the control program running on the adapter;

» The host CPU copies user data into an intermediate keapgblock and informs the
NI adapter to transfer data into local memory. In order to adtessopy block
residing in host memory, the NI adapter has to be equipped with a deyable of



operating as a master on the host system bus. Such a device on thet Nijri
adapters is the DMA engine.

Although programmed 1/O offers various solutions for flexible softwachitectures, it
is a source of system inefficiency because host CPU cyclesise@ for communications
purposes instead of for useful computation. Programmable NI adaptetsntsad host CPU
from immediate data transfer operations and thus, provide for congmitatmmunication
overlapping leading to a better host CPU utilization and consequentlyaseccé the overall
system efficiency, assuming sufficient host memory-NI adapter bdtioexists.

In order to exploit the advanced hardware characteristics of g Figabit networking
technologies, the system communications software should employ nevigrgffarchitectures.
Bypassing the host OS, memory mapping, and programmed 1/O are mechtas@fow the
design and implementation of such architectures. The particular ubesa mechanisms may
vary with the specific system environment but they all aim to achéyeer communications
efficiency by reducing the processing overhead and the number of interncatmpies.

Introduction

Myrinet is a gigabit network [2] widely used in clusters of worketagiand embedded
systems for high-performance concurrent computing. Currently, severatagepassing
systems based on Myrinet exist: Myricom API [2], Fast Mess§@esBDM/BDM Pro [6],
Active Messages [3], GM [7]. They have certain features in comrmemory mapping of
Myrinet NI adapter (LANai adapter) resources into user spacebypassing host operating
system, using a custom Myrinet Control Program (MCP), and to aaiitfelegree polling for
synchronization, programmed I/O, and using LANai Direct Memory Ac¢(P84A) engines.
Among others, one major point of difference is the approach used foietramg data from user
buffers to LANai memory. One of the goals of this paper is to demateshow the
communication performance varies with the use of different datafenramodes, some of which
are employed by the above mentioned systems. Comparison of these shstemr, is not
within scope.

Generally, there are two methods for synchronization between hosnsyatel network
adapters: synchronous and asynchronous. Representatives of these methoelpectyely,
polling and hardware interrupts. This paper describes and compares tng gochemes for
synchronization between LANai adapters and host CPUs. Togethertahteatiafer modes and
the synchronization schemes reviewed here form a space of sixediffpoints in a two-
dimensional space of software architectures of Myrinet-basedagirgssystems. Experimental
results for latency and bandwidth performance metrics are predenteach point of this space.
Furthermore, the experiments are repeated on two distinct compuittorpis. Although
comparing and evaluating the absolute communications performance ofwlep&atforms is
outside the scope of this paper, it works to reveal specifics ifeghavior of the interaction
between Myrinet adapters and different host platforms that atieatrfor the architectural
design of efficient multi-platform messaging systems.

In the following sections, the paper specifies the data trangfdesrand synchronization
schemes selected for investigation here and describes the expatiemonment, the host and
Myrinet control programs, and the performance metrics. Then, the pamsents the
experimental data and analyzes the results. Finally, proposalsffared for software and



hardware architectural solutions for future programmable NI adajpteds communications
systems based on them.

LANai Adapters

LANai adapters are implemented as independent microprocessor sysésed on the
LANai processor [2]. LANai adapters have EEPROM and up to 1 Mig#&eNMEboth accessible
by the LANai processor through the local bus (L-bus). LANai memory apjeen the external
host system bus (E-bus) as a block of asynchronous memory [2]. ThetieregeDMA engines
on LANai adapters: two for handling the traffic between adapteris/seceive registers and its
local memory and one that can operate as an E-bus master cap@biesfafiring data between
host system memory and LANai memory. In this paper, the term “[@vgine” refers to the
LANai E-bus DMA engine, unless otherwise specified.

Data Transfer M odes

The flexible design of LANai adapters offers a variety of approafdrasansferring data
from user address space to the Myrinet physical medium. These amsaan be divided into
two groups according to the mode in which the LANai adapter is usetielfirst group of
approaches, the host CPU directly accesses and manipulates tlu¢, cpatus, and interrupt
registers of the LANai adapter. User processes can impldimeninode of operation when the
LANai adapter address space is mapped into the user addresg¢sgeattee tutorial part). In this
case, the LANai processor does not execute an MCP. As opposed tbehapproaches in the
second group use MCPs. These MCPs may differ in functionality,val ie shown later, but
they all are responsible for draining the network and performing imptiatessing on the
incoming messages as well as for sending user messages ovemihidk.n€his paper examines
data transfer modes from the second groups of approaches. When compheefirsd group of
approaches, they have the following benefits:

» Reduced system overhead;
* Unloading the host CPU from immediate communications operations;

* Increased likelihood for computation-communication overlapping, provided
sufficient host memory - NI adapter bandwidth exists;

» Better utilization of the NI adapter hardware resources;
» Higher flexibility.

In our study, we concentrate on the data path starting from the burffaser address
space and ending in the LANai memory (and vice versa). This dataigpdtie critical
performance factor of the interaction between host systems arghplieas. Here, we investigate
three different data transfer modes, as shown in Figure 1. Infiguse, the dark arrows
represent data transfers performed by the LANai DMA engine and égbivs represent
transfers performed by the host CPU. Dashed lines separateférerdibiddress spaces in which
data may reside. In the programmed 1/O transfer mode (Fig.dh&),s moved entirely by the
host CPU. When a user buffer is ready for transmitting, the ngekeés a library function that
copies data to the LANai memory and signals the MCP. After eeguve for synchronization,
the MCP sends the buffer to the network. In receive mode, the V& dhe network and puts
an incoming packet in the LANai memory. The host CPU is then sigaakkdopies data from
the adapter's memory to the user buffer. This mode of data traegfeierred to agero-copy
transfer [2], although in fact, there is one copy in the LANai.
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Fig. 1. Transfer modes: (a) Programmed /O, (b) Prograsni@and DMA
using copy block, (c) DMA.

The second data transfer mode uses an intermediate copy block resi@ergel space
(Fig. 1.b). When a user process is ready to send a buffer itacitisary function to copy data in
the copy block and then signals the MCP. The MCP initiates a DiWsfer which brings the
data into the local memory. Similarly, when a packet is recefred the network, the MCP
initiates a DMA transfer that moves received data in the copkbloaser library function then
copies data to the user buffer. The second mode adds one extra datan dupst Bystem
memory. This extra copy is necessary because LANai DMA enginaacass only contiguous
pages pinned in physical memory [2]. For this reason, Myrinet devicer dilieeates the copy
block as a kernel memory region at OS boot time. The copy block is gerdatat occupy a
memory region in permanently pinned contiguous physical pages.

The third data transfer mode is depicted in Fig. 1.c. Here, whserabuffer is ready for
sending, the user process simply signals the MCP which in turnesigabMA transaction and
copies the data directly from the buffer to the LANai memory. doeive mode, the MCP
receives a packet from the network and through the DMA engine forwatalgshe destination
user buffer. This transfer mode uses one intermediate copy in tNail/Aemory, as the first
transfer mode does. As it was stated above, the LANai DMA ergpeeates with physical
memory only. Therefore, user buffers should be permanently pinned in contiguousabhys
pages. Since neither one of the operating systems used in the experiwmtSolaris nor
Microsoft Windows NT) supports user memory allocation with these i@nt, for the
purposes of the experiments, user buffers are located in a pinned cdgpy bloc

In what follows, the three data transfer modes are referreMadel, Mode2, and
Mode3, following Figure 1.a, 1.b, and 1.c, respectively.

Synchronization Schemes

The second component of the interaction between the host CPU and thepdrédéssor
that is examined here is the synchronization between the two processgeseral, this issue is
orthogonal to the data transfer modes and is evaluated separatelis dbiee by repeating the
experiments implementing the three modes described in the previoiss seith two different
synchronization schemes, so that the results and the conclusions abbwo tissues do not

“A new release of the “Mississippi State University menmoapped Myrinet device driver for PCI LANai 4.x
adapters” [4] supports pinning of user memory pages on demand.
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interfere. However, this assumption is valid at first order pggraximation only, as it will be

shown later in the paper. The data transfer mode and the synchronizetieme are major
components of the interaction between host platforms and NI adaptetBegndoth result in

activities on the host system bus and LANai local bus, hence infhgereeich other. In a more
precise model of the interaction, this influence should be taken iotwiaic

As opposed to the interrupt driven asynchronous methods for synchronization between
the user process and the NI adapter, the synchronous methods can besitgzlemthout the
host operating system. In order to achieve higher flexibility and prédigtaof the
experimental architectures, we choose to implement the synchronous chgstodoth
synchronization schemes studied in this paper use polling for notificatenmain difference
between the two schemes is the form and location of the notificdigs In the first scheme
(Fig. 2.a), all synchronization flags are located in the LANamonry. Consequently, both
LANai processor and host CPU signal or detect completion of events dajfymmg or
respectively polling the same synchronization flags. As a resulfpuimer of cycles in which
the LANai processor accesses its local memory can be reduaisd.ifturn, may cause a slow
down in the MCP progress because the access to the L-bus istedbiiacording to the
following priority: E-bus, receive DMA, send DMA, LANai proces$8}.

Host System Host System
CPU Memory CPU K=) Memory
< System Bus > < System Bus >
Memory k=) LANai Memory =) LANai
LANai Card LANai Card

(@) (b)

Fig. 2. Synchronization schemes: Synchronization flags (aAMaL memory,
(b) split in LANai and host memory.

In the second scheme (Fig. 2.b), the synchronization flags have thesearartics but
each flag is split into two parts: one residing in the LANai mgnamd one in the host memory.
Now, each processor polls on flags in its local memory, potentiatiieable, and updates both
parts of a flag simultaneously when an event has occurred or complaiedscheme prevents
the L-bus from excessive external accesses for polling. Howedvezquires that the LANai
processor access the host memory for signaling the flags that tteside A Myrinet adapter can
access the host memory only through a DMA: the LANai DMA engitigei®nly device on the
adapter equipped with an interface to the host E-bus, hence capabtzssiag host memory
[8]. Therefore, in order to implement the second synchronization sclienmegch flag update in
host memory, the experimental MCPs, described in the next sectidornpea sequence of
operations for setting up the DMA transactions and checking statusersdier completion.
This sequence induces extra processing overhead and influences the pedoresalts of the
experiments using the second scheme.



For clarity of the notation, similarly to the data transfer mddethe previous section,
the synchronization schemes are named as Schemel and Scheme?2 ed idepigure 2.a and
2.b.

Description of the Experiments

Experimental Environment and Network Topol ogy
Two different computer platforms were used for performing the expertisn
e Sun Ultra running Sun Solaris 2.5.1;
» PC with Pentium Pro CPUs running Microsoft Windows NT 4.0.

The Myrinet hardware consisted of two-double speed 8-port switches, dpddd-cables, and
double-speed PCI and SBus LANai 4.1 adapters. Detailed descripttbe pfatforms and the
network components can be obtained from [5]. Memory mapped Myrinet deviagsdvere
used for the experiments: the Mississippi State University diorethe PCI adapters on the NT
machines [2] and the Myricom driver for the SBus adapters on theisSolachines [8]. The
topology of the experimental environment is shown in Fig. 3.

SW 8

SW 8

Fig. 3. Network topology of the experiments.

Myrinet Control and Host Programs

The MCPs used for the experiments implement a simple protocolneitiupport of
reliability, ordering, fragmentation, and reassembly; an error-fragsmission is assumed.
Packets consist of a packet header with three fields: O to 8 duyteesroute, 4 byte packet type,
4 byte payload length; and packet payload carrying user data. In order to teeywecessing
overhead, the MCPs perform minimal functionality and does not impleamgntefficiency
optimizations like overlapping send/receive DMA with E-bus/L-bus DMéxce, each transfer
begins after a previous transfer has completely finished. Although suahizggions are
possible and desirable, their use does not change the nature of thegsteyst-s LANai adapter
interaction in principle and, therefore, the experiments and conclugiessnted in this paper
preserve their validity.

The experimental programs running on the host platforms first map thaiL#dapter’s
address space into user space and then load the appropriate MCP o rh&mory. The
programs perform a sequence of ping-pong tests with messages ointlisiees. A message of
size L is sent from PC1 to PC2 and then returned back to PC1. Dasdpre is repeated N



times. The time T measured as the difference between thenmtwatavhich the last and the first
iterations take place is divided by N and thus, the round trip tipefTthe message is obtained.
The source code for the host programs is essentially identical foptadforms.

Performance Metrics

The two performance metrics used in this project are bandwidth andaynéatency.
The one-way latency is computed as half of the round trip time,T,¢2. The bandwidth is
obtained as L/J.. The length of the payload of the packets vary from O to 32,768 bytes. Even
with zero-length payload, a certain amount of data is transmittedtlozeretwork — the packet
header. In the topology used for the experiments (Fig. 3), the headédr iedgt bytes, 2 for the
source route, 4 for the packet type, and 4 for the payload length. The inayayload length
is at 32,768 bytes because for this packet size the bandwidth curueatesaSince no
fragmentation and reassembly is supported, the length of user messagssicted to the
maximum payload length (32,768 Dbytes). In the next section, the figuresseeprthe
dependence of the bandwidth and latency on the message size (packet p&gdoadjgure
contains a pair of charts presenting the bandwidth and latency meastgehéhe three data
transfer modes for one of the synchronization schemes (Schemel or2$h8imelar figures
are provided for the two different platforms investigated.

Experiments

The goal of the work described here is to examine the behavior of dhtadransfer
modes (Fig. 1) and two synchronization schemes (Fig. 2) in a Myrinetagieag system. It is
not an objective of this paper to compare the absolute performance tfdhexperimental
platforms, neither to investigate the influence of the network topology,themumber of
intermediate network switches between the end nodes.

Before presenting the measurements of the experiments, a bregfuction of some of
the specific platform performance parameters is necessany.pf&iminary measurements on
each of the computer platforms were conducted:

* bandwidth of host CPU transactions between host and LANai memory (th€Pds
is master on the host system bus);

» bandwidth of the LANai DMA engine transactions between host and LANgaiory
(the LANai DMA engine is master on the host system bus).

It should be noted that these operations are composed of two tranéifstsreading a
host or LANai memory address and storing its content in the CPU ok BMjine internal
registers and then storing this value respectively in LANai or heshary. For this reason, the
numbers presented below should not be interpreted as absolute throughputbasit thyestem
bus, host memory bus, or LANai local bus. The main purpose of thesimae@nts was to
investigate the parameters of data transfers over the host dyste(RClI for the PCs and SBus
for the Sun Ultras) in different modes as well as the perforsmanthe LANai DMA engine on
different boards. Here, only the maximum numbers of the two experimenfgesented:

* host CPU master:
- host -> LANai memory: on PCI = 88.1 MB/s, on SBus = 73.2 MB/s;
- LANai -> host memory: on PCl = 14.5 MB/s, on SBus = 48.7 MB/s.

" The exact numbers of all experimental executions cabtagéned from [5].
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* LANai DMA engine master:
- host -> LANai memory: on PCI = 113.3 MB/s, on SBus = 49.0 MB/s;
- LANai -> host memory: on PCI = 122.5 MB/s, on SBus = 65.9 MB/s.

These numbers show that the host CPU transactions that originatéh&drost memory
are faster than the ones that originate from the LANai memaryileBly, the transactions
performed by the LANai DMA engine are faster when their sourgetise LANai memory than
the ones having as a source the host memory. Another interesting poing tig tiwit although
the transactions are symmetrical, the LANai DMA engine on t# Bus substantially
outperforms the host CPU. This is not so obvious for the SBus LAN& Bijine. Lastly, the
transactions with the host CPU master on the PCI bus show art@rgknce between the two
directions. The “read” from the LANai memory operation is abouttispes slower (14.5 vs.
88.1 MB/s) than “write” to the LANai memory operation. This behavwsoattributed to the
specific PCI chipset of the experimental PC platforms (Natbhé X).

Experiments on the PC platforms

Figure 4 summarizes the bandwidth and latency measurements of thentides of data
transfer, namely, Model, Mode2, and Mode3 (Fig.1) using synchronization ScHEge?).
The latency can be represented as a sum of two components: overbeay &td bandwidth
latency. Overhead latency is the time spent on system overheadtiéiandwidth latency
depends solely on the bandwidth of the data transmission over the netwonke$sages longer
than 32 bytes, the latency in the experimental messaging system izatidnby the bandwidth
latency and in order to reveal the influence of the NI adapter -slgegm interaction only, the
charts represent only the latency of messages with length in theQan@2 bytes.
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2 00 /+k\“ 2 100 —&—Mode1l
>
% o 8.0 —l— Mode2
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Message size [bytes] Message size [bytes]

Fig. 4. Bandwidth and latency of the data transfer modesRih &ith synchronization Schemel.

Mode 3 achieves about four times higher bandwidth than Model. The bandwidth of
Model is limited by the throughput of the CPU host transactions to thealLAlé¢mory as
described in the preliminary measurements earlier in thisosediior messages less then 512
bytes Mode2 performs as well as Mode3 but it cannot exceed 35MB/s amet$eages longer
than 2,048 bytes certain performance degradation occurs. The explanatlus béhavior is
subject to further experiments and analyses. This particular behdeimonstrates the
complexity of the host system — NI adapter interaction and the negs ifodepth study.

Mode3 outperforms the other two modes; it shows both the lowest latecyha
highest bandwidth. In general, latency is not significantly affectechéyspecific data transfer
modes while the bandwidth is greatly affected. One reason isathajpposed to Model, both
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Mode2 and Mode3 do not use the operations that include host CPU transactioad ANai
memory, whose bandwidth is limited to 14 MB/s.

Figure 5 represents the results from the experiments with synchioni&xcheme?2. The
maximal values of the bandwidth of the three transfer modes arsatne with the two
synchronization schemes. Scheme2, however, reaches the maximum forrhegsage sizes.
The reason for this is clearly seen from the latency chart —n&headds 0.5 to 2.5
microseconds to the latency for each data transfer modes. Thisomaldilatency can be
attributed to the extra operations needed for the LANai processacéssthe flags residing in
host memory. This additional latency increases the round-trip time rerte reduces the
effective bandwidth of messages with length less than the poinuodtsan. In general, the idea
for the second synchronization scheme emerged as a means to unloadNgiddcal bus from
the polling cycles of the host CPU, and it was evident from the begirthatgonly the
bandwidth could benefit from this synchronization scheme.

50.0 4 18.0
_ 16.0
@ 4001 __ 140
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2 300 - L 2 120 —e—Model
£ / 2 10.0 Mode2
2 200 - ; § 80 oce
-g . / % 6.0 Mode3
-
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oomr—tYT L 0.0 - | | ‘ |
0 8 32 128 512 2k 8k 32k 0 4 8 16 32
Message size [bytes] Message size [bytes]

Figure 5. Bandwidth and latency of the data transfer modesPC with synchronization Scheme2.

The comparison of the performance metrics as depicted in Figuned 8 ahows that
Model with Schemel is the most efficient combination. It should be nobeekver, that the
user buffers in Model are in the copy block, not in a random location iwmirti@l address
space. In a real messaging system, additional provisions for imputiegnehis data transfer
mode are required. For instance, a buffer allocated in the usersadsprace should be passed to
a kernel mode routine for translation into physical addresses and pinnitite iphysical
memory. This operation will inevitably cause an additional overheadase of persistent
operations [10], user buffers might be reused, so that the overhead irdroeced in a setup
stage and through amortization may not significantly affect the perfmenaf the actual
communication. Another change required in the messaging system would beethdor a
module that handles the transfer of noncontiguous memory pages. Thisssangdeecause the
LANai DMA engine can operate only with contiguous physical pages. This bbgmk
requirement is guaranteed by the Myrinet device driver that allottaesopy block at OS boot
time. These extra operations will incur additional processing overheadh will change the
performance results to a certain degree.
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Experiments on the Sun Ultra platforms

The results from the experiments on the Sun Ultra machines aenpzd in the same
way as the results from the PCs. Figure 6 shows results fronbahdwidth and latency
measurements of the three data transfer modes with SchemeIFghile 7 presents the results
with Scheme2. The performance of the three data transfer modé® @un Ultra platforms
exhibit a different from the PCs behavior. Here, the highest bandgidtbhieved by Model.
Both Mode2 and Mode3 demonstrate similar characteristics, henextilaeintermediate data
copy in the copy block does not influence the bandwidth notably. Another interfesitoge of
Figures 6 and 7 is that the curves of the bandwidth cross each othesss#ge lengths of about
2,048 bytes. So, under certain conditions both the modes with DMA (Mode2 an®@)Viode
the mode without DMA (Model) might be optimal in terms of bandwidth. elemcnulti-mode
(poly-algorithm) implementation of the messaging system may lead toighest performance
gain.
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o : ) —#— Mode2
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m 10.0 4
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0.0 r—I=L T 0.0 | e
0 8 32 128 512 2k 8 32 0 4 8 16 32
Message size [bytes] Message size [bytes]

Fig. 6. Bandwidth and latency of the data transfer modesSamaJltra with synchronization Schemel.

The latencies of the three modes for zero-length messages (pemkiti only 10-byte
long headers) are similar. However, the latency of Model grows quaekly for small message
sizes. From this observation and from the bandwidth chart in Figute#n ibe concluded that
the communication latency on the Sun platforms is dominated by the bandatieliticyl for
smaller messages than on the PCs; hence the system overheadrisOowhese platforms, a
firm conclusion about the best performing mode could not be made. The betiepicted in
the bandwidth sections in Figures 6 and 7 should, however, be taken into adcthentesign
phase of a messaging system. Investigation of parameters such etedqystem load and
maximum packet size becomes important for determining the datdetramsdes used in the
system.

The comparison of the bandwidths of Mode2 and Mode3 with Schemel (Fig.6) and
Scheme?2 (Fig.7) shows that the second scheme leads to an incredsmito? MB/s of the
maximum bandwidth. As expected, Scheme2 increases the one way latevitly about 2
microseconds on average for the three data transfer modes. Agdne, $art Ultra platforms, it
could not be stated firmly what synchronization scheme performs belgee, it should be
restated that Scheme2 requires additional DMA operations for updagngynchronization
flags in host memory, which results in an extra processing overhead.
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Fig. 7. Bandwidth and latency of the data transfer modesSumn Ultra with synchronization Scheme2.

The experiments presented in this paper made one simplificationbui$ers in Mode3
were allocated in the pinned copy block, not in a random location in thhspace of the host
OS. Consequently, two procedures, potentially adding extra overhead weaoointed for: 1)
dynamic pinning of user buffers in physical memory, and 2) multiple DNMAskactions needed
for transferring the non-contiguous physical pages of the user buffershd-purposes of this
project these two procedures do not significantly affect the expesnagult the conclusions but
they should be taken into account in a real messaging system.

Analysis, Lessons L earned, and Future Work

In this paper, two components of the interaction between a Myrinatidfiter and a host
system were considered. These two components are the mode ofatafartbetween user
buffers and LANai memory and the synchronization scheme between th€EPldsand LANai
processor. The mode of data transfer between user space and m&Nwairy is an important
component of a communication system based on Myrinet. The end-to-end bandwidtl i
great degree influenced by the hardware capabilities of the hosirpiatéspecially the system
bus) and the way data is moved to/from the LANai memory. On thexpeariemental platforms,
the behavior of the three transfer modes was different. On the tR€snodes with DMA
outperform the mode with direct copying. This is valid even in the whssm an intermediate
copy block is used and extra data copy is made. The main reason fdifférence in the
bandwidth performance between the DMA on non-DMA modes is the liontabn the
maximum throughput of the memory operations to the LANai memory initiayethe host
CPU. Apparently, the difference between the PCI write throughput (82s)Mand read
throughput (14 MB/s) is a significant one and it imbalances the comnionicgystem. The
performance of the end-to-end communication system is clearly bound bgrip®mrent with
the lowest bandwidth (in this case, moving data from the LANai mgtoathe host memory by
the host CPU at the receive side).

The performance comparison of the three data transfer modes on thglaforms
shows different results. On Suns, Model achieves the highest bandwigthhdwever, is valid
for relatively long packet sizes. For small packet sizes, th Dnodes perform better. So,
depending on the specific requirements either one of the three methodsbeosiliccessfully
used. The different behavior of the data transfer modes on the twaneeptl platforms (PC,
Sun) can be explained with the differences in the system bus (BQk) $hroughput, the
performance of the LANai DMA engine on the different adapters, hadhroughput of the
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read/write operations to the LANai memory when the LANai adaptartarget device and CPU
is the master on the host system bus.

An interesting combination of two data transfer modes (a mixed modgt rbe
achieved if one of the three modes is used on the send side and anothertiomeeceive side.
An experiment with such an asymmetrical architecture was condaotdte PC platforms. FM
[9] uses similar approach.. We used Model (Fig.1.a) on the sendnsiddaale2 (Fig.1.b) on
the receive side. Figure 8 demonstrates the measurements ohtheidih experiments using
the asymmetrical data transfer mode compared with the symnmafsiementations of Model
and Mode2. The resulting architecture achieves two improvementsatids the bandwidth
limitation of the LANai memory — host memory transfer performedhaytost CPU in Model,
and 2) avoids the performance degradation of Mode?2.
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Fig. 8. Bandwidth of Model, Mode2 and Mixed Mode on PCs with Sethem

As opposed to bandwidth, one-way latency is not significantly influenced hyatisfer
modes. The differences in latency of the three modes are inrthe o 1-2 microseconds (10 -
15%). Since the variations in bandwidth are higher (up to 100% or moréhaheerformance
evaluation of the transfer modes depends mostly on their bandwidth camabilit

The two synchronization schemes, with notification flags in LANammg and with
split flags, show similar performance. The synchronization schethesplit flags was proposed
to provide functionality that leads to a better balance of the mentogsses to the host and
LANai memory, and thus increase the bandwidth. However, except icatfe of Mode2'’s
bandwidth on PCs, the experiments show that the second scheme, doad tmal@erformance
gain; on the contrary, it introduces some additional overhead and incteadatency (about 1-
2 microseconds). Apparently, the LANai adapters used in the expesirseateed processing
the incoming and outgoing packets as well as making progress in the M@Rhehhost CPU is
polling the LANai memory. Since the second synchronization scheme reqoore complex
software implementation, the first scheme should be generally coeidetter.

Another perspective of the experiments presented in this paper isflirence of the
amount of processing performed by the LANai adapter on the latency. T0R Mat
implements Model has the most limited functionality. Mode2 and Mode3 M@Psnore
complex — they perform not only the front message processing but also maveetiaeen the
host and LANai memory. From the results presented above, it cagebetlgat in most cases,
Model shows the lowest latency. However, from another point of viewde® and Mode3
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reduce the processing overhead of the host CPU and thus, can provide fordegies of
computation-communication overlapping. We can generalize that theteaeaoff between the
end-to-end latency and the degree of overlapping (reducing the system over@ead).
explanation of this trade-off is that usually, NI adapters aredb@asgrocessors that are behind
the leading edge of the microprocessor technologies used in the host ssystdnthus,
delegating more responsibilities to the NI adapters will add saterdy.

We can make the following summary from the experimental resultsofitioe above
analysis:

« The interaction between NI adapters and host systems is a comptesgr
» Different platforms have different optima results;

« Asymmetrical architectures on a single platform may be feasible

« Bandwidth is the more important factor than latency;

» Software architecture has to be flexible enough to cope with spebidi@cteristics
of different hardware host platforms and NI adapters which are ncanisly
evolving;

» A trade-off between processing overhead and latency exists;

» Bypassing host OS is a significant factor for increasing the comations
efficiency.

Three hardware changes in the architecture of the Myrinet NI adagate reasonably be
proposed. First, scatter/gather functionality of the LANai DMA pagiis critical for
implementing a number of efficient solutions. Common operating systeigs YWindows NT
and Solaris) do not offer allocation of user buffers in contiguous physamds. A pinned
buffer will be scattered over a number of physical pages. Consequanfigparate DMA
transaction will be required for each non-contiguous page. The scatier/gaode will allow
the LANai DMA engine to transfer all pages (or a large numbeher) with one transaction,
with concomitant improvement in performance. Another application oé¢htter/gather mode
is the preparation of a packet for sending. Usually, packet headegererated by the system
software and are not physically attached to the user data that tteerpacket payload. A single
gather DMA transaction can send the packet to the network as a wmtitle Second, the
second hardware optimization we propose is an interface betweenbihe dnd the E-bus that
will allow the LANai processor to access directly the host mgmThis feature will enable
more flexible synchronization schemes, as was discussed in the pa&peally, support for a
“chained DMA” capability would allow apparently direct DMA from thpeocessor cutting
through the network card, and appearing on the network. This would complexpeottsfor
gather/scatter DMA. Evidently, support for a more general DMdister structure would be
required. This does not appear to be a difficult modification touhert architecture.

The newest trends in the area of high performance concurrent computijrinuted
environments based on gigabit networks suggest numerous directions for fatkreHere, we
list some of them:

» Developing flexible message-passing systems that exploit the spe@fiacteristics
of the underlying platforms;
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e Optimizing operating systems for high performance communications purposes,
including higher predictability;

» Devising thinner and more optimal protocol stacks;

* Moving more functions to the physical and data-link network layers, fundiias
reliability, flow control, and message ordering;

* Developing mechanisms for increasing the level of protection and securit

Conclusions

This paper presented a study on the complex interactions between Myeimairk
interface adapters and two types of host platforms. We investigated-dimensional design
space formed by the synchronization schemes and data transfer modssnbeser buffers and
LANai memory on each of the two experimental platforms. We denaiedtithat the detailed
architecture of a Myrinet-based communications software deterniines great extent the
overall performance of the networked system and we presented a aystaypproach for
evaluating existing and guiding the design of future software systems yone¥l or other
network interfaces. We determined that bandwidth is more greapwdted by the detailed
design considerations explored than is latency.

We also pointed out a set of mechanisms critical for achievingesff communications
on gigabit networks: bypassing the host operating system, intelligent proglkdenmetwork
adapters capable of accessing host memory, programmed 1/0O, and nmeapgiyng of network
adapter resources into user space. Finally, this paper proposed rheadhaages in LANai
adapters that potentially lead to more flexible software ardhites and stated directions for
future work in this area.

The area of programmable gigabit networks is an important, and ligetpritinue to
grow. The ability to program the network, and thereby provide hardwaradthid execution
for certain network (and in future user) threads of control, contiraube timportant, and subject
to much further exploration. In order to achieve the next revolutiongpyirstdis area, we look
forward to Network Interfaces incorporating multi-die state-ofdhtehigh MIPS processors,
quickly retargetable field-programmable gate arrays (FPGAS), amkklud transfer engines, to
be complemented by network and bus fabric monitoring so that the complemsysia be
interpreted with a finer degree of accuracy, while permittingebetining. This will clearly be
complemented by switches and network fabrics that bring to bear badity qfaservice
appropriate to the high-speed environments, such as predictable end-toagnd del
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