
Feature-Based Registration of Medical Images:Estimation and Validation of the Pose AccuracyXavier Pennec1;2, Charles R.G. Guttmann3, and Jean-Philippe Thirion4;11 INRIA Sophia Antipolis, EPIDAURE project,FranceXavier.Pennec@sophia.inria.fr,http://www.inria.fr/epidaure/personnel/pennec/pennec.html2 MIT, A.I.Lab, Cambridge, USA3 Brigham and Women's Hospital, Harvard Medical School, Boston, USA4 Focus Imaging SA, FranceAbstract. We provide in this article a generic framework for pose es-timation from geometric features. We propose more particularly two al-gorithms: a gradient descent on the Riemannian least squares distanceand on the Mahalanobis distance. For each method, we provide a wayto compute the uncertainty of the resulting transformation. The analysisand comparison of the algorithms show their advantages and drawbacksand point out the very good prediction on the transformation accuracy.An application in medical image analysis validates the uncertainty esti-mation on real data and demonstrates that, using adapted and rigoroustools, we can detect very small modi�cations in medical images. Webelieve that these algorithms could be easily embedded in many applica-tions and provide a thorough basis for computing many image statistics.1 IntroductionRegistration is a fundamental task in medical imaging to compare images takenat di�erent times for diagnosis or therapy. In the case of images of the samepatient, one often assume that the motion between the images is rigid, andregistration consists in estimating the six parameters of the 3D rotation andtranslation. When registration is based on features extracted from the images,the problem can be separated into two steps: (1) �nding the correspondences be-tween features (matches) and (2) computing the geometric transformation thatmaps one set of features to the other. In this article, we do not discuss matchingmethods per se, but rather the estimation of the geometric transformation frommatched features. The quanti�cation of the registration quality is also an im-portant problem as most measurements are done after registration. For instance,registration errors can have a strong in�uence on the quanti�cation of the lesionevolution [3]. Knowing the uncertainty of the transformation might even be vitalin image guided surgery when it comes to operate close to important anatomicalstructures.Most existing methods for computing 3D rigid motion deal with sets ofmatched points and minimize the sum of square distances after registration.



This is called the orthogonal Procrustes problem in statistics, the absolute orien-tation problem in photogrammetry and the pose estimation problem in computervision. Several closed form solutions have been developed, using unit quaternions[4], singular value decomposition (SVD) [9, 11], Polar decomposition [5] or dualquaternions [12]. However, models of the real world often require more complexfeatures like lines [2], planes, oriented points or frames. Traditional methods relyon the vector space structure of points and generalizing them directly to othertypes of features leads to paradoxes. For instance, depending on the representa-tion used, the standard expectation could take an arbitrary value [7]. Moreover,if uncertainty handling is a central topic in several works, like [1], there are muchfewer studies dealing with the accuracy of the estimated transformation.We �rst review some notions of Riemannian geometry in order to introduceproper tools on geometric features. Then, we develop a pose estimation criterionbased on the Riemannian least-squares and another based on the intrinsic Ma-halanobis distance, and provide a way to compute an estimation of the resultaccuracy (generalizing the approache of [8] to any kind of features). In the lastsection, we investigate a practical case in Medical Image Analysis: the registra-tion of MRI images of the head, where the availability of each image in twodi�erent echoes allows us to test for the uncertainty prediction.2 Geometric FeaturesGeodesics Geometric features like lines, planes, oriented points, frames, etc.generally belong to a manifold and not to a vector space. In the geometricframework, one speci�es the structure of a manifoldM by a Riemannian metric.This is a continuous collection of dot products on the tangent space at each pointx of the manifold. Thus, if we consider a curve on the manifold, we can computeat each point its instantaneous speed. The length of the curve is obtained asusual by integrating it along the curve. The distance between two points ofa connected Riemannian manifold is the minimum length among the curvesjoining these points. The curves realizing this minimum for any two points ofthe manifold are called geodesics.Exponential charts Let us develop the manifold in the tangent space at pointx along the geodesics (think of rolling a sphere along its tangent plane). Thegeodesics going through that point are transformed into straight lines and thedistance along these geodesics are conserved. This generates a chart called theexponential chart. It covers all the manifold except a set of null measure calledthe cut locus. Let �!xy be the representation of y in this chart. Then its distanceto x is dist(x; y) = k�!xyk. This means that the exponential chart is a linearrepresentation of the manifold with respect to the development point.Invariant distance Since we are working with a transformation group that mod-els the possible image viewpoints, it is natural to choose an invariant Riemannianmetric on the manifold. This way, all the measurements based on distance are



independent of the image reference frame. Denoting by f ? x the action of trans-formation f on feature x, the distance is invariant if dist(x; y) = dist(f ? x; f ? y).Existence conditions for such a metric are detailes in [7].Principal chart Let o be a point of the manifold that we call the origin andfx be a �placement function� (a transformation such that fx ? o = x). We callprincipal chart the exponential chart at the origin and we denote by ~x the rep-resentation of x in this chart. In this chart, the distance becomes: dist(x; y) =dist (f(-1)x ? y; o) = kf(-1)~x ?~yk. In fact, we can express all operations of interest forus from the following �atomic operations� and their Jacobians in the principalchart: the action [~f ?~x] of a transformation and the placement function [~f~x].The transformation group Since the group acts on itself, we just have to replacethe action by the composition [~f � ~g] and add the inversion [~f(-1)] to theatomic operations. The placement function disappears (it is the identity). Animportant property of the invariant metric is that it relates the exponential chartat any point f with the principal chart. Using the non-orthogonal coordinatesystem induced by the principal chart, we have: �!fg = JL(~f)(~f(-1) � ~g), whereJ(~f) = @(~f�~e)@~e ���~e= Id is the Jacobian of the left translation of the identity in theprincipal chart. From a practical point of view, this means that we can �translate�local calculations on points to the principal chart of our transformation groupby replacing g � f with �!fg and f +�!�f with exp~f(�!�f ) =~f � (JL(~f)(-1) ~�f).Example of features We have implemented this framework for 3D rigid transfor-mations acting on frames, semi-oriented frames and points. Frames are composedof a point and an orthonormal trihedron and are equivalent to rigid transfor-mations. The principal chart is made of the rotation vector representing thetrihedron or the rotation and the translation of the point position vector. Semi-oriented frames model the di�erential properties of a point on a surface. Inparticular, they model the �extremal points� we will extract on medical im-ages in Sec. 4. They are composed of a point and a trihedron (t1; t2; n) where(t1; t2) � (�t1;�t2) are the principal directions and n the normal of the surface.3 Feature-Based Pose Estimation3.1 Riemannian Least-SquaresLet fxig and fyig be two sets of matched features. The Least squares criterionis easily written using the invariant Riemannian distance:C(f) = 12Xi dist(yi; f ? xi)2Now, thanks to the good properties of the principal chart, it turns out thatthis criterion can be expressed as a classical sum of squares of vector norms.Let ~zi = ~f(-1)~yi � (~f ? ~xi) be the error vector in the principal chart. The criterionbecomes 2C(f) =Xi dist �f(-1)yi � (f ? xi) ; o�2 =Xi k~zik2.



From the atomic operations, and using the composition rule for di�erentials,we can compute the error vector ~zi and its Jacobians @~zi@~xi , @~zi@~yi , and @~zi@~f . The�rst derivative of the criterion C(f) is: � =Pi @~zi@~f T~zi. Neglecting the term in �zzwith respect to the terms in _z2 in the second derivatives, we obtain: H = @�@~f 'Pi @~zi@~f T @~zi@~f and @�@~zi ' @~zi@~f T.A gradient descent algorithm Assume that f is a vector. The 2nd order Taylorexpansion of the criterion is C(f+�f) ' C(~f)+�T�f+ 12�fTH�f . The minimumof this approximation is obtained for �f = �H (-1)�. Now, since~f is the expressionof a transformation in the principal chart, we just have to replace f + �f byexpf(�!�f ) =~f � (JL(~f)(-1)�!�f ), and iterate the process:~ft+1 =~ft � ��JL(~ft)(-1)H (-1)t �t� (1)As an initial estimate, we can choose the identity if nothing else is given. Theprocess is stopped when the norm k�!�f tk of the adjustment transformation be-comes too small (we use " = 10�10) or when the number of iterations becomestoo high (practically, it converges in about 10 iterations).Estimation of the uncertainty at the minimum Let �̂ be the vector of observeddata and f̂ the corresponding state vector. The minimum f(�) of the criterion fora data vector � is characterized by �(f(�); �) = 0. A Taylor expansion aroundthe actual values (�̂; f̂) gives a modi�cation of the state �f = �Ĥ (-1)Ĵ��� for amodi�cation of the data vector ��, where Ĵ� = @2�@�@f . Thus, the covariance of f̂is �f̂ f̂ = E (�f�fT) = Ĥ (-1)Ĵ���̂�̂ĴT�Ĥ (-1). Assuming that all our measurementsare independent, we can simplify Ĵ���̂�̂ĴT� to obtain:�f̂ f̂ = Ĥ (-1) Xi @�̂@~zi�zizi @�̂@~zi T! Ĥ (-1) (2)In our case, the data and the state are not vectors, but features and trans-formations in a Riemannian manifold. In fact, we can do the same derivation byreplacing �f with �!�f = J (̂~f)(̂~f (-1) ��!�f ) and �� with a somehow similar expression.It turns out that the de�nition of the covariance is changed accordingly and that�nally nothing is changed in equation (2).3.2 Mahalanobis Distance MinimizationTo allow di�erent and non isotropic covariance matrices for di�erent measures,we can minimize the sum of squared Mahalanobis distances after registration.It turns out that this Mahalanobis distance can be expressed with exactly thesame error vector as before:C(f) = 12Xi �2(yi; f ? xi) = 12Xi ~zTi �(-1)zizi~zi



Thus, the algorithm is the same as for least squares, but the derivatives of thecriterion are di�erent: � = �@C@~f �T =Pi @~zi@~f T�(-1)zizi~zi, H 'Pi @~zi@~f T�(-1)zizi @~zi@~f and@�@~zi ' @~zi@~f T�(-1)zizi . Now, with these new derivatives, the Taylor expansion for thecriterion is the same, and the evolution for the gradient descent is still givenby equation (1). We can use the same starting value and stopping criterion asbefore. Practically, we have observed a convergence in about 15 iterations whenstarting from identity and in 5 to 10 iterations when starting from the least-squares solution. For the uncertainty of the solution, we replace the values of Hand @�@~zi into equation (2) and obtain: �f̂ f̂ = Ĥ (-1)3.3 Algorithm ComparisonWe have performed test on synthetic data simulating the MRI data of Sect. (4)to evaluate these two algorithms (denoted by LSQ and MAHA). Since all ourfeatures can be simpli�ed into points, we took as reference the unit quaterniontechnique (QUAT) [4]. Concerning accuracy, we found that QUAT and LSQperform very similarly, but MAHA is 1.2 to 1.5 times more accurate. LSQ andMAHA computation times are much higher than QUAT (by a factor 10 to 40)but the times are still reasonable (we have applied these algorithms to more than500 registrations of MR images in next section).To verify the uncertainty prediction, we used the validation index developpedin [8]: under the Gaussian hypothesis, the Mahalanobis distance between theestimated and the exact transformation (the validation index) should be �26distributed. By repeating the registration experiment, we can verify that theempirical mean value I = ��2 = 1N P�2i and variance �2I correspond to theexpected values (here 6 and 12 for a �26), and that the empirical distributioncorresponds to the exact distribution using the Kolmogorov-Smirnov (K-S) test.As expected, the most accuracy estimation is given by MAHA (I = 6:05, �2I =11:90), which proves that the uncertainty estimation is very accurate. For LSQ,the uncertainty on the transformation is still well predicted (but it is larger thatthe one of MAHA) and QUAT needs a minimum number of 15 matches tp passthe K-S test since we have to estimate the noise on features from mesurements.As a conclusion, MAHA gives the most accurate transformation and a gooduncertainty in all cases, even with very few matches, but it should be initializedwith QUAT to keep the computation time low.4 Registration of Real MRI ImagesThe experiment is performed using multiple 2D contiguous Magnetic Resonanceimages (MRI) which constitute a 3D representation of the head. The images arepart of an extensive study of the evolution of the Multiple Sclerosis (MS) diseaseperformed at the Brigham and Woman's Hospital (Harvard Medical School,Boston). Each patient underwent a complete head MR examination several timesduring one year (up to 24 di�erent 3D acquisitions). Each acquisition providesa �rst echo image and a second echo image (256 x 256 x 54 voxels of size .9375



x .9375 x 3mm) representing the same T2 weighted signal imaged at di�erentecho times. Thus, they are expected to be approximately in the same coordinatesystem. This protocol was designed to optimize the contrast in the two channelsfor an easier tissue segmentation. Considering two acquisitions A and B, theregistration of echo-1 images (A1 to B1) and echo-2 images (A2 to B2) givetwo relatively independent estimates of the genuine transformation from A toB. The comparison of these two transformations gives a Real Validation Indexwhich can be tested for the accuracy of the uncertainty estimation.
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Fig. 1. Left: Example of MS images. The same slice of one acquisition in echo-1 (left)and echo-2 (right). Right: evolution of an image row going through a lesion across24 time points over a year. Left: without registration; Right: after registration andintensity correction.Our registration algorithm relies on the extraction of Extremal Points (see[10]) that we model as semi-oriented frames (see Sec. 2). Matches between ex-tremal points of two images are determined using an iterative closest point al-gorithm adapted to such features. Typically, we match 1000 extremal pointsout of the about 3000 extracted with a residual mean square error (RMS) ofabout 1mm. We initialize the registration with QUAT and then iterate a loopconsisting of a noise estimation on features [8] followed by a MAHA registration.
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In a �rst experiment, we compared directly theregistrations between corresponding echo-1 andecho-2 images. This diagram represents three ac-quisitions A, B and C with the three echo-1 im-ages (A1, B1, C1) and the three echo-2 images(A2, B2, C2). The echo-1 and echo-2 registra-tions are signi�cantly di�erent (�2(fAB1 ; fAB2),�2(fAC1 ; fAC2), �2(fBC1 ; fBC2) > 50) but theintra-echo-1 and intra-echo2 registrations arecompatible (�2(fBC1 � fAB1 ; fAC1) ' 6 and �2(fBC2 � fAB2 ; fAC2) ' 6). Thisled us to assume a global bias for each acquisition between echo-1 and echo-2images, represented here by the transformations fA, fB , and fC .To estimate the biases, we observed �rst that the transformation from imageA1 to image B2 can be written fA1B2 = fB � fAB1 = fAB2 � fA. If measurementswhere perfect, the bias fA could be expressed for any other image Z: fA =f (-1)AZ2 �fZ�fAZ1 . Since measurements are noisy, we obtain an estimator of the biasfA by taking the Fréchet mean value [7]. The biases we obtain are di�erent foreach acquisition and could be considered as translations of standard deviations�x = 0:09, �y = 0:11 and �z = 0:13 mm.



Although the biases appear very small, they are su�cient to explain theprevious errors in the registration accuracy prediction: the mean value and stan-dard deviation of this new index across all registrations are now very close totheir theoretical value (see table 1). For the uncertainty of the transformations,we found a typical boundary precision around �corn = 0:11 mm and a typicalobject precision far below the voxel size: �obj = 0:05 mm for echo-1 registra-tions. Values are even a little smaller for echo-2 registrations: �corn = 0:10 and�obj = 0:045 mm. �I �I K-S test num. im. num. reg.Theoretical values 6 p12 = 3:46 0.01 � 1 n � 24 n � (n� 1)=2patient 1 6.29 4.58 0.14 15 105patient 2 5.42 3.49 0.12 18 153patient 3 6.50 3.68 0.25 14 91patient 4 6.21 3.67 0.78 21 210Table 1. Real Validation Index with bias correction for di�erent patients. The meanvalidation index is within 10% of its theoretical value and the K-S test exhibits im-pressively high values.Most of the extremal points we match are situated on the surface of thebrain and the ventricles. These surfaces appear di�erently in echo-1 and echo-2images due to the di�erence in contrast. Other artifacts such as chemical shiftor susceptibility e�ects may also account for the observed bias as they in�uencethe detection of extremal points. Indeed, the two echoes are acquired with dif-ferent receiver RF bandwidth to improve the signal/noise ratio [6]. Therefore,the chemical shift and the susceptibility e�ect are di�erent in the two echoes. Ina future work, we plan to correlate the biases with diverse quantities in the im-ages in order to understand their origin. Ultimately, we would like to predict thebiases in each acquisition before registration. This would allow the indubitablevalidation of the registration accuracy prediction.5 ConclusionWe show in this article how to generalize the classical least squares and leastMahalanobis distance pose estimation algorithms to generic geometric features,and how to estimate the uncertainty of the result. The uncertainty prediction onthe transformation is validated on synthetic data within a bound of 5% for all al-gorithms, decreasing to less than 1% of inaccuracy for the algorithm MAHA. Webelieve that these algorithms could be easily embedded in many applications andprovide a thorough basis for computing many image statistics. Further improve-ments could include the generalization of this framework to non rigid transfor-mations, the estimation of a multiple registration of n sets of matched featuresand the coupling with statistical matching algorithms to provide a completeregistration system.From the application point of view, we show an example in medical imagingwhere we reached a sub-voxel registration accuracy (0.05 mm) that allowd us
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