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Springer Verlag, 1995.The Fixpoint-Analysis MachineBernhard Ste�en?Andreas Cla�en Marion Klein Jens Knoop Tiziana MargariaUniversit�at PassauGermanyAbstract. We present a �xpoint-analysis machine, for the e�cient com-putation of homogeneous, hierarchical, and alternating �xpoints over reg-ular, context-free/push-down and macro models. Applications of such �x-point computations include intra- and interprocedural data 
ow analy-sis, model checking for various temporal logics, and the veri�cation ofbehavioural relations between distributed systems. The �xpoint-analysismachine identi�es an adequate (parameterized) level for a uniform treat-ment of all those problems, which, despite its uniformity, outperforms the`standard iteration based' special purpose tools usually by factors around10, even if the additional compilation time is taken into account.1 Introduction and MotivationA great number of analysis and veri�cation problems such as abstract interpreta-tion, data 
ow analysis, model checking, determination of behavioural relationsbetween distributed systems, hardware veri�cation and synthesis, etc., boil downto the computation of a speci�c kind of �xpoint. In fact, in all these areas ofapplication, speci�c �xpoint solving tools have been independently constructedand tuned for their special purposes.The idea behind the �xpoint-analysis machine is to de�ne a uniform plat-form for �xpoint computations, which, despite its uniformity, outperforms the`iteration based' special purpose tools. This goal is approached by translatingthe speci�c �xpoint problems into very �ne-grained but computationally ad-vantageous representations, which allow us to eliminate as much redundancy aspossible. Our design stems from the observation that almost all �xpoint prob-lems considered in practice can be formulated as a model checking problem of acertain kind. Currently we are uniformly covering the kinds of �xpoint compu-tations summarized in Table 1, which depend on the structure of the underlyingmodel and formula. The structure of the analysis machine is a consequence of theobservation that, although each of the di�erent kinds of �xpoint computationsrequires special care, there is a large common core as soon as one breaks down? Lehrstuhl f�ur Programmiersysteme, Universit�at Passau, Innstra�e 33,D-94032 Passau (Germany), tel: +49 851 509.3090, fax: +49 851 509.3092,steffen@fmi.uni-passau.de



the problem to the appropriate kind of granularity and allows a limited formof parameterization. In fact, the machine architecture we are going to presentallows us to uniformly cover all the kinds of �xpoint problems mentioned with-out performance penalty, as our choice of granularity is tailored for runtimeoptimization. In fact, the di�erences between these kinds of problems and theircorresponding �xpoint computations only require a change in the data domainthe �xpoint is computed over and in the program controlling the order of the�xpoint computation. Thus the architecture and the remaining data structuresof the machine coincide in all these applications.Fixpoint Model classclass regular CFR/PDA macrohomogeneous (chaotic, IIB ) (chaotic, FIIB ) (chaotic, high.ord. FIIB)hierarchical (layered, IIB ) (layered, FIIB ) (layered, high.ord. FIIB)alternated nesting (backtrack, IIB ) (backtrack, FIIB) (backtrack, high.ord. FIIB)Table 1. Classi�cation of the Fixpoint Computations as (strategy, domain)Our practical experience with the analysis machine con�rms the well-knownfact that compilation is better than interpretation. In fact, even taking the ad-ditional translation e�ort into account, the analysis machine outperforms thecomputations on standard data structures by factors usually around 10. Detailsare reported in Section 6.The uniform and general structure of our machine also leads to excellentexperimental features. On the practical side, it supports the investigation ofheuristics, which are important when dealing with complex kinds of �xpointproblems. On the theoretical side, it supports the study e.g. of the essence ofalternated nesting, which is still a matter of research.It should be noted that we focus on global iterative �xpoint computationshere. Therefore very speci�c heuristics (like e.g. the Binary Decision Diagram-based techniques for model checking) which are extremely e�cient in `good'cases, but much worse than the standard iteration techniques in `bad' cases, arenot covered.The �xpoint machine constitutes a central component of the computationalcore of the META-Frame [StMC95, SFCM94, MaCS95], which is a uniform en-vironment for high-level construction, veri�cation and analysis of hardware andsoftware systems.The next section summarizes the domain of application, while Section 3 presentsour analysis machine. Subsequently, Section 4 discusses the optimizing compila-tion, Section 5 describes the �xpoint computation mechanism, Section 6 reportson the performance of the machine, and Section 7 draws our conclusions.



2 The Application Domains: The Present ScenarioFigure 1 summarizes the scenario discussed in this paper. The upper two rowsof the �gure address the currently considered application areas, ranging fromseveral kinds of data
ow analyses [Hech77] and the veri�cation of behaviouralrelations (top row) to various classes of model checking (second upper row). Aseach of the top row applications can be reduced to model checking via logicalcharacterization without runtime penalty, the second upper row, showing a hi-erarchy of model checking problems, represents both an application level and acommon platform for the top row applications.We will �rst explain the upper two rows of the �gure, and subsequentlysketch the lower part discussing the implementation of the various kinds of modelcheckers.{ Intraprocedural data
ow analysis : algorithms of this kind can be realizede�ciently and at almost no implementation cost on our analysis machinevia a data 
ow analysis generator which automatically produces �xpointmachine code from high level speci�cations [Stef91, Stef93, Stef94]. We willdiscuss this implementation and its performance in Section 6.
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Fig. 1. Setup of the Analysis Environment



{ Interprocedural data 
ow analysis : in this setting we are able to cover a wideclass of programs that contain recursive procedures with value parameters.The corresponding data 
ow analysis generator, which uses the same highlevel speci�cations as the intraprocedural version, is under implementation.It requires the combination of the methods presented in [Stef93, BuSt94,KnSt92a, KnRS94].{ Higher order data 
ow analysis : this setting allows us to deal with furthertypes of parameters, like reference and procedure parameters. Whereas thecase of reference parameters is still rather e�cient, the optimal treatment ofarbitrary (�nite mode) procedures requires an unacceptable e�ort and shouldtherefore be handled approximatively. For details the reader is referred to[Knoo93], where a method is presented that is safe, e�cient, and optimalfor programs of mode two without global formal procedure parameters. Es-sentially, all these methods boil down to adding a speci�c preprocess to aninterprocedural analysis, which can e�ciently be realized on the analysis ma-chine. The corresponding extension of the interprocedural data 
ow analysisgenerator to this case is rather simple, as the preprocess is independent ofthe speci�c analysis.{ Behavioural relation checking : the veri�cation of behavioural relations be-tween distributed systems can also be transformed into a particular modelchecking problem via logical characterization [Stef89, StIn94].The second row of Figure 1 presents a hierarchy of model checking problems thatare classi�ed according to the structure of the underlying model [Stef94]. Besidethis structure, the possibility and the extent of interference between minimaland maximal �xpoints { generating homogeneous, hierarchical or alternating�xpoints [EmLe86] { is an important classi�cation criterion.Whereas all the top row applications require at most hierarchical �xpoints,alternating �xpoints are necessary when dealing with properties like fairness.Altogether we face a potential of nine structurally di�erent model checking prob-lems, two of which (the alternating case for context-free/push-down and macromodels), see Table 1, even though decidable, do not have a �xpoint character-ization yet. The other seven cases can be uniformly represented by means of a�nite equational system together with a parity vector specifying the particularsolution (minimal, maximal) of interest. This leads to the third row. Actually,we proposed such transformations also for the two exceptional cases, but theircorrectness is still a conjecture. While standard model checkers work on therepresentation level of equational systems, our computation takes place on thelevel of the �xpoint-analysis machine. Moreover, as most of the translation intothe equational representation, which can be regarded as a common intermediatelevel, is more or less standard, we will concentrate on the analysis machine inthe sequel.Besides presenting the architecture of the analysis machine, the next sectionswill show how to translate an equational description of the third level into ma-chine code. In fact, the point of this paper lies in the impact of this optimizingtranslation on the performances, which will be discussed in detail for the hier-



archical regular setting. The extensions to other settings are more complicated,not yet fully implemented, and will therefore only be sketched.3 The Fixpoint-Analysis MachineThe structure of the machine re
ects the observation that, although each of thedi�erent kinds of �xpoint computations of Table 1 requires special care, there isa large common core as soon as one breaks down the problem to the appropriatekind of granularity and allows a limited form of parameterization. In fact, themachine architecture we are going to present allows us to uniformly cover allthe mentioned kinds of �xpoint problems without performance penalty, as ourchoice of granularity is tailored for runtime optimization.The machine architecture is illustrated in Figure 2. Here, the white parts arecommon to all analyses. Only the value array and the control unit (shaded in the�gure) are parameterized in the kind of problem. The parameter for the valuearray is the type of values considered (the second component in Table 1), whichdepends on the kind of model under investigation, and the control unit steers theorder (chaotic, layered or with backtrack) of the �xpoint computation accord-ingly. Instruction array, parity vector, block graph, and worklist are completelyproblem-independent. The following paragraphs sketch the `abstract data type'of each functional unit.
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3.1 The Instruction and Value ArraysThe �xpoint computation proceeds by successively updating the components ofthe value array (encoding the information of n equations for m states of themodel) by means of component-speci�c operations that are stored in the in-struction array. Our choice of granularity leads to a very simple structure thatmust be modeled by the instruction array:AND/OR/COMP graphs. They repre-sent (i) the kind of operation to perform (conjunction, disjunction, or functionalcomposition), (ii) the list of operands for this operation, in form of a list of com-ponents of the value array, and (iii) the in
uence list, i.e. those components thatare in
uenced by the value of the considered component. All this can easily andautomatically be determined by means of a simple compiler (see section 4).Whereas the structure of the instruction array is completely independent ofthe considered �xpoint problem, the component type of the value array dependson the kind of model we are considering (see Table 1, second component):{ In the regular case single bits are su�cient. They indicate whether a speci�cnode of the model satis�es a particular formula.{ In the CFR/PDA case the elements correspond to property (predicate) trans-formers, and are therefore Boolean functions FIIB : IIBn ! IIB of an arity deter-mined by the size of the considered system and formula. For reasons of e�-ciency, they are represented as Binary Decision Diagrams (BDDs) [Brya86].{ In the macro case, elements correspond to mappings between property trans-formers. Thus we are dealing with higher order Boolean functions here.The instruction array is completely constructed at compile-time. Thus thereis only read-access at runtime. In contrast, the value array must be read andwritten at runtime, and only its space allocation is a matter of compilation.3.2 The Parity VectorA �xpoint problem is completely speci�ed by a system of mutually recursiveequations, where each equation is classi�ed as maximal or minimal according tothe kind of �xpoint of interest.The instruction array does not contain this classi�cation: it merely stands fora set of �xpoint problems. The classi�cation is speci�ed separately in a vectorthat stores for each row of the instruction array the desired kind (min, max) of�xpoint, called its parity. Note that it would be technically simple, but algorith-mically unpleasant, to allow changes of the parity component-wise, but there iscurrently no demand in this direction.Like the instruction array, the parity vector is created at compile-time and onlyread-accessed at runtime.3.3 The Block GraphHomogeneous �xpoint problems can be solved by means of a totally chaotic it-eration [GKLR94] over the value array. But whenever both kinds of �xpoints



are involved, the order of the �xpoint computation becomes essential. For hi-erarchical systems, a layered approach is su�cient, while alternating �xpointformulas require a very strict discipline involving backtracking. This observationmotivates the structure of our block graphs, which are lists of DAGs2 (directedacyclic graphs). The basic underlying idea is that edges represent ordering con-straints and nodes collect blocks, i.e., collections of equations whose �xpoints canbe computed in an arbitrary order. In fact, we will see that this graph structure isalready su�cient to uniformly capture even the strongly optimized organizationof the �xpoint computation for the alternating case.Technically, the need for blocks arises as soon as there are depending mini-mal and maximal �xpoints. This dependency requires a strict organization of theorder in which these �xpoints are computed. In the hierarchical case, a simple se-quentialization (layered computation) is su�cient, and in the more complicatedalternating case a backtracking procedure must be organized following the stru-cure of the underlying block graph. It is convenient to additionally split blocksaccording to their parity, which leads to the notions of min-blocks and max-blocks. This additional separation is uncritical as a single block could anyhowonly comprise completely independent minimal and maximal equations.Blocks are important, as they allow an e�cient �xpoint computation. Theswitching between di�erent blocks according to ordering constraints is moreexpensive than the worklist-oriented chaotic iteration allowed within a block.Thus e�cient �xpoint algorithms will completely determine the �xpoint of ablock before taking a switch. This approach is only guaranteed to be optimalwhen using counters (cf. Section 5).{ For homogeneous �xpoints, a one component list containing a single nodeDAG is su�cient, as we are here dealing with a single block where no orderingconstraints need to be taken care of.{ Hierarchical �xpoint computations postpone the evaluation of an equationuntil all equations of di�erent parity which may in
uence it have reachedtheir �xpoints. In terms of model checking, this corresponds to an `innermost'strategy for the evaluation of the formula. This requirement can be expressedsu�ciently by means of a list of sets of formulas, i.e. by a list of one nodeDAGs.{ Alternating �xpoint computations require backtracking, which leads to anexponential complexity in the alternation depth ([EmLe86]) of the consideredformula. Thus the most important source of optimization is the reductionof backtracking steps. Block graphs support such a reduction by structuringthe global dependence graph between the �xpoint equations in the followingfashion:� The list structure re
ects the dependence (ordering constraints) betweenthe strongly connected components of the dependence graph. Of course,these constraints form in general a DAG structure. However, as in thehierarchical case, we can simply collapse this DAG to a list withoutruntime penalty.2 This choice is an elaboration of the block graphs presented in [ClSt91b, ClKS92].



� The DAG structure re
ects part of the ordering constraints within astrongly connected component: a constraint between two equations e1and e2 is only kept if the row of e1 precedes the row of e2 in the valuearray. This DAG of equations is then collapsed by combining all equa-tions that have a `similar' dependence relation into a node. We will hereomit the exact de�nition of this rather complicated collapse.Block graphs are constructed at compile-time, and there is only read-access atruntime. In fact, we only need the operations NEXT BL to access the next setof equations, whose evaluation can be performed in an arbitrary order in caseno backtracking is required, and RESET BL, to provide a similar set in casebacktracking is needed.3.4 The WorklistWhereas the block graph is a mean to steer the �xpoint computation globally, i.e.between blocks, the worklist organizes the �xpoint computation inside a block. Itcontains the addresses of the value array components of the current block whosevalues must be updated as a consequence of earlier changes in the value array.The list is dynamically initialized when entering a new block, and it is updatedduring the computation by appending the addresses of all the in
uenced valuearray components.The worklist is a pure runtime entity, initialized, updated, and read at runtime.4 Optimizing CompilationThe organization of the impact of the interference between minimal and max-imal �xpoints on the �xpoint computation by means of the block graph is anessential part of the compilation. As this has been discussed already, and asthe corresponding programs of the control unit are rather straightforward, weconcentrate here on the treatment of the di�erent kinds of models (regular,CFR/PDA, macro). As mentioned already, this only concerns the value array,even though the instruction array is indirectly a�ected too, since simple datadomains support more optimizations. In particular, we will see that the partialevaluation feature of our compiler completely evaluates all function compositionsin the regular case.A central feature of the translation is partial evaluation. Whereas certainbasic techniques are always applied, more speci�c techiques are used dependingon the analysis context. We explain this in the context of a model checkingproblem starting with the standard case.1. The knowledge of the logic formula alone su�ces to determine the kind of�xpoint to be computed, the involved AND/OR/COMP subformulas, theirparity, and part of their organization in blocks. This instantiation provides atool for checking the considered formula for arbitrary models. Knowing thekind of models to be considered allows us to determine the domain of the



�xpoint computation. Machines of this kind correspond to the usual intra-or interprocedural data 
ow analysis algorithms ([Stef91, Stef93]).Beside this straightforward partial evaluation, our compilers also contain arewriting machine, which aims at a minimal equational characterization ofthe considered formula. This rewriting machine is rather complex, thus itshould only be applied if the formula will be used for the investigation ofseveral models, as it is the case in data 
ow analysis.2. The knowledge of the model under investigation determines the domain ofthe �xpoint computation and preliminary versions of the in
uence and de-pendence sets are �xed.Beside this partial evaluation, we also provide minimization procedures thate.g. collapse the model up to bisimulation ([Miln89]). This step only makessense if a single model is going to be investigated with respect to severalformulas. Typically, this arises during the development of a system, whendesigners want to verify certain safety and liveness properties for their design.The results of the separate compilation steps above are then merged to a singlecombined representation, which is the basis for the instantiation of the instruc-tion array. Of course, if both the model and the formula are known already atthe beginning, the instruction array is directly instantiated.Finally, we discuss how the AND/OR/COMP functions constituting the com-ponents of the instruction array can be further optimized:1. Functional composition is necessary to describe the e�ect of a transition stepin the model. If the e�ect of this step is known at compile-time, which is e.g.the case when modelling intraprocedural (i.e. regular) analyses, all the func-tional compositions can be immediately evaluated. In the more complicatedcase of interprocedural (i.e. CFR/PDA) analyses, some of the transitionsdenote procedure calls. Thus their e�ect is not known at compile-time. How-ever, the functional compositions associated with all the other transitionscan still be evaluated. The runtime gain of this partial evaluation is usuallymuch higher than the partial evaluation time itself.2. Several entries of the instruction array will be constant functions. Thus wecan perform constant propagation and folding on the instruction array.3. A particularly strong optimization is possible for regular model structures,i.e. in cases where the components of the value array store bits. From the�rst step we know already that we only need to consider conjunction anddisjunction in this case. This observation leads to the introduction of coun-ters, which intuitively measure the distance to a change in the value array.We will explain this idea, a modi�ed version of which can already be foundin [ClSt91], in the case of a homogeneous system of maximal equations.Homogeneous systems of minimal equations behave dually.Maximal �xpoints are computed by successively updating a maximally ini-tialized value array, where (essentially) all components are assumed to betrue [Tars55]. Thus for monotonicity reasons, an update can only switch fromtrue to false. For a conjunction, this happens as soon as one operand switches



to false. Thus the counter is initialized to 1. In contrast, for disjunction allthe operands must switch before the value changes. Thus the counter is ini-tialized with the number of operands. Working on counters avoids to evaluateany of the instructions of the instruction array, as the only operation we needis a decrement of the corresponding counter whenever one of the operandschanges its value. Only when the counter of an array component reacheszero (indicating a switch of its corresponding boolean value) all in
uencedcomponents need to be informed to decrement their counters via insertionin the worklist.This optimization is also applicable to the �xpoint computation for singleblocks in the hierarchical and alternating case.5 Computing FixpointsIn this section we sketch the computation mechanism for the various kinds of�xpoint problems. We start by considering the three regular problems, whichonly require a �xpoint computation for bitvectors. Subsequently we discuss theextension to context-free structures. Even though the decidability of the modelchecking problem is implied by decidability results about monadic second or-der logic [MuSc85], the known e�cient algorithms cover alternation free, i.e.hierarchical formulas, only. The best known algorithm for the general case isnon-elementary. The further extension to push-down structures, which in con-trast to classical automata theory do not coincide with context-free structureswhen the branching structure of the models is essential, is rather straightfor-ward and still in the range of tractability. This is no longer the case for macrostructures [Hung94], which require a very expensive higher-order treatment andwill not be discussed here.5.1 First-Order FixpointsHomogeneous Fixpoints: The case of homogeneous regular problems can be re-garded as the common core of all the regular �xpoint computations. It consistsof the determination of the �xpoint over a single block. As indicated in the pre-vious section, this computation is performed on a counter array, by successivelydecrementing counters until the �xpoint is reached. This process is steered bya worklist that contains references to all the components whose counters arecurrently known to require decrement. The worklist is updated by adding ref-erences to all in
uenced components, whenever one counter became zero, whichindicates a change of its corresponding boolean value [ClSt91, ClSt91b].Hierarchical Fixpoints: Here, blocks are sequentially computed in the order indi-cated by the block graph. The �xpoint computation within the blocks is identicalto the one in the homogeneous case. It should be noted that the counters fora block must be initialized immediately before its �xpoint computation. Thisis necessary in order to capture the e�ects of the earlier �xpoint computations[ClSt91b].



Alternating Fixpoints: Again blocks are treated exactly as in the homogeneouscase. However, in contrast to the previous two cases, this computation must berepeated according to changes in blocks of di�erent parity that are higher inthe hierarchy but still in the same strongly connected component. A detaileddescription of this procedure is rather complicated (cf. [ClSt91b, ClKS92]), andomitted here.5.2 Second-Order (and Higher Order) FixpointsStructurally, these �xpoint computations follow exactly the same lines as the�rst order case. Only the domain of the value array components is now secondorder, i.e., instead of determining properties for states of the considered systems,we must determine property transformers for certain classes of states, with theconsequence that the `counter optimization' is not applicable. Moreover, in thealternating case it is still an open problem whether the straightforward exten-sion to the second order domains computes the intended values. We hope thatexperimenting with our machine will help us clarifying this point.The essence of our algorithm deciding the alternation-free modal mu-calculusfor context-free processes, i.e. for processes that are given in terms of a context-free grammar, becomes apparent when viewing these processes as mutually recur-sive systems of regular processes. In this case, the regular component processescontain call transitions that are labelled with the name of the called componentprocess.3 Our algorithm works directly on this `procedural' process representa-tion. Its heart is the computation of property transformers telling which prop-erties (formulas) are valid at the nodes of a component process depending onthe properties considered to be valid after the `termination' of this componentprocess. The subsequent decision step completing the model checking procedureis straightforward. See [BuSt92, BuSt94] for details.The complexity of the resulting algorithm is linear in the size of the sys-tem's representation and exponential in the size of the property. This is quitepromising, as many practically relevant problems can be composed of very smallproperties: e.g. bitvector analyses, which are common in data 
ow analysis, haveexponent one ([KnSt93a])!6 Implementation and PerformancesA prototype of the �xpoint-analysis machine has been implemented in C++as part of the META-Frame([StMC95, SFCM94, MaCS95]), our environment forthe development of heterogeneous analysis and veri�cation tools, which currentlyruns on a SUN SparcStation 20 under UNIX. In order to give an impression ofthe performance gain, we report on two series of examples.The �rst series deals with the veri�cation of hierarchical properties of in-creasing size for versions of Milner's scheduler with growing numbers of agents3 Considering the labels of these call transitions as nonterminals and the other labelsas terminals establishes the formal match to context-free processes.
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Fig. 3. Scheduler Performance Gain.[Miln89]. The schedulers are represented by regular models and the investigatedproperties are checked by a hierarchical �xpoint analysis. To get an indicationto the impact of the property size we checked an increasing number of conjunc-tions of a basic property expressing aspects of the alternating behaviour of thecells. Figure 3 graphically demonstrates the performance gain when comparingthe runtime results of our FAM analysis machine with the `conventional' modelchecker CMC presented in [ClKS92]. Initially the gain rises very quickly for prop-erties of increasing size before it asymptotically approximates constant factorsbetween 10 and 18 for the schedulers with 5, 7, and 9 agents.Figure 2 shows the individual runtime results for the various properties andschedulers. For the scheduler with 5 agents we detail the total time as the sumof the time for the partial evaluation and con�guration (con�g.), and the anal-ysis. One observes that the higher the analysis share of the total runtime, thehigher the performance gain of the analysis machine, i.e. the initial partial eval-uation and con�guration of the machine are better exploited if the consideredproblems are hard in the sense of requiring a high computation e�ort comparedwith the initialization phase. Furthermore, the higher branching factors of thelarger schedulers also favour the analysis machine that determines the models'successor information only once in the partial evaluation step prior to the actual�xpoint analysis.The second series of examples checks a property of alternation depth 2 withdi�erent parameters of the modal operators for a sequence of regular models Mkof increasing size (cf. Figure 4). The modal property expresses that the atomicproposition A holds in�nitely often along all (fa; b; cg) paths. Assuming that alltransitions are labeled with (fa; b; cg), this is only true for state v as all otherstates reach the loop at s which does not satisfy A. For model Mk with k states



N. of Property Conjuncts 1 2 4 8 16 32 64 128Scheduler 5 CMC con�g. 0.03 0.04 0.07 0.12 0.21 0.41 0.80 1.62states : 240 analysis 0.27 0.54 1.05 2.15 4.28 8.68 17.19 34.80trans : 720 total 0.30 0.58 1.12 2.27 4.49 9.09 17.99 36.42FAM part.eval. 0.06 0.08 0.09 0.12 0.19 0.31 0.56 1.07con�g. 0.01 0.02 0.05 0.12 0.23 0.42 0.80 1.71analysis 0.00 0.01 0.02 0.04 0.08 0.17 0.33 0.70total 0.07 0.11 0.16 0.28 0.50 0.90 1.69 3.48Perform. Gain 4.29 5.27 7.00 8.11 8.98 10.10 10.64 10.47Scheduler 7 CMC total 2.18 4.26 8.62 16.88 34.12 68.49 135.95 276.01states : 1344 FAM total 0.49 0.63 0.88 1.34 2.32 4.42 8.39 17.02trans : 5376 Perform. Gain 4.45 6.76 9.80 12.60 14.71 15.50 16.20 16.22Scheduler 9 CMC total 14.47 28.76 57.34 114.82 233.38 461.56 917.53 1845.39states : 6912 FAM total 2.90 3.75 5.20 8.26 14.27 26.61 50.34 99.85trans : 34560 Perform. Gain 4.99 7.67 11.03 13.90 16.35 17.35 18.23 18.48Table 2. Runtime Results.
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Fig. 4. Model and Property for Alternating-Fixpoint Analysis.ti we need k + 1 resettings and recomputations of the inner minimal �xpointuntil we reach the solution.Figure 3 shows the runtime results for the analysis machine FAM and theconventional model checker CMC. The analysis time increases with larger modelsbut the performance gain is constant for a �xed property. This is due to the factthat the initialization phase is almost neglectable here from the very beginning.In fact, the partial evaluation and con�guration takes less than 2% of the overalltime here.If we only use `unparameterized' modalities, which concern all possible tran-sitions, the analysis machine outperforms the conventional model checker by afactor of 11. However, as soon as we use modality parameterization explicitly,



the analysis machine outperforms the conventional model checker even by a fac-tor around 30. This is due to the fact that alternating �xpoint analysis requiresbacktracking with resetting and recomputation of several intermediate results.As the costly selection of the successors of interest is only made once by theanalysis machine in the partial evaluation step prior to �xpoint computation,the �xpoint analysis itself nearly takes all the runtime also in this case.Index of Modal Operator any fa; b; cgM500 CMC 33.84 90.44states : 503 FAM 2.88 2.90trans : 505 Performance Gain 11.75 31.19M1000 CMC 138.51 364.30states : 1003 FAM 11.64 11.38trans : 1005 Performance Gain 11.90 32.01M1500 CMC 312.10 808.08states : 1503 FAM 26.61 26.52trans : 1505 Performance Gain 11.73 30.47Table 3. Runtime Results for Alternating Fixpoints.Beside these two series of examples we also compared the analysis machine andthe conventional model checker on a variety of other applications. The perfor-mance gains di�er with the complexity of the �xpoint problem. For data 
owanalysis for example we only achieve factors between 2 and 4 as the problemsonly require very simple hierarchical or homogeneous �xpoint computations (cf.[KnRS92]). Thus the partial evaluation and speci�c machine con�guration washardly exploited. But even in these `worst cases', we still managed to half thecomputation time. On the other hand, performance gains were very high forcomputation intensive problems requiring an alternating �xpoint analysis.7 ConclusionsWe have presented a �xpoint-analysis machine, which allows the e�cient com-putation of homogeneous, hierarchical, and alternating �xpoints over regular,context-free/push-down and macro models covering applications that reach fromintra- and interprocedural data 
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