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Abstract. We present a fixpoint-analysis machine, for the efficient com-
putation of homogeneous, hierarchical, and alternating fixpoints over reg-
ular, context-free/push-down and macro models. Applications of such fix-
point computations include intra- and interprocedural data flow analy-
sis, model checking for various temporal logics, and the verification of
behavioural relations between distributed systems. The fixpoint-analysis
machine identifies an adequate (parameterized) level for a uniform treat-
ment of all those problems, which, despite its uniformity, outperforms the
‘standard iteration based’ special purpose tools usually by factors around
10, even if the additional compilation time is taken into account.

1 Introduction and Motivation

A great number of analysis and verification problems such as abstract interpreta-
tion, data flow analysis, model checking, determination of behavioural relations
between distributed systems, hardware verification and synthesis, etc., boil down
to the computation of a specific kind of fixpoint. In fact, in all these areas of
application, specific fixpoint solving tools have been independently constructed
and tuned for their special purposes.

The idea behind the fixpoint-analysis machine is to define a uniform plat-
form for fixpoint computations, which, despite its uniformity, outperforms the
‘iteration based’ special purpose tools. This goal is approached by translating
the specific fixpoint problems into very fine-grained but computationally ad-
vantageous representations, which allow us to eliminate as much redundancy as
possible. Our design stems from the observation that almost all fixpoint prob-
lems considered in practice can be formulated as a model checking problem of a
certain kind. Currently we are uniformly covering the kinds of fixpoint compu-
tations summarized in Table 1, which depend on the structure of the underlying
model and formula. The structure of the analysis machine is a consequence of the
observation that, although each of the different kinds of fixpoint computations
requires special care, there is a large common core as soon as one breaks down
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the problem to the appropriate kind of granularity and allows a limited form
of parameterization. In fact, the machine architecture we are going to present
allows us to uniformly cover all the kinds of fixpoint problems mentioned with-
out performance penalty, as our choice of granularity is tailored for runtime
optimization. In fact, the differences between these kinds of problems and their
corresponding fixpoint, computations only require a change in the data domain
the fixpoint is computed over and in the program controlling the order of the
fixpoint computation. Thus the architecture and the remaining data structures
of the machine coincide in all these applications.

Fixpoint Model class
class regular CFR/PDA macro
homogeneous (chaotic, B ') | (chaotic, g ) | (chaotic, high.ord. Fg)
hierarchical (layered, B ) | (layered, Fi ) | (layered, high.ord. Fg)
alternated nesting|(backtrack, IB )|(backtrack, Fg)|(backtrack, high.ord. Fg)

Table 1. Classification of the Fixpoint Computations as (strategy, domain)

Our practical experience with the analysis machine confirms the well-known
fact that compilation is better than interpretation. In fact, even taking the ad-
ditional translation effort into account, the analysis machine outperforms the
computations on standard data structures by factors usually around 10. Details
are reported in Section 6.

The uniform and general structure of our machine also leads to excellent
experimental features. On the practical side, it supports the investigation of
heuristics, which are important when dealing with complex kinds of fixpoint
problems. On the theoretical side, it supports the study e.g. of the essence of
alternated nesting, which is still a matter of research.

It should be noted that we focus on global iterative fixpoint computations
here. Therefore very specific heuristics (like e.g. the Binary Decision Diagram-
based techniques for model checking) which are extremely efficient in ‘good’
cases, but much worse than the standard iteration techniques in ‘bad’ cases, are
not covered.

The fixpoint machine constitutes a central component of the computational
core of the META-Frame [StMC95, SFCM94, MaCS95], which is a uniform en-
vironment for high-level construction, verification and analysis of hardware and
software systems.

The next section summarizes the domain of application, while Section 3 presents
our analysis machine. Subsequently, Section 4 discusses the optimizing compila-
tion, Section 5 describes the fixpoint computation mechanism, Section 6 reports
on the performance of the machine, and Section 7 draws our conclusions.



2 The Application Domains: The Present Scenario

Figure 1 summarizes the scenario discussed in this paper. The upper two rows
of the figure address the currently considered application areas, ranging from
several kinds of dataflow analyses [Hech77] and the verification of behavioural
relations (top row) to various classes of model checking (second upper row). As
each of the top row applications can be reduced to model checking via logical
characterization without runtime penalty, the second upper row, showing a hi-
erarchy of model checking problems, represents both an application level and a
common platform for the top row applications.

We will first explain the upper two rows of the figure, and subsequently
sketch the lower part discussing the implementation of the various kinds of model
checkers.

— Intraprocedural dataflow analysis: algorithms of this kind can be realized
efficiently and at almost no implementation cost on our analysis machine
via a data flow analysis generator which automatically produces fixpoint
machine code from high level specifications [Stef91, Stef93, Stef94]. We will
discuss this implementation and its performance in Section 6.
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Fig. 1. Setup of the Analysis Environment



— Interprocedural data flow analysis: in this setting we are able to cover a wide
class of programs that contain recursive procedures with value parameters.
The corresponding data flow analysis generator, which uses the same high
level specifications as the intraprocedural version, is under implementation.
It requires the combination of the methods presented in [Stef93, BuSt94,
KnSt92a, KnRS94].

— Higher order data flow analysis: this setting allows us to deal with further
types of parameters, like reference and procedure parameters. Whereas the
case of reference parameters is still rather efficient, the optimal treatment of
arbitrary (finite mode) procedures requires an unacceptable effort and should
therefore be handled approximatively. For details the reader is referred to
[Knoo93], where a method is presented that is safe, efficient, and optimal
for programs of mode two without global formal procedure parameters. Es-
sentially, all these methods boil down to adding a specific preprocess to an
interprocedural analysis, which can efficiently be realized on the analysis ma-
chine. The corresponding extension of the interprocedural data flow analysis
generator to this case is rather simple, as the preprocess is independent of
the specific analysis.

— Behavioural relation checking: the verification of behavioural relations be-
tween distributed systems can also be transformed into a particular model
checking problem via logical characterization [Stef89, StIn94].

The second row of Figure 1 presents a hierarchy of model checking problems that
are classified according to the structure of the underlying model [Stef94]. Beside
this structure, the possibility and the extent of interference between minimal
and maximal fixpoints — generating homogeneous, hierarchical or alternating
fixpoints [EmLe86] is an important classification criterion.

Whereas all the top row applications require at most hierarchical fixpoints,
alternating fixpoints are necessary when dealing with properties like fairness.
Altogether we face a potential of nine structurally different model checking prob-
lems, two of which (the alternating case for context-free/push-down and macro
models), see Table 1, even though decidable, do not have a fixpoint character-
ization yet. The other seven cases can be uniformly represented by means of a
finite equational system together with a parity vector specifying the particular
solution (minimal, maximal) of interest. This leads to the third row. Actually,
we proposed such transformations also for the two exceptional cases, but their
correctness is still a conjecture. While standard model checkers work on the
representation level of equational systems, our computation takes place on the
level of the fixpoint-analysis machine. Moreover, as most of the translation into
the equational representation, which can be regarded as a common intermediate
level, is more or less standard, we will concentrate on the analysis machine in
the sequel.

Besides presenting the architecture of the analysis machine, the next sections
will show how to translate an equational description of the third level into ma-
chine code. In fact, the point of this paper lies in the impact of this optimizing
translation on the performances, which will be discussed in detail for the hier-



archical regular setting. The extensions to other settings are more complicated,
not yet fully implemented, and will therefore only be sketched.

3 The Fixpoint-Analysis Machine

The structure of the machine reflects the observation that, although each of the
different kinds of fixpoint computations of Table 1 requires special care, there is
a large common core as soon as one breaks down the problem to the appropriate
kind of granularity and allows a limited form of parameterization. In fact, the
machine architecture we are going to present allows us to uniformly cover all
the mentioned kinds of fixpoint problems without performance penalty, as our
choice of granularity is tailored for runtime optimization.

The machine architecture is illustrated in Figure 2. Here, the white parts are
common to all analyses. Only the value array and the control unit (shaded in the
figure) are parameterized in the kind of problem. The parameter for the value
array is the type of values considered (the second component in Table 1), which
depends on the kind of model under investigation, and the control unit steers the
order (chaotic, layered or with backtrack) of the fixpoint computation accord-
ingly. Instruction array, parity vector, block graph, and worklist are completely
problem-independent. The following paragraphs sketch the ‘abstract data type’
of each functional unit.
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3.1 The Instruction and Value Arrays

The fixpoint computation proceeds by successively updating the components of
the wvalue array (encoding the information of n equations for m states of the
model) by means of component-specific operations that are stored in the in-
struction array. Our choice of granularity leads to a very simple structure that
must be modeled by the instruction array: AND/OR/COMP graphs. They repre-
sent (i) the kind of operation to perform (conjunction, disjunction, or functional
composition), (ii) the list of operands for this operation, in form of a list of com-
ponents of the value array, and (iii) the influence list, i.e. those components that
are influenced by the value of the considered component. All this can easily and
automatically be determined by means of a simple compiler (see section 4).

Whereas the structure of the instruction array is completely independent of
the considered fixpoint problem, the component type of the value array depends
on the kind of model we are considering (see Table 1, second component):

— In the regular case single bits are sufficient. They indicate whether a specific
node of the model satisfies a particular formula.

— In the CFR/PDA case the elements correspond to property (predicate) trans-
formers, and are therefore Boolean functions Fg : IB" — IB of an arity deter-
mined by the size of the considered system and formula. For reasons of effi-
ciency, they are represented as Binary Decision Diagrams (BDDs) [Brya86].

— In the macro case, elements correspond to mappings between property trans-
formers. Thus we are dealing with higher order Boolean functions here.

The instruction array is completely constructed at compile-time. Thus there
is only read-access at runtime. In contrast, the value array must be read and
written at runtime, and only its space allocation is a matter of compilation.

3.2 The Parity Vector

A fixpoint problem is completely specified by a system of mutually recursive
equations, where each equation is classified as maximal or minimal according to
the kind of fixpoint of interest.

The instruction array does not contain this classification: it merely stands for
a set of fixpoint problems. The classification is specified separately in a vector
that stores for each row of the instruction array the desired kind (min, max) of
fixpoint, called its parity. Note that it would be technically simple, but algorith-
mically unpleasant, to allow changes of the parity component-wise, but there is
currently no demand in this direction.

Like the instruction array, the parity vector is created at compile-time and only
read-accessed at runtime.

3.3 The Block Graph

Homogeneous fixpoint problems can be solved by means of a totally chaotic it-
eration [GKLR94] over the value array. But whenever both kinds of fixpoints



are involved, the order of the fixpoint computation becomes essential. For hi-
erarchical systems, a layered approach is sufficient, while alternating fixpoint
formulas require a very strict discipline involving backtracking. This observation
motivates the structure of our block graphs, which are lists of DAGs® (directed
acyclic graphs). The basic underlying idea is that edges represent ordering con-
straints and nodes collect blocks, i.e., collections of equations whose fixpoints can
be computed in an arbitrary order. In fact, we will see that this graph structure is
already sufficient to uniformly capture even the strongly optimized organization
of the fixpoint computation for the alternating case.

Technically, the need for blocks arises as soon as there are depending mini-
mal and maximal fixpoints. This dependency requires a strict organization of the
order in which these fixpoints are computed. In the hierarchical case, a simple se-
quentialization (layered computation) is sufficient, and in the more complicated
alternating case a backtracking procedure must be organized following the stru-
cure of the underlying block graph. It is convenient to additionally split blocks
according to their parity, which leads to the notions of min-blocks and maz-
blocks. This additional separation is uncritical as a single block could anyhow
only comprise completely independent minimal and maximal equations.

Blocks are important, as they allow an efficient fixpoint computation. The
switching between different blocks according to ordering constraints is more
expensive than the worklist-oriented chaotic iteration allowed within a block.
Thus efficient fixpoint algorithms will completely determine the fixpoint of a
block before taking a switch. This approach is only guaranteed to be optimal
when using counters (cf. Section 5).

— For homogeneous fixpoints, a one component list containing a single node
DAG is sufficient, as we are here dealing with a single block where no ordering
constraints need to be taken care of.

— Hierarchical fizpoint computations postpone the evaluation of an equation
until all equations of different parity which may influence it have reached
their fixpoints. In terms of model checking, this corresponds to an ‘innermost’
strategy for the evaluation of the formula. This requirement can be expressed
sufficiently by means of a list of sets of formulas, i.e. by a list of one node
DAGs.

— Alternating fizpoint computations require backtracking, which leads to an
exponential complexity in the alternation depth ([EmLe86]) of the considered
formula. Thus the most important source of optimization is the reduction
of backtracking steps. Block graphs support such a reduction by structuring
the global dependence graph between the fixpoint equations in the following
fashion:

e The list structure reflects the dependence (ordering constraints) between
the strongly connected components of the dependence graph. Of course,
these constraints form in general a DAG structure. However, as in the
hierarchical case, we can simply collapse this DAG to a list without
runtime penalty.

% This choice is an elaboration of the block graphs presented in [CISt91b, CIKS92].



e The DAG structure reflects part of the ordering constraints within a
strongly connected component: a constraint between two equations e
and e, is only kept if the row of e; precedes the row of ey in the value
array. This DAG of equations is then collapsed by combining all equa-
tions that have a ‘similar’ dependence relation into a node. We will here
omit the exact definition of this rather complicated collapse.

Block graphs are constructed at compile-time, and there is only read-access at
runtime. In fact, we only need the operations NEXT_BL to access the next set
of equations, whose evaluation can be performed in an arbitrary order in case
no backtracking is required, and RESET _BL, to provide a similar set in case
backtracking is needed.

3.4 The Worklist

Whereas the block graph is a mean to steer the fixpoint computation globally, i.e.
between blocks, the worklist organizes the fixpoint computation inside a block. It
contains the addresses of the value array components of the current block whose
values must be updated as a consequence of earlier changes in the value array.
The list is dynamically initialized when entering a new block, and it is updated
during the computation by appending the addresses of all the influenced value
array components.

The worklist is a pure runtime entity, initialized, updated, and read at runtime.

4 Optimizing Compilation

The organization of the impact of the interference between minimal and max-
imal fixpoints on the fixpoint computation by means of the block graph is an
essential part of the compilation. As this has been discussed already, and as
the corresponding programs of the control unit are rather straightforward, we
concentrate here on the treatment of the different kinds of models (regular,
CFR/PDA, macro). As mentioned already, this only concerns the value array,
even though the instruction array is indirectly affected too, since simple data
domains support more optimizations. In particular, we will see that the partial
evaluation feature of our compiler completely evaluates all function compositions
in the regular case.

A central feature of the translation is partial evaluation. Whereas certain
basic techniques are always applied, more specific techiques are used depending
on the analysis context. We explain this in the context of a model checking
problem starting with the standard case.

1. The knowledge of the logic formula alone suffices to determine the kind of
fixpoint to be computed, the involved AND/OR/COMP subformulas, their
parity, and part of their organization in blocks. This instantiation provides a
tool for checking the considered formula for arbitrary models. Knowing the
kind of models to be considered allows us to determine the domain of the



fixpoint computation. Machines of this kind correspond to the usual intra-
or interprocedural data flow analysis algorithms ([Stef91, Stef93]).

Beside this straightforward partial evaluation, our compilers also contain a
rewriting machine, which aims at a minimal equational characterization of
the considered formula. This rewriting machine is rather complex, thus it
should only be applied if the formula will be used for the investigation of
several models, as it is the case in data flow analysis.

2. The knowledge of the model under investigation determines the domain of
the fixpoint computation and preliminary versions of the influence and de-
pendence sets are fixed.

Beside this partial evaluation, we also provide minimization procedures that
e.g. collapse the model up to bisimulation ([Miln89]). This step only makes
sense if a single model is going to be investigated with respect to several
formulas. Typically, this arises during the development of a system, when
designers want to verify certain safety and liveness properties for their design.

The results of the separate compilation steps above are then merged to a single
combined representation, which is the basis for the instantiation of the instruc-
tion array. Of course, if both the model and the formula are known already at
the beginning, the instruction array is directly instantiated.

Finally, we discuss how the AND/OR/COMP functions constituting the com-
ponents of the instruction array can be further optimized:

1. Functional composition is necessary to describe the effect of a transition step
in the model. If the effect of this step is known at compile-time, which is e.g.
the case when modelling intraprocedural (i.e. regular) analyses, all the func-
tional compositions can be immediately evaluated. In the more complicated
case of interprocedural (i.e. CFR/PDA) analyses, some of the transitions
denote procedure calls. Thus their effect is not known at compile-time. How-
ever, the functional compositions associated with all the other transitions
can still be evaluated. The runtime gain of this partial evaluation is usually
much higher than the partial evaluation time itself.

2. Several entries of the instruction array will be constant functions. Thus we
can perform constant propagation and folding on the instruction array.

3. A particularly strong optimization is possible for regular model structures,
i.e. in cases where the components of the value array store bits. From the
first step we know already that we only need to consider conjunction and
disjunction in this case. This observation leads to the introduction of coun-
ters, which intuitively measure the distance to a change in the value array.
We will explain this idea, a modified version of which can already be found
in [CISt91], in the case of a homogeneous system of maximal equations.
Homogeneous systems of minimal equations behave dually.

Maximal fixpoints are computed by successively updating a maximally ini-
tialized value array, where (essentially) all components are assumed to be
true [Tars55]. Thus for monotonicity reasons, an update can only switch from
true to false. For a conjunction, this happens as soon as one operand switches



to false. Thus the counter is initialized to 1. In contrast, for disjunction all
the operands must switch before the value changes. Thus the counter is ini-
tialized with the number of operands. Working on counters avoids to evaluate
any of the instructions of the instruction array, as the only operation we need
is a decrement of the corresponding counter whenever one of the operands
changes its value. Only when the counter of an array component reaches
zero (indicating a switch of its corresponding boolean value) all influenced
components need to be informed to decrement their counters via insertion
in the worklist,.

This optimization is also applicable to the fixpoint computation for single
blocks in the hierarchical and alternating case.

5 Computing Fixpoints

In this section we sketch the computation mechanism for the various kinds of
fixpoint problems. We start by considering the three regular problems, which
only require a fixpoint computation for bitvectors. Subsequently we discuss the
extension to context-free structures. Even though the decidability of the model
checking problem is implied by decidability results about monadic second or-
der logic [MuSc85], the known efficient algorithms cover alternation free, i.e.
hierarchical formulas, only. The best known algorithm for the general case is
non-elementary. The further extension to push-down structures, which in con-
trast to classical automata theory do not coincide with context-free structures
when the branching structure of the models is essential, is rather straightfor-
ward and still in the range of tractability. This is no longer the case for macro
structures [Hung94], which require a very expensive higher-order treatment and
will not be discussed here.

5.1 First-Order Fixpoints

Homogeneous Fizpoints: The case of homogeneous regular problems can be re-
garded as the common core of all the regular fixpoint computations. It consists
of the determination of the fixpoint over a single block. As indicated in the pre-
vious section, this computation is performed on a counter array, by successively
decrementing counters until the fixpoint is reached. This process is steered by
a worklist that contains references to all the components whose counters are
currently known to require decrement. The worklist is updated by adding ref-
erences to all influenced components, whenever one counter became zero, which
indicates a change of its corresponding boolean value [C1St91, CISt91b].

Hierarchical Fizpoints: Here, blocks are sequentially computed in the order indi-
cated by the block graph. The fixpoint computation within the blocks is identical
to the one in the homogeneous case. It should be noted that the counters for
a block must be initialized immediately before its fixpoint computation. This
is necessary in order to capture the effects of the earlier fixpoint computations
[CISt91b].



Alternating Fizpoints: Again blocks are treated exactly as in the homogeneous
case. However, in contrast to the previous two cases, this computation must be
repeated according to changes in blocks of different parity that are higher in
the hierarchy but still in the same strongly connected component. A detailed
description of this procedure is rather complicated (cf. [CISt91b, CIKS92]), and
omitted here.

5.2 Second-Order (and Higher Order) Fixpoints

Structurally, these fixpoint computations follow exactly the same lines as the
first order case. Only the domain of the value array components is now second
order, i.e., instead of determining properties for states of the considered systems,
we must determine property transformers for certain classes of states, with the
consequence that the ‘counter optimization’ is not applicable. Moreover, in the
alternating case it is still an open problem whether the straightforward exten-
sion to the second order domains computes the intended values. We hope that
experimenting with our machine will help us clarifying this point.

The essence of our algorithm deciding the alternation-free modal mu-calculus
for context-free processes, i.e. for processes that are given in terms of a context-
free grammar, becomes apparent when viewing these processes as mutually recur-
sive systems of regular processes. In this case, the regular component processes
contain call transitions that are labelled with the name of the called component
process.? Qur algorithm works directly on this ‘procedural’ process representa-
tion. Its heart is the computation of property transformers telling which prop-
erties (formulas) are valid at the nodes of a component process depending on
the properties considered to be valid after the ‘termination’ of this component
process. The subsequent decision step completing the model checking procedure
is straightforward. See [BuSt92, BuSt94] for details.

The complexity of the resulting algorithm is linear in the size of the sys-
tem’s representation and exponential in the size of the property. This is quite
promising, as many practically relevant problems can be composed of very small
properties: e.g. bitvector analyses, which are common in data flow analysis, have
exponent one ([KnSt93al)!

6 Implementation and Performances

A prototype of the fixpoint-analysis machine has been implemented in C++
as part of the META-Frame([StMC95, SFCM94, MaCS95]), our environment for
the development, of heterogeneous analysis and verification tools, which currently
runs on a SUN SparcStation 20 under UNIX. In order to give an impression of
the performance gain, we report on two series of examples.

The first series deals with the verification of hierarchical properties of in-
creasing size for versions of Milner’s scheduler with growing numbers of agents

3 Considering the labels of these call transitions as nonterminals and the other labels
as terminals establishes the formal match to context-free processes.



20 — Scheduler 9

157 Scheduler 7
G
1 104
N Scheduler 5
5 —]
0 T T T T T T T T T T T |

|
0 10 20 30 40 50 60 70 8 90 100 110 120 130
CONJUNCTIONS OF BASIC PROPERTY

Fig. 3. Scheduler Performance Gain.

[Miln89]. The schedulers are represented by regular models and the investigated
properties are checked by a hierarchical fixpoint analysis. To get an indication
to the impact of the property size we checked an increasing number of conjunc-
tions of a basic property expressing aspects of the alternating behaviour of the
cells. Figure 3 graphically demonstrates the performance gain when comparing
the runtime results of our FAM analysis machine with the ‘conventional’ model
checker CMC presented in [CIKS92]. Initially the gain rises very quickly for prop-
erties of increasing size before it asymptotically approximates constant factors
between 10 and 18 for the schedulers with 5, 7, and 9 agents.

Figure 2 shows the individual runtime results for the various properties and
schedulers. For the scheduler with 5 agents we detail the total time as the sum
of the time for the partial evaluation and configuration (config.), and the anal-
ysis. One observes that the higher the analysis share of the total runtime, the
higher the performance gain of the analysis machine, i.e. the initial partial eval-
uation and configuration of the machine are better exploited if the considered
problems are hard in the sense of requiring a high computation effort compared
with the initialization phase. Furthermore, the higher branching factors of the
larger schedulers also favour the analysis machine that determines the models’
successor information only once in the partial evaluation step prior to the actual
fixpoint analysis.

The second series of examples checks a property of alternation depth 2 with
different parameters of the modal operators for a sequence of regular models My,
of increasing size (cf. Figure 4). The modal property expresses that the atomic
proposition A holds infinitely often along all ({a,b, c}) paths. Assuming that all
transitions are labeled with ({a,b,c}), this is only true for state v as all other
states reach the loop at s which does not satisfy A. For model M, with k states



N. of Property Conjuncts || 1] 2] 4 8| 16| 32] 64 128

Scheduler 5 ||CMCjconfig. 0.03| 0.04| 0.07| 0.12| 0.21] 0.41] 0.80 1.62
states : 240 analysis || 0.27| 0.54| 1.05| 2.15| 4.28| 8.68| 17.19| 34.80
trans : 720 total 0.30{ 0.58| 1.12 2.27| 4.49| 9.09| 17.99| 36.42
FAM |part.eval.|| 0.06| 0.08 0.09| 0.12| 0.19| 0.31] 0.56 1.07

config. 0.01| 0.02| 0.05| 0.12| 0.23] 0.42| 0.80 1.71

analysis 0.00{ 0.01| 0.02| 0.04| 0.08 0.17] 0.33 0.70

total 0.07( 0.11| 0.16/ 0.28| 0.50f 0.90] 1.69 3.48

Perform. Gain || 4.29| 5.27| 7.00| 8.11| 8.98| 10.10{ 10.64| 10.47

Scheduler 7 ||CMC|total 2.18| 4.26| 8.62| 16.88| 34.12| 68.49(135.95| 276.01
states : 1344 [|[FAM |total 0.49| 0.63| 0.88 1.34| 2.32| 4.42| 8.39| 17.02
trans : 5376 || Perform. Gain || 4.45| 6.76| 9.80| 12.60| 14.71| 15.50| 16.20| 16.22
Scheduler 9 ||[CMC|total 14.47|28.76(57.34(114.82(233.38|461.56|917.53|1845.39
states : 6912 [|[FAM |total 2.90| 3.75| 5.20| 8.26| 14.27| 26.61| 50.34| 99.85
trans : 34560(| Perform. Gain || 4.99| 7.67(11.03| 13.90| 16.35| 17.35| 18.23| 18.48

Table 2. Runtime Results.
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Fig. 4. Model and Property for Alternating-Fixpoint Analysis.

t; we need k + 1 resettings and recomputations of the inner minimal fixpoint
until we reach the solution.

Figure 3 shows the runtime results for the analysis machine FAM and the
conventional model checker CMC. The analysis time increases with larger models
but the performance gain is constant for a fixed property. This is due to the fact
that the initialization phase is almost neglectable here from the very beginning.
In fact, the partial evaluation and configuration takes less than 2% of the overall
time here.

If we only use ‘unparameterized’ modalities, which concern all possible tran-
sitions, the analysis machine outperforms the conventional model checker by a
factor of 11. However, as soon as we use modality parameterization explicitly,



the analysis machine outperforms the conventional model checker even by a fac-
tor around 30. This is due to the fact that alternating fixpoint analysis requires
backtracking with resetting and recomputation of several intermediate results.
As the costly selection of the successors of interest is only made once by the
analysis machine in the partial evaluation step prior to fixpoint computation,
the fixpoint analysis itself nearly takes all the runtime also in this case.

Index of Modal Operator || any|{a, b, c}|
M50 CMC 33.84| 90.44
states : 503 || FAM 2.88 2.90
trans : 505 ||Performance Gain|| 11.75| 31.19
Mio00 CMC 138.51| 364.30
states : 1003|| FAM 11.64| 11.38
trans : 1005||Performance Gain|| 11.90( 32.01
Mi500 CMC 312.10| 808.08
states : 1503 || FAM 26.61| 26.52
trans : 1505||Performance Gain|| 11.73| 30.47

Table 3. Runtime Results for Alternating Fixpoints.

Beside these two series of examples we also compared the analysis machine and
the conventional model checker on a variety of other applications. The perfor-
mance gains differ with the complexity of the fixpoint problem. For data flow
analysis for example we only achieve factors between 2 and 4 as the problems
only require very simple hierarchical or homogeneous fixpoint computations (cf.
[KnRS92]). Thus the partial evaluation and specific machine configuration was
hardly exploited. But even in these ‘worst cases’, we still managed to half the
computation time. On the other hand, performance gains were very high for
computation intensive problems requiring an alternating fixpoint analysis.

7 Conclusions

We have presented a fixpoint-analysis machine, which allows the efficient com-
putation of homogeneous, hierarchical, and alternating fixpoints over regular,
contect-free/push-down and macro models covering applications that reach from
intra- and interprocedural data flow analysis, over model checking for various
temporal logics to the verification of behavioural relations between distributed
systems. It has turned out that the fixpoint-analysis machine identifies an ade-
quate (parameterized) level for a uniform treatment of all those problems, as it,



despite its uniformity, outperforms the ‘iteration based’ special purpose tools by
factors around 10 even if the additional compilation time is taken into account.
We hope that beside its performance, the conceptual structure of the fixpoint-
analysis machine will also help to improve the understanding of complex fixpoint
problems, like e.g. the second order model checking for alternating formulas.
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