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Abstract

Advances in network technology and research in real-time
packet-switched networks have prompted the emergence of
internet conferencing. While audio and video conferencing
tools are readily available, shared workspaces and drawing
tools have been slower to emerge. We present a design for
a network conferencing whiteboard that differs in notable re-
spects from other shared workspace prototypes. We describe
its transport layer, based on IP multicasting and application
level framing, and its object oriented imaging model, based
on persistent PostScript graphics operations. We then pro-
pose a user interface, and finally, describe a C++ implemen-
tation based on the InterViews structured graphics library.

1 Introduction

In the early days of the Internet, experiments with packet
voice proved that computer networks could be used for inte-
grated services [5]. However, the technological limitations of
the time made such use impractical. This is now changing.

Dramatic advances in network bandwidth and computa-
tional resources have paved the way for a new generation of
distributed applications. Indeed, computer workstation man-
ufacturers are anticipating this trend by equipping machines
with high speed network interfaces and audio and video hard-
ware. These developments have facilitated the emergence of
a new form of human productivity — computer supported
collaborative work (CSCW). By integrating collaborative ap-
plications with real-time internetworking, virtual workspaces
can be made to span the globe. Researchers worldwide will
be able to collaborate without ever leaving their respective
workplaces.

Because of its interactive nature, networked CSCW de-
mands real time delay and bandwidth guarantees of the un-

derlying networks. Accordingly, research is underway to de-
velop protocols that can manage the network resources and
provide performance guarantees [9, 3, 2]. At the same time,
collaborative applications are being developed to exploit the
new resources.

While audio and video applications are becoming widely
available, another essential component of collaborative work,
the network equivalent of a conference room “whiteboard”,
has been slower to evolve. Ironically, some network confer-
ences are currently administered by faxing a speaker’s slides
to the conferences before commencing the conference over
the electronic medium. In this paper, we present a design for
a whiteboard tool that can overcome this poor man’s approach
to slide distribution. We envision an environment where doc-
uments, images, and arbitrary figures can be interactively dis-
played on the distributed whiteboard, allowing conference
participants to interact by annotating the displayed material.

2 The Communication Model

In a distributed environment, we must make a fundamental
design choice in partitioning the application. The two obvi-
ous approaches are a centralized approach, where a single
copy of the application runs on a central site, and a replicated
approach, where the application is replicated across all par-
ticipating sites. Each approach has its advantages and disad-
vantages, and is influenced by the underlying network com-
munication primitives. We consider both approaches with re-
spect to unicast and multicast communication channels.

2.1 A Centralized Approach

In the centralized model, the application runs on only one
host, the central site. The remote sites, or clients, redirect

1



their I/O channels to the central site, which orchestrates the
inbound and outbound event streams to effect the shared se-
mantics.

The major advantage of this approach is its simplicity. An
implementation is relatively straightforward since the prob-
lems of consistency and synchronization are defined away.
Because there is only one copy of the application, consistency
is not an issue, and because a total ordering on all events can
be imposed by the central site, any synchronization primitives
are easily implemented. Furthermore, the communications
can all be carried out using traditional unicast channels.

An obvious disadvantage of the centralized approach is
its demands on the network. The central site is a bottle-
neck. Since traffic from all participants must be processed by
the central site, the bandwidth requirements degrade linearly
with the number of participants. Additionally, communica-
tion latency can be dramatically increased, which is critically
detrimental to interactive CSCW applications. For instance,
even though the network delay between two nearby hosts may
be quite small, they may have to communicate via a distant
server over high latency link. Even worse, depending on the
application, the overall communication rate may be limited
by the slowest link in the network. Finally, if the central site
fails, the application fails outright.

2.2 A Replicated Approach

If we are limited to unicast communication channels, then the
centralized model may very well be a viable approach. How-
ever, a more efficient scheme can be devised using multicast
channels. Multicast addressing allows a single datagram to
be efficiently sent to a group of hosts. The network automati-
cally forwards the packet along the appropriate links, making
sure that only one copy is sent on any given link. In this fash-
ion, a group of communicating hosts (usually) require only
sublinear bandwidth requirements.

Most of the problems with the centralized model are not
present in the replicated model. Here, the application is repli-
cated on each remote site and there is no central authority.
Each host communicates to all other hosts simultaneously via
a multicast channel. Since there is no central site, there is
no bottleneck. Also, communication latencies are minimized
since they depend only on the intrinsic network delays. Fur-
thermore, network failures and intermittent connectivity may
be tolerated, since each site maintains complete state of the
application.

But many of the advantages of the centralized approach
become the disadvantages of the replicated approach. Be-
cause the application is replicated, inconsistencies can arise
between sites. If the application cannot tolerate inconsisten-
cies, either a priori or heuristically, a higher level protocol
must be devised to guarantee consistency. Yavatkar [19] de-
scribes such a scheme using token passing.

A related problem is synchronization. Because multicast
channels (usually) make no guarantees on packet ordering,
messages can be received out of order. Even worse, causal
relationships can be violated. Figure 1 illustrates this phe-
nomenon. Host B sends a message, M1, that causes host A
to reply with message M2. Because of network idiosyncra-
cies, Host C may receive the response before the request.

These problems turn out to be present in the whiteboard
and we will address solutions in subsequent sections.

2.3 IP Multicasting

The whiteboard’s communication model is built upon the In-
ternet Protocol (IP) Multicast network layer [7]. The Unix
operating system provides access to this layer via the user
datagram protocol (UDP). The standard socket interface [13]
provides mechanisms for sending and receiving UDP pack-
ets. Thus, an application accesses a multicast channel by cre-
ating a datagram socket and binding it to a multicast address.

IP Multicasting has several attractive characteristics. First
of all, IP is ubiquitous. The TCP/IP protocol suite dominates
the current Internet and many believe this domination will
continue even as networks scale to gigabit rates [12].

Second, the multicast extensions outlined in RFC 1112
[7] are readily available on a variety of systems. Even in
heterogeneous environments, where multicasts are not sup-
ported at every gateway, IP multicasts can still be delivered
using a technique called tunneling. A tunnel allows multi-
cast routers to send packets across unicast networks using IP
source routes. In essence, tunnels bridge islands of multicast
networks over a sea of unicast networks.

Third, the application interface is simple, as simple as its
unicast counterpart. Because the multicast channel seman-
tics are encoded exclusively via the IP address1, the operating
system interface is identical in both the unicast and multicast
cases2.

Finally, because group membership is encoded in the mul-
ticast address, session management is simplified. An IP mul-
ticast address and UDP port number is the only information
necessary to define a conference session. Groups are main-
tained transparently by the network, via the Internet Group
Management Protocol (Appendix I of [7]). In contrast, a con-
nection oriented approach handles group membership explic-
itly in the application, usually requiring each site to establish
connections with all other sites before the session begins.1Class D Internet addresses, whose high-order four bits are 1110, are re-
served for multicast groups.2Actually, the current kernel implementation requires special socket oper-
ations for group membership, specification of the time-to-live, and enabling
of packet loopback. Group membership should be implicit in the address
while the time-to-live and loopback flag should be stored in the route. This
will be fixed in 4.4BSD.
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This figure illustrates causality violations that may be introduced by the network layer. Time proceeds
down the figure while the horizontal axis represents the spatial location of the three hosts, A, B, and
C. B sends a message that causes A to reply, but C might receive the reply before the initial message.
A transport layer may need to account for this behavior.

Figure 1: Causality violation in a multicast channel.

2.4 The Transport Layer

Since the UDP/IP multicast layer provides only best effort de-
livery semantics, the transport layer must implement reliable
delivery. Furthermore, the network can introduce packet re-
ordering and causality vioalations that may be problematic to
the application. But not all applications need similar quali-
ties of service. For instance, audio and video applications can
tolerate certain amounts of data loss but require timely deliv-
ery. On the other hand, the whiteboard cannot tolerate packet
loss, while communication delays, to a certain extent, can be
tolerated. Thus, transport level policy decisions, at least for
real-time applications, should be deferred to the application.

2.4.1 Application Level Framing

Indeed, Clark [4] argues that applications themselves should
manage lost and misordered data. This approach is critical to
the success of real-time, interactive applications, which must
make progress in the presence of missing data. In the case of
the whiteboard, most packets are idempotent and can be pro-
cessed independently. Lost data can be repaired “in the back-
ground”.

2.4.2 Reliable Delivery

Our design achieves reliable delivery with sequence number-
ing and periodic state announcement. Each packet is assigned
a monotonically increasing sequence number. If a receiver
notices a hole in the sequence space, it issues a repair re-
quest for the packets that are missing. Holes are noticed when
a source sends data subsequent to a loss, or upon state an-
nouncement. Figure 2 illustrates these two modes of repair.

On lost data, a receiver could either unicast the repair re-
quest back to the sender or multicast it to the group. Since a
loss for one receiver is likely a loss for many, a scheme that
could minimize the number of acks generated by the group as
a whole would be desirable. If the requests are multicast, re-
ceivers that need to issue an identical request can notice that it
has already been issued. Additionally, since each site main-
tains complete state of the application, any site, not just the
sender, is capable of answering a repair request (provided that
site has the requested information). Ideally, the site closest
to the requester should answer. For these reasons, we have
adopted a multicast repair scheme.

2.4.3 Ack Implosion

The repair scheme mentioned here has a problem. Repair re-
quests can pile up on top of each other, causing large network
transients which errari90Danzig [6, Sec. 6.1.1] calls implo-

3



B:Repair:A<7,3>

A:<10,1>
A:<11,1>
A:<12,2>

A:<7,3>

A:<10,2>*

B:Repair:A:<10,2>

A B

A:<6,1>

A:<7,3>

A:Announce:10

A:<7,3>*

A B

This figure illustrates the two repair modes for reliable delivery of packets. The diagrams represent
two sessions with two hosts, A and B. Time proceeds down the page. < s;n > represents n drawing
operations beginning at sequence number s. In the lefthand session, A sends four packets, two of
which are dropped. On receipt of the fourth packet, B detects missing data and requests a repair. A
repairs the two missing operations with a single packet.
On the righthand side, the last in a sequence of packets from A is dropped. B does not detect the data
loss until A sends its periodic announcement, at which time B issues the repair request.

Figure 2: Whiteboard Repair Mechanism
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sions. To illustrate this phenomenon, first consider a PAR3
scheme, where each data packet triggers acks from all the re-
ceivers simultaneously. All the acks are directed back at the
sender, hence the term implosion. If the multicast group is
large, the implosion can deterministically cause acks to be
dropped (i.e., because of gateway queue overflows). The lost
acks result in a retransmission, resulting in more lost acks, ad
infinitum4.

Now consider the negative acknowledgment repair scheme
discussed in the previous section. While this approach elim-
inates ack implosions for error free communication, implo-
sions can still result when all receivers discover a loss simul-
taneously. Furthermore, since any host may answer requests,
the retransmissions themselves can result in implosions. To
alleviate these problems, we propose a variation of Danzig’s
scheme, which uses randomization to smooth the transients.
Our algorithm has two halves, one set of rules to generate re-
pair requests, and another to honor replies. A request is gen-
erated as follows.� On missing data D from host S, choose a random value� , from a probability distribution given by some functionF�S ;N , parameterized by the size of the group, N , and

the network delay from the local site to S, �S .� Schedule a repair request packet, REQD , for transmis-
sion in � seconds.� If the data,D, or the repair reply, REPD, is received be-
fore � seconds, cancel REQD.

Since the request is multicast to the entire group, any site
can answer it. The reply is generated as follows.� On receipt of REQD, and if D is present, choose a ran-

dom value � , from distribution F�S;N .� Schedule REPD for transmission in � seconds.� If REPD is received before � seconds, cancel REPD.

The choice of the distribution function F�S ;N is still un-
der investigation. We conjecture that a simple uniform distri-
bution on [0;K�S], where K is a small constant greater than
one, will be adequate.

The net effect of the randomization and network delay term
is to bias the retransmissions toward those sites that are the
closest to the sender. In an Internet environment, where loss
is often concentrated at the backbone gateways, this scheme
is quite effective. Here, a packet drop will generally affect a
large fraction of the group. Thus, the multicast repair mech-
anism will efficiently update everyone with a single packet.3Postive Acknowledgment with Retransmission4Actually, Danzig’s scheme is smarter. It limits ack retransmissions by
explicitly specifying the unacknowledged hosts in the data retransmission.
Thus, progress is guaranteed.

However, other less well behaved scenarios are possible.
Consider a network that is mostly reliable except for one link,
with a leaf site S, at the far end of the congested link. In
this case, S will issue many repair requests which the entire
multicast group must process, wasting host processing time
and network bandwidth. It would be better to unicast the re-
pairs back to S, but that would compromise the more com-
mon scenario mentioned previously. An alternative approach
is to limit the range of multicast replies using the time-to-live
field in the IP header. Since the closest host usually honors
the repair, the network traffic will be minimized. More study
is needed to determine the real behavior of our repair scheme,
and whether the suggested improvement is feasible.

2.4.4 Synchronization

Note that the repair scheme uses network delay estimates in
its algorithm. A source usually estimates delay to a receiver
by timing the interval between sending a packet and receiv-
ing the corresponding acknowledgment. Because our scheme
uses mostly unidirectional communication (i.e., there are no
acks), this method of delay estimation cannot be used. How-
ever, if the hosts can synchronize their clocks, then delay
times can be computed very simply by timestamping each
packet. Clocks can be synchronized via some protocol exter-
nal to the application, NTP for example [15].

Since host clocks will be synchronized, temporal ordering
can be recreated at any receiver. Furthermore, since network
dynamics can introduce substantial variations in delay jitter
[8], timestamps allow the receiver to reconstruct the sender
timing relationships. Since (most) current networks do not
have delay jitter-control policies5, timestamps are critical to
reproduce the sender’s actions at the receiver.

2.4.5 Joining an Active Conference

When the whiteboard starts up, a site announces its presence
with a special identification packet, allowing all participants
to register the new member’s presence. For instance, each
host might update its display with the new member’s session
name. However, the joining party is not immediately notified
of all active sites. Instead, it will quickly learn them, since
each site periodically6 transmits an announcement packet.
The transport repair mechanisms will establish consistency
between the global state and the new member’s local state.

Work is currently underway to develop a general session
management system[11]. The assignment of Internet ad-
dresses to sessions should be dynamic, requiring some net-
work agent to distribute addresses for temporary sessions.
Regularly scheduled sessions could be assigned permanent5[17] discusses the implications of delay jitter-controlled channels and ar-
gues that isochronous applications require only strict delay bounds.6every few seconds
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addresses, maintained in the domain name system [16]. In ad-
dition, methods for announcing conferences and notifying the
target audience need to be developed.

3 The Imaging Model

We foresee two dominant usage modes of the whiteboard. In
both cases, we assume the existence of some other form of
interaction, for instance, audio and video. The whiteboard is
not meant as a standalone tool.

In the first scenario, we envision a small collaborative set-
ting, where people use the whiteboard as a scratchpad, anno-
tating each others’ diagrams. This is analogous to a small of-
fice meeting. The other scenario is an electronic talk or lec-
ture. The speaker will have previously prepared a set of slides
which are distributed, page by page, as the talk proceeds. The
audience is free to annotate the diagram and interact with the
speaker.

In either case, we adopt a page model of interaction.
Namely, some site lays down a figure, causing the previous
images to be covered. Participants then annotate the new fig-
ure, possibly deleting their annotations and creating more.
Then, this cycle may repeat with a new page. This next page
corresponds to the next slide in the electronic talk, or to the
clearing of the screen by a member of the office meeting.

3.1 Persistent Graphics Streams

Each site in the conference produces a stream of graphics op-
erations, which we call DrawingOps. DrawingOps may be
grouped into aggregate objects, which can be referred to later
via a RefOp, a type of DrawingOp. Control information is
produced externally to the graphics stream.

Each site’s graphics stream is completely independent of
all other sites. For instance, one site cannot delete an object
displayed by another, but it could cover it up with another
opaque object. This approach greatly simplifies the problem
of consistency. Since sites cannot affect each others’ graph-
ics streams, the transport repair mechanism can adequately
establish consistency between the local application and the
global state. However, there still remain consistency prob-
lems in correlating multiple graphics streams into sa compos-
ite image. This problem is addressed in Section 3.5.

A graphics stream is persistent and arbitrarily long. Thus,
we have the ability to scroll backward through a session while
it is in progress. We could go back to an earlier page, add ad-
ditional annotation, and bring it forward. This process could
be made quite efficient, both computationally and in terms of
network bandwidth, by using RefOps to refer to the earlier
graphics.

This history mechanism is flexible. The user can specify no
history (i.e., just remember the most recent page) or an infinite

history. In the latter case, the conference history could persist
even across sessions. For example, we might want to scroll
back to some slides that were presented in last week’s, or even
last year’s, meeting.

3.2 Local Store vs. Network Bandwidth

The history policy represents a tradeoff in local storage ver-
sus network bandwidth. Since RefOps can refer arbitrarily
far into the past, network repairs may be necessary to update
sites that have discarded the corresponding DrawingOps. If
a site maintains an infinite history, it will never need to issue
history repairs. On the other hand, if a site maintains only
its own history, it must use the transport repair mechanisms
to retrieve references to discarded DrawingOps. At one ex-
treme, no network bandwidth is used for history repairs but
local storage is required for the histories. At the other ex-
treme, local storage is minimized but global persistence then
requires network bandwidth for repairs.

The history mechanism must be flexible. We conjecture
that infinite (or very long) histories, spooled to the local file
system, will be quite useful. In conjunction with saving other
aspects of the conference, such a history allows one to build
a library of talks and sessions which could be replayed at any
future time.

3.3 No Telepointing

A popular notion in a shared workspace is the mouse based
pointer, allowing sites to point at items on the screen using
an animated icon. We have left this out of our design, in favor
of an annotative model. Items are “pointed to” by annotating
with appropriate marks, for example, arrows or circles. The
annotations are easily erased.

We believe there is a current prejudice toward the pointer
approach, instilled by the prevalence of present mouse based
window systems. But mouse based drawing is clumsy and in-
efficient for whiteboard interaction. Instead, we look to pen
based computing as a more viable means of graphical expres-
sion. Here, the natural mode of pointing will not be an an-
imated pointing device, but will instead be annotations and
graphical gestures [18].

3.4 DrawingOps

All DrawingOps are timestamped and assigned sequence
numbers, relative to the sender. Timestamps allow the re-
ceiver to play out the graphics stream with the same time
structure of its sender. Additionally, timestamps aid in the
graphics rendering process, since more recent DrawingOps
should appear on top of older ones. Sequence numbers are
needed by the transport layer.
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Except for RefOps and grouping commands, all Drawing-
Ops are idempotent. This means that the graphics update can
usually be rendered immediately upon receipt of the packet,
a critical consideration for an interactive application.

For ease of portability, the graphics operations must be de-
vice independent. Since computer environments are inher-
ently heterogeneous, the whiteboard will only be successful
if it can function across a range of hardware configurations.
The de facto standard in device independent page description
is the PostScript language [1], which we adopted as the rep-
resentation model for DrawingOps. Indeed, almost all mod-
ern typesetting or graphics systems are capable of generat-
ing PostScript output. Thus, the whiteboard will immediately
leverage off a vast array of existing tools.

To simplify and make efficient the most common graph-
ics operations, a set of predefined PostScript functions are
implicitly defined by the whiteboard. In other words, the
PostScript rendering is carried out with respect to an agreed
upon code preamble. The predefined commands can be short-
circuited directly to the display, while arbitrary PostScript is
processed via a fully general interpreter. Finally, a standard
binary encoding format [1] may be used to compress the com-
mands and eliminate lexical analysis.

3.5 The Rendering Method

While we have defined a method for rendering the individual
graphics streams from each site, we have not described how
they can be combined into a single composite display. Ini-
tially, we chose what we thought was a very simple approach.
Since each host is autonomous, we can create a composite by
merely stacking the layers in some agreed upon order. This
layering model approach is similar to the tack taken by the
Teamworkstation project designers [10].

An initial problem was devising a protocol for reaching a
consistent global stacking arrangement. While we finally de-
vised a scheme that seemed to work well, a new problem be-
came apparent. The layering model is not a close match of
reality. When a site made annotations to a page, that layer
would be raised to the top so that the new annotations would,
as expected, appear on top. As a side effect, old annotations
from the site would as well be raised, which is obviously not
natural. Furthermore, the site that initiated the drawing would
appear underneath all the other layers. Thus, any annotations
made by the original site would appear underneath all others.

The problem is simply that the layering model does not
capture the temporal aspect of the annotations. Newer marks
should always appear on top of older ones. To account for
this, we devised a new rendering model. All DrawingOps
are rendered into a single layer in the order dictated by
their timestamps. Again, we rely on loosely synchronized
clocks to achieve meaningful correlation between indepen-
dent graphics streams.

Of course, if two people draw at the same time slight incon-
sistencies may arise. For example, consider two sites A and
B which annotate the same drawing. If A draws before B, but
B starts drawing before receiving updates from A, B will see
A’s marks drawn underneath its own, even though they ap-
pear after its own. This is, at worst, a minor annoyance that
is easily tolerated.

3.6 Floor Control

A more problematic consistency problem entails page bound-
aries. If two or more sites simultaneously initiate a new page,
the conference must choose only one, in a distributed, consis-
tent manner. More generally, we must establish a means of
floor control.

Yavatkar describes several token-based concurrency ap-
proaches in [19]. Two of his approaches, called brain storm-
ing and chalkboard interaction, are applicable to the white-
board. Brain storming is analogous to the office meeting
scenario. In this case, all participants may interact at any
time. Similarly, chalkboard interaction is analogous to the
electronic talk. Here, the speaker holds the floor, prevent-
ing others from interacting. Then, a question and answer pe-
riod ensues where participants may interact as dictated by the
speaker. The process then repeats.

However, we believe that, in many cases, these floor con-
trol primitives should not be built into the application. Rather,
human behavioral protocols will solve the problem on their
own. A (seemingly) undisputed example is audio conferenc-
ing. If two people begin to speak simultaneously, then hu-
man instinct will result in quick agreement as to who should
speak. Similarly, with the whiteboard, if two people initiate
new pages simultaneously, they will both notice this collision.
Resolution can be reached by human negotiation over other
media channels.

Even in the chalkboard interaction example, floor control
should be managed at the human level. An environment in
which participants may speak out of turn, though it permits
rude behavior, is more realistic than one in which members
are mute until artificially allowed to interact.

3.7 Distributed Consistency

Because we have not adopted a stringent floor control mech-
anism, one subtle consistency problem has chance to arise.
Annotations can sometimes be applied to the wrong page. If a
site is annotating while another site begins a new page, some
of the annotations that were meant for the old page will appear
on the new one. Instead of implementing an explicit consis-
tency protocol, we take advantage of the specifics of this ap-
plication, and propose a simple fix — each DrawingOp will
explicitly contain the page identifier to which it applies. A
unique page identifier can be constructed by combining the
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Version Type

SiteID

Figure 3: Transport Level Header

DrawingOp

Seqno

SeqRange

MasterID

Pageno

DrawingOp 1

DrawingOp 2

. . . 

TimeStamp

Length

Body

Figure 4: Format of DrawingOp Packets.

site identifier that initiated the page with its current sequence
number at the time of the initiation. Thus, a receiver can pre-
vent annotations from being displayed on the wrong figure.

Distributed consistency entails a heavy tradeoff between
precision and efficiency. The more precisely consistency is
maintained among sites, the costlier it is. By avoiding data
dependencies in the graphics streams and loosening the con-
straints on temporal synchronization, we have avoided the ne-
cessity of a token based approach, which has clean semantics
but poor performance implications.

3.8 Packet Layout

A transport level header is prepended to each packet, as
shown in Figure 3. The SiteID identifies the sending par-
ticipant, while the Type field encodes the packet type, and
is one of DrawingOp, Announcement, RepairRequest, or
RepairReply. The Version field is a simple version number
to prevent mismatches between protocol generations as they
evolve.

The DrawingOp format is shown in Figure 4. A packet
may contain multiple DrawingOps but they must be contigu-
ous in the sender’s sequence space. The Seqno and Seq-
Range fields indicate the range. MasterID and Pageno ref-
erence the abstract page to which the DrawingOps apply. As
explained in Section 3.7, these fields convey information to

Marker

MaxSeq

SiteName

SiteNameLen

Figure 5: Layout of announcement packets.

RepairID

SeqStart

SeqEnd

Figure 6: Layout of repair packets.

maintain consistency between annotations and page bound-
aries.

An individual DrawingOp is a timestamped PostScript
code fragment. The PostScript is encoded in a binary format
in Body and is of the length indicated by Length.

The Announcement packet, shown in Figure 5, contains
the sequence number of the current page, Marker, the max-
imum sequence number generated thus far, MaxSeq, and a
counted string that identifies the participant, SiteNameLen
and SiteName.

Figure 6 shows the format of repair requests. Re-
pairID indicates the site whose graphics stream should be re-
paired, while SeqStart and SeqEnd indicates the range of
DrawingOps that are missing.

The format for RepairReply’s is not shown. It is identical
to the DrawingOp format, with the exception of an extra field
to indicate the original source of the DrawingOps.

4 User Interface

The user interface consists of four main pieces:� the whiteboard canvas,� the palette,� the history interface, and� the session manager.
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The canvas is simply a large area of the screen dedicated to
the display of the whiteboard’s contents. Marks are made on
this canvas via stylus, mouse, or keyboard input. The palette
contains various tools for creating specific instances of ob-
jects, for example, boxes, arrows, lines, freehand drawing,
etc. Patterns, brush widths, fonts, and all the standard fea-
tures of a drawing editor are included. The palette also allows
arbitrary PostScript files, for instance, a set of slides, to be in-
troduced a page at a time.

The graphical interface is object oriented. Objects can be
created, manipulated, and deleted. Groups of objects may be
selected and scaled, moved, or deleted as a unit.

The history interface lets the user manipulate time. A time
scroller lets the user scroll back through previous drawings,
either a page at a time or an operation at a time. Addition-
ally, the user can position the scroller at an earlier time, and
let the session “replay” itself. Any frame from the past can
be cloned and incorporated into the current session point, or
can be worked on off-line and later integrated back into the
session.

The session manager is the visual interface to the rest of
the conference. The names or Internet addresses of the con-
ference participants are displayed in a box. A site’s name is
highlighted whenever it performs a drawing operation, allow-
ing easy identification of the responsible party. A check box
next to the site’s name can be selected to temporarily disable
the displaying of graphics from that site. The whiteboard still
records all operations, so resetting the check box will cause
the hidden annotations to be displayed.

Figure 7 shows the graphical interface for the prototype de-
scribed in the next section. This contrived example illustrates
the annotation model, where a diagram is presented, in this
case a network topology, and then annotations are made by
the participants.

5 A Prototype

A prototype of the whiteboard was implemented. Much of the
design has been completed, but more work is needed.

The current implementation consists of about 6000 lines of
C++ code. It is based on the outdated “Graphic” library from
InterViews-2.6 [14], Mark Linton’s object oriented graphics
system. We had hoped to just extend the existing InterViews
graphical editor, idraw, with our networking ideas. However,
this proved impossible, as the organization of idraw would
not easily map to our network model.

5.1 Event Dispatching

A weakness of InterViews-2.6 applications is their approach
to event dispatching. Rather than dispatch events from a sin-
gle rooted point, objects (like alert messages or menu items)

Object::handle(event e)
{

if (e.type == Down) {
do {

e = read();
if (e.type == Motion)

track(e);
} while (e.type != Up)

}
}

Figure 8: Starvation Prone Event Dispatch

Object::handle(event e)
{

if (down) {
if (e.type == Up)

down = false;
else if (e.type == Motion)

track(e);
} else if (e.type == Down)

down = true;
}

Figure 9: Non-Starving Event Dispatch

will often drop into their own event reading loops. The ef-
fect is to starve other event handlers until the executing one
finishes. This is sometimes tolerable. For instance, in idraw,
while a user manipulates a menu item, nothing else interest-
ing can happen. Hence, the menu item can be implemented
with its own event loop. On the other hand, this behavior in
the whiteboard is unacceptable. While the user manipulates
a menu, drawing actions may arrive from the network at any
time and should appear immediately on the display.

A solution might be to use asynchronous notification,
which would allow event loops to be preempted and, for in-
stance, the whiteboard display to be updated. However, In-
terViews is not reentrant and requires synchronous operation.
Thus, event handlers must never enter into their own event
loops. Instead, they must keep enough internal state to be able
to reconstruct the desired event sequence.

Figures 8 and 9 illustrate with code the two approaches to
event handling. The function handle() calls another function
track() with mouse motion events, but only while the mouse
button is held down. The approach of Figure 8 uses flow
control, namely the event-reading while-loop, to “remember”
that the button is down. But this starves other event handlers.
The starvation is circumvented by the code in Figure 9, which
uses a state variable, down, to remember the button position.

5.2 A Code Overview

InterViews allows an application to “listen” on arbitrary I/O
channels, thereby providing a convenient hook for the packet

9



Figure 7: The Prototype

handling mechanism. The arrival of a packet triggers an event
which is delivered to the correponding listener. In the object-
oriented spirit, we created a “network object”, whose “Han-
dle” member function is called by InterViews when packets
arrive on its socket descriptor. The network object reads the
packets from the device, then passes them to the Demuxer ob-
ject.

The Demuxer dispatches the packet to the appropriate Re-
ceiver object, based on its site identifier. The Receiver ob-
ject implements all of the transport layer mechanisms dis-
cussed earlier. Additionally, it maps packets to Graphic ob-
jects, which are inserted into the master View object.

The View object is responsible for updating the whiteboard
display. Double buffering is employed to minimize screen
flicker. Because this is a costly operation, we restrict the up-
dates to the localized areas where “damage” occurs. This ap-
proach proved quite effective.

As the user manipulates the application locally, a Sender
object maps actions into Graphic objects. The Graphic ob-
jects are then looped back to the local Receiver. At the same
time, a Graphic object maps itself to a packet, which is sent
to the Network object and ultimately to the network itself.

Because the Sender loops back Graphics to the local Re-
ceiver much of the implementation is simplified. There are
no special cases for the local host. The graphics handling and
transport repair mechanisms are uniform for the local and re-
mote sites.

Figure 10 gives a simplified view of the object decompo-
sition described here. The nodes represent instances of ob-
jects, while the arrows represent data flow and dependencies
of packets and graphics.

6 Future Work

Several aspects of the design presented in this paper have not
yet been implemented in the prototype. The ack implosion
avoidance algorithm is not yet in place. Repair requests are
always issued as soon as possible, and the original sender (and
only the sender) honors them. The retransmission algorithms
require further study, on both experimental and theoretical
levels.

The PostScript imaging machinery still needs to be incor-
porated. Currently, objects are encoded in a temporary format
that was thrown together to make things work. We plan to use
the GNU PostScript interpreter, Ghostscript.

The new rendering model has not been implemented. The
prototype currently renders the composite image by stacking
all site layers on top of each other. The transition to the tem-
poral model should not be difficult.

The prototype should use the most recent version of Inter-
Views, as major improvements have been made since version
2.6. The whiteboard will be ported to this new environment
before it enters production use.

Finally, drawing with a mouse is clumsy. The utility of
the whiteboard should be greatly enhanced by replacing the
mouse with a pen.

7 Summary

We have presented a design for a collaborative whiteboard in
the form of a communication protocol, an imaging abstrac-
tion, and a user interface. The communication protocol em-
ploys IP multicast and application level framing to efficiently
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Figure 10: Whiteboard Object Hierarchy

utilize the underlying network. Initial feedback from the pro-
totype indicates that the transport mechanism is robust. The
imaging abstraction evolved into the temporal rendering ap-
proach that uses loosely synchronized clocks to effect global
consistency. The temporal model is simple, intuitive, and
practical. Finally, the user interface ties everything together
in an easy to use package.

As network conferencing becomes commonplace, and per-
sonal pen and pad based computers become available, we be-
lieve that the electronic whiteboard will prove to be an indis-
pensable collaborative tool.
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