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Abstract

This paper concerns some of the theoretical complexity aspects of the reconfigurable
network model. The computational power of the model is investigated under several
variants, depending on the type of switches (or switch operations) assumed by the network
nodes. Computational power is evaluated by focusing on the set of problems computable
in constant time in each variant. A hierarchy of such problem classes corresponding to
different variants is shown to exist and is placed relative to traditional classes of complexity
theory.
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1 Introduction

In sequential computation there is one widely acceptable model, namely, the von-Neumann
model. In contrast, there is still no such popular equivalent for parallel computation. In
particular, it is not clear which parallel model of computation is the best candidate to bridge
the “hardware - software gap,” as discussed in [Val90]. The PRAM family is usually considered
as the ideal computational environment, for its freedom of restrictions on memory access. At
the other extreme, the Fixed Connection Network model (FCN) is viewed to be a “realizable”
parallel environment, since each processing element is connected to a constant number of other
elements. Recent developments in technology have made several other computational models
viable. Such models may be as strong as (or even stronger than) the PRAM model on the one

hand, and on the other hand exhibit realizability of the same level as (or even higher than)
that of the FCNs.

One of the most promising parallel models of computation is the Reconfigurable Network
(RN) model. The basic idea of the RN model is to rely on bus communication, and enable
flexible connection patterns, by allowing nodes to connect and disconnect their adjacent edges
in various patterns. This yields a variety of possible bus topologies for the network, and enables
the program to exploit this topological variability in order to speed up the computation.

Informally, a reconfigurable network operates as follows. Essentially, the edges of the net-
work are viewed as building blocks for larger bus components. The network operates in rounds,
and dynamically reconfigures itself at each round, where an allowable configuration is a parti-
tion of the network into several connected components, or, a set of edge-disjoint buses. A crucial
point is that the reconfiguration process is carried out locally at each processor (or switch) of
the network. That is, at the beginning of each round during the execution of a program on
the RN, each switch of the network fixes its local configuration by partitioning its collection
of edges into some combination of subsets. Adjacent edges that are grouped by a switch into
the same subset are viewed as (hardware) connected, so that they form a bus. Any processor
connected to an edge participating in the construction of a certain bus, may choose to listen to
any incoming or passing message transmitted on that bus.

The basic assumption concerning the behavior of the reconfigurable model (as well as any
other bus model) is that in any configuration, the time it takes to transmit along any bus is
constant, regardless of the bus length. This assumption is theoretically false, as the speed of
signals carrying information is bounded by the speed of light. Hence with very fast processors,
and assuming that the operation rate of the parallel machine has to equal that of the individual
processors (i.e., that each processor cycle includes a round of communication), the actual bus
lengths that can be implemented are more limited. This partially explains why the RN model
and other bus models have not gained wide acceptance initially.

Recently, however, implementations were suggested for the RN model, involving a variety of
newly developed technologies, including optical communication and optical computing devices.
Several dynamically reconfiguring machines involving thousands of switches were actually built

[TCS89, GK89, LMS&9, MKS89, WLH*87], showing that the RN model is implementable in

massively parallel architectures.

Motivated by the existing implementations, there has been some work on the algorithmic



and computational aspects of the RN model. Nakatani [Nak87] considered comparison-based
operations like merging, sorting and selection on reconfigurable arrays. Miller, Stout, Reisis
and Kumar [MPRS87] and Reisis and Kumar [RP87] considered parallel computations and data
movement operations on the reconfigurable mesh. In a recent series of papers, summarized
in [Wan91], Wang, Chen and others present many constant time algorithms for RN’s. In
[BS91, Sch91] the parameter of bus-usage is suggested as a measure for the efficiency of RN
algorithms. Other papers consider image processing and fault tolerance on RN’s.

This expanding volume of algorithms and results calls for a more systematic approach and
a theoretical evaluation of the classes of problems solvable using RN’s. In particular it is
evident that RN’s solve large sets of problems in constant time. This power is attributed to the
exponential number of global configurations that may be taken by the network at each step.
When the problem is solvable by reconfiguring locally according to the input, then the global
configuration gives the result instantaneously. Thus, for example, it is shown in [BPRS91] how
to sort in constant time using one RN model, and how to solve a PT I M E-complete problem in
constant time using another (stronger) RN model. Some comparisons and simulations of basic
RN models are presented there as well.

In an earlier work, Moshell and Rothstein [MR79] investigated the computational complex-
ity of the Bus Automata (BA). The BA model is similar to the RN model. It is composed of a
d-dimensional array of finite automata with modifiable channels allowing long-distance commu-
nication. Moshell and Rothstein showed that large classes of problems are solvable in constant
time on the BA. For example, they showed that the languages recognizable in constant time by
a one-dimensional BA are exactly the regular languages.

In this work we extend the ideas from [BPRS91] in order to evaluate the theoretical power
of several different RN models. We concentrate on the classes of problems solvable in constant
time. Our approach, however, is different from the one given in [MRT79] in several aspects.
In particular, the underlying topologies assumed for the networks are not necessarily uniform
arrays (although we do show equivalence in several cases) and the switches differ in their
operation on passing messages. We show that variations in the switching assumptions result
in variations in the power of the model. Finally, we present results that relate these models to
space-bounded Turing machines and parallel complexity classes.

The rest of this work is organized as follows. Section 2 describes the RN model in more
detail. In Section 3, the RN model is compared with the PRAM model, and some connections
are established between the corresponding complexity classes. In Section 5 similar comparisons
are made with respect to Turing-machine based complexity classes. Section 4 concerns the
restriction of the RN model to simple two-dimensional mesh topologies. Section 6 considers
the non-monotone RN model. Finally, Section 7 concludes with a discussion and some open
problems.



2 Reconfigurable Models of Computation

2.1 The General Model

A reconfigurable network (RN) is a network of switches operating synchronously. The switches
residing at the nodes of the network perform the same program, taking local reconfiguring
decisions and calculations according to the input and locally stored data. In this paper we
focus on networks of bounded degree, hence the number of possible configurations at a node is
constant. Input and output locations are specified by the problem to be solved, so that initially,
each input bit (or item) is available at a single node of the network, and eventually, each output
bit (or item) is stored by one.

A single node of the network consists of a computing unit, a buffer and a switch with
reconnection capability. The buffer holds either an input or an output item, or something
that was previously read from adjacent buses. The power (instruction set) of the computing
unit is not central to the discussion, although it varies from section to section. For example,
for the simulations of Turing machines by RN’s we assume no computation power at all, so
that no arithmetic or logic operations are allowed. For the simulations of PRAM’s (and by
PRAM’s) we assume the processor power of the simulating and simulated models to be the
same. In many cases, the sole objective of the computing unit is to decide the next state of the
switch! according to the data stored at the local buffer. In simulating other models by RN’s,
the size of the buffers typically remains small. If a word (whose length is determined by the
bus bandwidth) is moved on the bus in a single step, then the size of the buffer need only be a
constant number of words.

A single round (or step) of an RN computation is composed of the following substeps.

Substep 1: The network selects a configuration H of the buses, and reconfigures itself to H.
This is done by local decisions taken at each switch individually, depending on the input,
the contents of messages previously read from adjacent buses and local computation
results. This substep may in principle extend over a (constant) number of processor
cycles.

Substep 2: One or more of the processors connected by a bus transmit a message on the bus.
These processors are called the speakers of the bus.

Substep 3: Some of the processors connected by the bus attempt to read the message trans-
mitted on the bus by the speaker(s). These processors are referred to as the readers of
the bus.

Remark 1: It is sometimes helpful to make use of a message that has no inherent meaning
(except for its origin and destination, determined by the bus configuration). Such a message is
referred to as a signal. In such cases, information is conveyed by the knowledge of which of the
readers succeed in actually detecting the signal.

At each round, a bus may take one of the following three states:

'In the sequel we ignore these distinctions, and use the terms switch, node and processor interchangeably.



e /dle: no processor transmits,
o Speak: there is a single speaker,

e [Krror: there is more than one speaker.

An Frrorstate, reflecting a collision of several speakers, is detectable by all processors connected
by the corresponding bus, but the messages are assumed to be destroyed. (This definition
follows the common model, but it is worth commenting that a number of other reasonable
alternatives exist. For example, it is sometimes assumed that collisions go undetected. On the
other extreme, a stronger model which may be useful is one assuming that the outcome of a
collision is more informative, and yields some partial function of the transmitted messages, e.g.,

their logical “OR”.)

The most popular reconfiguring network in the existing literature is the mesh. An n x m
mesh consists of an n x m array of switches beginning with switch (0,0) at the upper left corner
and ending with switch (n — 1,m — 1) at the lower right corner of the mesh. Each switch has
four 1/O ports (L, R, U, D) for its Left, Right,Up and Down neighbors (except those on the
perimeter of the mesh, which have three ports, and those in the corners which have only two
ports each). For example, if port U is connected to port L and ports R and D are disconnected,
then we denote by (U — L) the configuration of the switch.

2.2 Variations on Operations

The general RN model, as presented above, does not specify the exact operation of the switches.
As already shown in [BPRS91], the specific operation determines the power of the model. We
consider the following four basic variants.

General RN: The switch may partition its collection of edges into any combination of subsets,
where all edges in a subset are connected as building blocks for the same bus. Thus the
possible configurations are any network partition of edge-disjoint connected subgraphs.

Linear RN (LRN): The switch may partition its collection of edges into any combination of
connected pairs and singletons. Hence buses are of the form of a path (or a cycle) and
the global configuration is a partition of the network into paths, or a set of edge-disjoint
linear buses.

Directed RN (DRN): This model is similar to the Non-Linear RN model, except that edges
are directed, so messages travel in one direction only. Consequently, each connected subset
of edges is split into in-edges and out-edges. A message entering the switch for the first
time via either one of the in-edges, proceeds via all the out-edges connected to it.

Non-Monotone RN (NMRN): This model is the same as the Directed RN model, but a
switch has an additional “inversion” capability. When this operation is activated by the
switch, a signal going via the switch is inverted. That is, a “0” (“no signal”) turns into a
“1”7 (“signal on”) and vice versa.



By way of illustration, let us consider again the reconfigurable mesh operating in the LRN
model. A switch may take one out of ten possible local configurations: (L — R, U — D),
(L-D,R-U),(L-UR-D), U-D),(L—-—R),(R=D),(L=-U),(R-=-U), (L—-D),
and (). When the mesh operates in the RN model, five more local configurations are possible:

(L—R-U),(R—U—=D),(U=D—1L),(D—L—R),and (L—R—U — D).

Discussion: It is important to observe that the notion of a bus for DRN’s and NMRN’s is
somewhat different than that of LRN’s and RN’s. The most significant difference is that while
the RN architecture is based on “passive” wires, the DRN and NMRN models make use of more
“active” (hence slower) devices along the way.

Another technical difference involves the way the destination set of a message is determined
in the DRN and NMRN models. This is done as follows. Suppose some processor z transmits
at round ¢, and let H; denote the global configuration that was chosen by the network during
step t. Then the message issued by z on some connected set of out-edges reaches the subgraph
of H; consisting of all nodes that may be reached from z by a directed path starting at those
out-edges.

The notion of bus error for DRN’s and NMRN’s changes, too. A node y detects an error
during step ¢ if, in the configuration Hy, y is reachable from two different speakers. Hence it
may happen that a message issued by some speaker z will be correctly received by a reader,
while other readers that are reachable from z detect an error since they are reachable from
other speakers too.

Hence from an architectural point of view, the reference to the channel devices used in the
DRN and NMRN as “buses” may be a bit stretched, and the assumption of constant propagation
delay is not as justified in current technologies (although the development of very fast active
switches is currently being investigated by various industries). Nevertheless, since the present
paper focuses on a theoretical comparison of the computational power of the various models, we
shall opt for uniformity of framework and terminology, by maintaining both the basic constant-
delay assumption and the use of the term “buses” to describe the communication mechanism
in all four models under discussion. Further research may be necessary to adjust our results to
a more accurate model, taking these differences into account by modifying the assumptions on
the propagation delay.

2.3 Complexity Classes

Let X denote a symbol-set and let 3" = U;>; ¢ A problem Ais a mapping A : ¥* — ¥*. Using
standard reductions, the discussion can be restricted to Boolean problems A : ¥* — {0, 1}.
An input-instance [ for A is said to be solved by presenting A(/). An RN family, R = {Rn}n>1,
of reconfiguring networks is a set containing a network construction Ry for each natural N.

We say that the family R solves a problem A if for every N, Ry solves all size N inputs for A,
{l:|I|=N}.

We consider two measures for computation complexity in the RN model.

Time: T(R) is the worst-case number of rounds it takes for the computation of the reconfig-
uring network R to terminate,



Size: S(R) is the number of switches in the reconfiguring network R.

A reconfiguring network family R = { Ry} has time complexity f(N) if for every N > 1, a
computation of Ry terminates within T(Ry) = O(f(N)) rounds for all valid input instances
of length N. The family R has size complexity g(n) if for every N > 1, Ry consists of
S(Ry) = O(g(N)) switches.

The description D(R) of a reconfigurable network R, is a list of S = S(R) triplets of the
form (x,I'”,Rules”), one for each node = of the network. In this description, « is the node’s
id, I'" is the list of immediate neighbors of  in the underlying topology R, and Rules” is a set
of configuration and output rules for = (depending on the inputs, the current round and the
data read from adjacent buses in previous rounds). Since we focus on constant-degree networks
and constant-time programs, we may assume that a triplet consists of O(log .S) bits. The total
network description is thus of size O(S log 5) bits.

The class of reconfigurable networks RN (f(N), g(N)) in the RN model, is the set of families
‘R with the following properties:

(a) R is of time complexity f(/N) and size complexity g(N), and

(b) R is uniformly generated in SPACFE(log(g(N))), i.e. there exists a Turing machine (TM),
M, that given N produces the description of Ry using O(log(g(NV))) cells of its working
tape.

Similar classes are defined analogously for the LRN, DRN and NM RN models. Corre-
spondingly, these are denoted LRN (f(N),g(N)), DRN (f(N),g(N)) and NMRN (f(N),g(N)).

We define the set of problems RN(f(N),g(N)) to include any problem A for which there
exists a network family R € RN (f(N),g(N)) solving it. The problem sets LRN(f(N),g(N)),
DRN(f(N),g(N)) and NMRN(f(N),g(N)) are defined analogously.

Some natural relationships exist among the above classes. For example, since a switch in
the RN model can simulate a switch in the LRN model, we immediately have:

Lemma 2.1 For any two functions f(N) and g(N), LRN(f(N),g(N)) C RN(f(N),g9(N)).
|

We also need a notion of uniformity for the time/size functions. A function f(NV) is said to
be constructible if it is computable by a TM M, having N as its input and using O(f(N)) cells
of its working tape.

3 PRAM Algorithms and RN’s

In this section we consider the question of how powerful polynomial size RN’s are, compared
to parallel models of computation with a shared memory unit. In particular we are interested

in the common PRAM model (cf. [KR90]).



Theorem 3.1 A T'-step computation of an N-switch RN with F edges can be simulated by an
O(E)-processor CRCW PRAM in time O(T log N).

Proof: Let R be an N-switch, F-edge RN. A CRCW PRAM algorithm for simulating R is
constructed as follows. The PRAM gets as its input both the adjacency matrix of the RN
and the input to the RN. Each round of the RN is simulated by the PRAM in four phases as
described below.

(1) The first phase incorporates only N of the PRAM processors, each simulating a single
switch of K. This phase is dedicated to simulating the internal computation taken by
the RN switches, in which the bus splitting, speaking, reading and the (virtual) local
configuration are decided.

Once a switch decides on a certain local configuration, its edges are grouped into connected
sets. Thus the global configuration of R can be represented by an augmented graph R
by splitting each switch s of R into several logical copies, C(s) = {s1,...,$}, one for
each connected component of its edges. Fach original RN switch whose degree in R is d,
is represented in R by at most d nodes. The total number of nodes in this augmented
graph R is thus at most 2, and each of these nodes has degree at most d. The crucial
observation here is that the connected components of R represent the buses in R.

(2) Each of the nodes of R is emulated by a CRCW processor. In the second phase, the local
configuration of a switch s in R is read by each processor emulating a node s € C(s)
in R, where s’ connects several of the edges of s. The processor emulating s’ needs also
the 1d of the processors emulating neighboring nodes. This information is disseminated
relatively fast; if d is the highest degree of any switch in R, then the second phase requires
O(dlog d) reading steps, namely, constant time.

(3) The processors of the CRCW PRAM, standing for nodes of the global configuration graph
R, construct a balanced spanning tree for each bus (connected component) using the
O(log N )-time connectivity algorithm of [SV82].

(4) The speakers of each bus use the tree constructed at phase (3) to broadcast messages (and
detect errors). This can be achieved in O(log N) time via standard doubling techniques.

Phases (1) and (2) require constant time, and phases (3) and (4) require O(log N) time
each. Hence each step of the RN is simulated by the PRAM in O(log V) time, and the theorem
follows. 1

A connection analogous to Thm. 3.1 was established in [BPRS91] between the LRN and
EREW PRAM models.

Theorem 3.2 [BPRS91] A T-step computation of an N-switch LRN with F edges can be
simulated by an O(F)-processor EREW PRAM in time O(T'log N). 1

JFrom the two theorems we get



Corollary 3.3 A problem of input size N that is computable by a T(N)-step, polynomial-size
LRN (respectively, RN), has an O(T(N)log N)-step EREW (resp., CRCW) PRAM program.
In particular, a problem having O(log™ N)-step, polynomial-size LRN’s (resp., RN’s) with uni-
formly generated underlying topologies is in (uniform) EREW S+ (resp., CROWE+D) |

In other words, the corollary implies that problems that are “inherently sequential”, i.e.,
that are “non parallelizable” using traditional parallel models, maintain this property under
the RN and the LRN models. Theorem 5.28 implies that this meta-claim holds for the DRN
model, too. In contrast, the results of Section 6 imply that this is not the case for the NMRN
model.

As already mentioned, many problems requiring Q(log’igN) steps on a CRCW PRAM (or
Qlog N) steps on an EREW PRAM) with polynomial number of processors, can be computed
by a constant-time polynomial-size RN. The following theorem shows that this is not the case

for the opposite direction.

Theorem 3.4 [BPRS91, WC90b] A (priority) CRCW PRAM with P(N) processors, M(N)
memory cells and T(N) time can be simulated by a O(T(N))-step, P(N)x M(N) mesh operating
in the LEN model. |

4 Universality of the Mesh

In this section we show that the two-dimensional mesh is computation universal and achieves
high speedup. We say that a problem A is in the class Mesh LRN(t(N),r(N),c¢(N)) if for
each N, the r(N) x ¢(NN) mesh solves all size N inputs to A in ¢(/V) steps. Similar definitions
apply for the RN, DRN and NMRN models. Let us first review several known results for the
LRN model.

We follow [KR90] for the definitions of circuits and their depth. Given a family of (bounded
fan-in) circuits C = {C;}, © > 1, we say that C' is in CK'T(D(N)) if the depth of Cx is O(D(N))
for each N. The size of a circuit is its number of edges. A circuit C of size |C| is uniform if its
description can be generated by a Turing machine using O(log |C|) workspace (see Sec. 5.1). A
problem A is in CKT(D(N)) if there is a family of uniform circuits {Cn}n>1 in CKT(D(N)),
that solves A.

Lemma 4.1 [BPRS91] CKT(d) C LRN(O(1),20%99) for every ¢ >0. 1
In particular, putting d(N) = O(log N) or d(N) = O(log> N) we have

Theorem 4.2 [BPRS91]

NC?
NC?

LRN(O(1), poly(N))
LRN(O(1), NOUs ™M)y

M 1N



In fact, the result is stronger; there exist uniform “universal” constructions computing all func-
tions of the same circuit complexity. The following lemma, the construction and the reconfig-
uring program that follows, all use the constructions of Barrington [Bar86] and the subsequent
[CL89, Cle90]. It is important to note that the results are constructive and uniformly generated.

Lemma 4.3 [BPRS91] For every fived €, ¢ > 0 there exists a (universal) LRN network of size
O(N+)) computing in constant time all functions that are computable by circuils of depth
clog N. 1

The above results can be used to prove the universality of the mesh, as follows. Consider a
problem A for which there are circuits of depth at most clog N solving all N-sized inputs. We
now describe a simulation method that constructs, for a given N, an N x N°('*9) mesh solving
all N-sized inputs in constant time. We refer to this mesh as the universal mesh for A and N.

The Universal Mesh

The construction of the rectangular N x poly(N) mesh is similar to the universal LRN con-
struction of [BPRS91, Sect. 3.4] (also cf. [Sch91]), so we omit most details of the construction,
and focus on the differences. The K-to-K permutation networks that are used in [BPRS91]
are replaced by K x K meshes. Note that the LRN mesh supports any permutation of the
leftmost column switches to the rightmost column switches in a single round (given that the
local configurations are computed in advance).

For the problem A and a given N, the universal mesh is composed of an initializing network

and a row of NT9¢ meshes of size K x K. The row of meshes is easily embedded in a rectangle
of size K x KN+,

The initializing network carries the switching information necessary to determine the per-
mutations to be taken by the K x K meshes. This information consists of both the bits that
are determined by the emulated circuit and the N bits composing the input instance to the
problem. These (binary) inputs are given at the leftmost column of the mesh, so that the ith
input bit is given at switch (¢,0). The bulk of the input, namely the circuit data, determine the
choice of two specific permutations for each K" X K mesh. We assume that these permutations
are computed and distributed in advance. In other words, we assume that it is known which
problem is to be solved, and each switch has two local configurations, which are written in it
when the mesh is created.

The computation proceeds by an initialization phase and a single computation step, in which
a signal is sent from the source to exactly one of the sinks of the network. In the initialization
phase, the N input bits are used in each K x K mesh for choosing one of the two permutations.
Note that by the construction of the universal LRN (see [BPRS91, Sch91]), a single mesh uses
only a single input bit in order to determine which of the two permutations is appropriate.
There may be, however, many meshes using the same input bits. Hence the initializing network
is constructed of N buses that are wired along the row of meshes. These carry the input bits
and are read at the appropriate columns.

We have the following result.



Lemma 4.4 Fvery problem for which there are circuits of depth at most clog N solving all

N-sized inputs, is computable in constant time by a universal N X N igwm) mesh.,

Proof: The total width of the construction described above is N. The K rows of the computing
network are also used for the initialization step. The construction length is K N(*9¢ Note
that we assume K < N. Indeed, minimizing the number of switches involved by using the

relation given in [BPRS91, Theorem 4.3], we find that K = O(2V 16N} and ¢ = ,/2/(clog N)
are the optimal choices. Since the size of the input necessitates a rectangle of width at least N,
it is possible to reduce € further by choosing K = N and € =2/(log N —2). 1

As an immediate corollary we get

Theorem 4.5 NC!' C Mesh LRN(O(1), N, poly(N)). 1

Next, let us discuss scaling techniques, enabling the use of a fixed-size mesh for solving
increasingly larger problems. Suppose that we would like to compute some function having a
circuit of depth O(clog N) on a given LRN mesh M whose dimensions are fixed (and are not
a function of N). Let L; x Ly be the dimensions of M. The N x K N(+oe rectangle used in
Theorem 4.5 may be embedded on M, e.g., in a snake-like form. If the rectangle fits into M in
its entirety, then we are done. As N gets larger, however, computation can not be completed
in a single sweep. Rather, it is executed in supersteps. Each superstep involves the embedding
of part of the rectangle on M, sending the inputs to the embedded columns and computing by
sending the signal along the embedded part of the rectangle. The signal is transmitted from a
switch at the first (embedded) column. The switch detecting it on the last (embedded) column
is recorded and is used for transmission at the next superstep.

There are several cases to consider while setting the parameters involved in the simulation.
If Ly > N and Ly > 2N then the embedding and simulation is as described above. We need
Ly > N for the width of the rectangle and we need L, > 2N for the “curves” of the embedded
rectangle.

Corollary 4.6 If L1 > N and Ly > 2N, then a problem having a O(clog N) depth circuit is
computable by the Ly x Ly LRN mesh in O(N(1+2/(1°gN_2))C+1/(L1(Lg —2N))) steps. 1

The requirements Ly > 2N and L; > N may be eased considerably, by choosing K < N.
Then, we need Ly > 2K and L; > K. The price for this modification is in the original
rectangle construction becoming longer, so that the computation takes more steps. Also, since
there are less than N rows in the embedded rectangle, inputs are transmitted in N/L; steps.
Input ¢ is read at step j + 1 by all the switches of row p of M, where ¢ = p (mod L;). This
input procedure is executed only once at the beginning of the computation.

Observe that in the above setting there may be up to L;/K rectangle columns embedded
on the same column of M. These may be seeking for different input bits. Since K consecutive
columns seek for the same input bit, if L;/K < NK/L; then there is enough time for all
embedded columns to get their inputs during the input procedure. If, on the other hand,
Li/K > NK/L; then there is a need to either spend more time on the input procedure or on
the computation part.

10



Corollary 4.7 For all K > 16, if L1 > K, Ly > 2K and L3/K* < N, then a problem that
is computable by a circuit of depth O(clog N) can be computed by the Ly x Ly LRN mesh in
O(N/Ly + KN(+2/eeK=2)e /([ ([, — 2K))) steps. |

Using the construction of Cai and Lipton [CL89], this bound can be improved further for the
case K > 5. The computation takes O(N/Ly + N'3¢/(L{(Ly — 2K))) steps on the L x L
LRN mesh.

We now turn to showing that in the RN model, any general network R can be simulated by
a mesh M whose size is approximately the square of that of R’s size.

Lemma 4.8 RN(O(1),S(N)) = Mesh_RN(O(1),O0(S(N)),O(S(N))).
Proof: The non-trivial direction is to show that
RN(T,S(N)) € Mesh_RN(O(T),O(S(N)),O(S(N))) .

Let R be a network in the RN model, having S = S(N) switches. Let F denote the set of edges
of R, E = {e1,e2,---,en}. Since R is of constant degree, h = O(S). Consider the reconfigurable
mesh M of size h x h. M simulates a single step of R with the following algorithm.

Basically, the 7’th column and the 2’th row provide M with the communication channel
supported in R by the edge ¢;. Their intersection with the other columns and rows is connected
if the corresponding edges are connected to e; at the simulated step. Suppose that the columns
and rows of M are connected in this way. Then by induction on the distance of ¢; and e;,
it can be shown that the switches of row and column j read a message issued by a switch of
row/column ¢ if and only if e; and e; belong to the same connected component (in R, during
the simulated step).

We denote by sf the k’th switch of R, and by sM the (7, 7)'th switch of the mesh M.

i\
Algorithm UNIFORM_RN:

The algorithm is composed of two parts per each emulated step, an initialization part and an
emulation part. The initialization part involves several steps, while the emulation part involves
a single emulation step. During the steps of the initialization (except for the emulation of the
first step) the configurations connect each row in a linear bus, while disconnecting “vertical”
connections. Information is transmitted by several switches of the row and gathered by all
others.

Initialization part: We describe in detail the initialization part of step ¢, for some t > 1.
Suppose that e; and e; are connected to the same switch of . Then, at some step of the
initialization part, 3% transmits on row ¢ any message that it “read” on column j during the
emulation part of the emulated step t —1. We note that the order of transmission on the ¢’th row
during the initialization part may be determined in advance when the network is constructed,
or simply by the natural order of id’s of edges incident to e; in R. Also, since R has constant
degree, the number of transmitting switches during this part (for any row) is bounded by O(1).
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Emulation part: Let ¢; = (s, sf)). As a result of the initialization part, each switch of row

i of M stores all the data that is stored by s and s, after the (¢ — 1)’st step. The switch 3%
emulates the configuration decision taken by the switch connecting (or disconnecting) e; and
e;. If the configuration connects e¢; and e; in R during the #’th step, then 3%
edges during the emulation step. Else it connects its row edges to each other, and likewise for

connects all its

its column edges.

For a switch sk, let e; be an edge that is attached to it in R. Suppose ¢; is connected by
sf with several other edges at the emulated step ¢. Suppose also that in that set of connected
edges, €; is the edge having the lowest-id. Using the information read during the initialization
part, 3% also decides to transmit a message m at the emulation step, depending on whether s£

transmits m at the emulated step on the set of edges to which e; is connected.

It is left to show how the initialization part of the emulation of the first step is carried out.
The main issue involves making the inputs that appear in R at some switch s known to all
the switches in the rows of M corresponding to all the edges attached to sf. These inputs
appear at 3% in M, where ¢; is an arbitrary edge incident to sf. During the first step (of

the initialization part of the emulation of the first emulated step) 3% transmits the inputs on

column [ of M, where it is read by all the switches. Suppose e, = (sfi,s%) and suppose that
the inputs that appear in s% and s& in R, appear in 3%11, 3{\2{12, ...in M. Then after the first

step the inputs that are required at row m are known to S%ll, 8%12, .... Next these switches
transmit the inputs on row m (in a pre-determined order) so that all the switches of that row
read them. |

5 Relations to Turing Machines

In this section we show some basic relations between classes of problems computable in constant
time by polynomial-size RN’s and classes of problems solvable by space bounded TM’s.

5.1 Notation and Basic Definitions

Let us first give some notation and review the definitions for the components of the TM M. The
reader is referred to [HU79] for an introduction to related terminology that is not explained here
(although, for the sake of simplicity, we somewhat deviate from the definitions given there).

A TM has a finite control consisting of a set () of states, |Q| constant, an input tape and a
work tape, each tape with its corresponding read/write head. The tape symbols are taken from
an alphabet 3 = {0y, 02, -, 0y}, for constant |X|. A single step of the TM consists of any or
all of the following operations: change the state of the finite control, read the symbols pointed
to by either the input or the work heads, print a new symbol at the location pointed to by the
work head, and move the tape heads, independently, one cell left (L) or right (R) or keep them
stationary (9).

The TM is formally denoted by a tuple (@), ¥, 8, b, qo, ¢a, ¢-), where b € ¥ is the blank symbol,
go € () is the initial state, q,,q. € @) are the final states in which the machine terminates its
computation when the input string is accepted or rejected, respectively, and § : @ x ¥?
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Q x (X x {L,R,S5})* is the next-move function.

A descriptor of the TM is a four-tuple d = (¢, W,i,w), where ¢ € @ is the finite-control
state, W is the contents of the (entire) work tape, and ¢ (respectively, w) is the tape location to
which the input (resp., work) head is pointing. Let M be a TM with an input of size N and a
work tape of size f(N). The number of different valid descriptors for M is bounded (for some
constant ¢ > 1) by

Q- N - f(N) - [S[/) = O(N - /) (1)

Suppose a TM M assumes a descriptor d at the beginning of a certain step ¢ of some
computation. Let § denote the specialization of the next-move function, 4, obtained by fixing
the contents of the work tape and the finite-control state according to d. There are at most
|X| descriptors that are possible values of S, i.e., descriptors of the beginning of the next step,
depending on the contents of the input tape in the location pointed to by the input head.
Similarly, there were at most 9-|Q|-|%| valid descriptors for M at the beginning of the previous
step, as either of the heads may have moved, and a single location of the work tape and the
finite-control state may have changed.

5.2 Space Bounded TM’s and Size Bounded RN’s

The main relation between RN’s and TM’s is expressed in the following lemma, which is proved
below. Here, L is the set of problems solvable by a deterministic TM having O(log N)) workspace.

Lemma 5.1 There exists a constant ¢ > 0 such that for every constructible f(N),
SPACE(f(N)) € RN(O(1), cmext/(N)logN)y
Putting f(N) = O(log N), Lemma 5.1 implies

Theorem 5.2 L C RN(O(1),poly(N)). 1

In particular, all logspace reductions are carried in constant time in the RN model using a
polynomial number of switches. This will be useful later when we consider the class PT'ITME
and its relation to the NMRN model. We can further generalize Lemma 5.1 and drop the
constructibility restriction for TM’s with high space requirements.

Lemma 5.3 There exists a constant ¢ > 0 such that for every f(N) = Q(N)
SPACE(f(N)) € RN(O(1),c¢f™M)y .

Proof: The value f(N) for a certain problem A may be computed by running the corresponding
TM T4 over all inputs of length N, counting the size of the work space and evaluating the
maximum. This procedure takes only O(N + log f(N)) additional work space, thus f(N) is
constructible by definition, hence by Lemma 5.1, A € RN(O(1),¢/™N)). 1

Lemma 5.3 implies a universality result for the RN model. The same result was previously
shown for the Bus Automata model [Rot76].
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Corollary 5.4 For every decidable problem A there exists a family of RN’s solving it in con-
stant time.

Proof: The maximum (over all inputs of size N) work space f(NN) that is used by the TM T4
for solving A is finite (though not necessarily constructible). Now use Lemmas 5.1 and 5.3. 1

Note that circuits are also a universal model, hence the results from [BPRS91] that are
reviewed at Section 4 imply a stronger version of Corollary 5.4, namely a universality result for

the LRN model.

Corollary 5.5 For every decidable problem A there exists a family of LRN’s solving it in
constant time. |

The remainder of this subsection is dedicated to proving Lemma 5.1. Let us first restate
the problem.

We are given a TM, M = (Q),%,4,b,qo, ¢, ¢a), solving a problem A while using a work
space of size O(f(N)), for a constructible f(N). Let us denote by My the TM that, given
N, produces f(N) using O(f(N)) space.

We need to show the existence of a uniformly generated family of networks Ry in the RN
model, where for every N > 1, Ry solves A for all input instances of size N, and Ry is
of size O(c!M) for some constant c.

Proof of Lemma 5.1:

The proof is constructive. That is, we show a TM U, that receives N as its input, computes
f(N) by emulating My, and generates the description D(Ry) of the network Ry as its output
while using O(f(N)) space.

The program of Ry consists of two steps: initialization and computation. Let us first
describe only the part of the network that corresponds to the computation step, and remark
on the modifications necessary for the first (initialization) step at the end.

For each descriptor d of the TM M, the network Ry contains a corresponding switch,
denoted s(d). By Eq. (1), the number of different descriptors (hence the size of Ry) is bounded
by O(Nc¢/M) for some constant c.

An edge connecting two switches s(d), s(d’), represents an allowable transition of M between
the corresponding two descriptors d,d’. In the computation step, the switch settings are given
by §, the next-move function of M. The function § is encoded for each switch s(d) in its set
Rules? of configuration rules. Thus, Rules? specifies the next descriptor 7{ to be assumed by
M depending on the input symbol o; € ¥ found on the input tape at the location of the input
head while M assumes d.

The description D( Ry ) output by U consists of a list of triplets (d, 'Y, Rules?), one for each
descriptor d of M. The neighborhood relation ' = (T'¢ , T'¢ ) is determined by § as follows.

out? — in

The set I'Y, contains all the descriptors from which d may result in a single step of M. The list
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rd = {yd - 77|dz|} contains the descriptors which may follow d at the next step, depending

on the input symbol found at the location of the input tape when M assumes d. Note that
both lists contain a constant number of elements, hence Ry is bounded-degree.

We may view the edges of Ry as though they were directed, since if y is a neighbor of x
and appears in I'? ., then x is not in I'Y ;. In this case, we say that the edge (z,y) is virtually

out?
directed towards y and virtually directed out of . Clearly, T4 N T¢ = (), since otherwise an

out
“infinite loop” may occur in some computation, contradicting the assumption that M always

stops after a finite number of moves.

In order for U to generate the description D(Ry), it keeps a counter for the descriptors.
For each descriptor d, U generates the next descriptors v, - - ,’y|d2|, where ¢ is generated by
emulating M (and its next-state function, §), starting from the machine configuration given by
d, and the input symbol ¢; € 3. This also gives the encoding for Rules? at the computation step,
i.e., the configuration rules for the corresponding switch at that step. The set I'Y is generated
for d in a gradual manner, by adding a new entry d’ whenever discovering a descriptor d' from
which d may have resulted.

The total space used by U is O(f(N)) for computing f(N) by emulating My, and O(log({(M)))
for handling the descriptor counter, where (M) is the number of different descriptors assumed

by M. Thus, by Eq. (1), the total work space used by U is bounded by O(f(N) + log N).

Finally, the description of Ry includes also a part concerning the initialization step. In
particular, for every descriptor d, the neighborhood relation I'? contains also a set of edges
I, consisting of edges to two descriptors PREV (d) and SUCC(d), the “previous” and “next”
triplets in the description of the RN. That is, we assume that the triplets are generated in
batches having the same input head position. Thus the previous and the next triplets always
have the same input head location (except for “boundary cases” such as <qo,g,i, 1), where b
denotes the work tape full of blanks). The set Rules contains also the configuration rules for
the initialization step, to be described directly later.

Suppose Ry is constructed from a description generated by U as described above. It remains
to show how it computes A, given an input [ of size N.

Algorithm TM_SIMULATION:

Initialization Step: At this step, each switch s(d) connects its I¢ edges. Consequently, a
linear bus is formed, connecting all descriptors with the same input head location. The network
Ry is configured into N connected components, each consisting of all switches corresponding to
descriptors having some fixed location of the input head. The j’th input appears at the switch
s(d(;)) representing the descriptor d(;y = (qo, g,j, 1). The switch s(d(;y) transmits the j’th input
symbol to the rest of the switches on the linear bus to which it is connected.

Computation Step: Suppose a switch s(d) received an input symbol o; € ¥ at the initializa-
tion step. Then, during the computation step, s(d) connects all its neighbors from I'Y together
with ’y;l c I'? .. All other neighbors remain disconnected. After the configuration is set, the

out"*
switch s(dp) corresponding to the descriptor dy = (qo, g, 1,1) transmits a signal on the bus it is
connected to.
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Claim 5.6 The signal transmitted by s(dy) at the computation step is detected by a single switch
corresponding to a final state.

Proof: It is rather straightforward to show that the signal is detected by the switch corre-
sponding to the final state which is reached by M on the given input. Informally, a sequence
of valid moves of M induces a connected path in Ry.

It remains to be shown that the signal can not be detected by any other “final switch”.
Consider sy, a switch corresponding to a final state ¢; which is not the one reached by M
on the given input. Assume by contradiction that s; detects the signal. Thus during the
computation step, there is a path F in Ry (having no loops) connecting s(dy) to s;. Going
along F from s(dy) to sy, let s; be the last switch corresponding to a descriptor which was
assumed by M during its computation on the given input.

The state ¢; is final, so the edge in I connecting to sy must be virtually directed towards s;.
Since there is at most one edge that is both virtually directed out of a switch and is connected
at the computation step, then by induction all edges along F are “virtually directed from s;
towards s;”. However this implies that there are two edges virtually directed out of s; (one
along F and the other along the computation path taken by M), which are connected during
the computation step, a contradiction. |

Having the claim we conclude that at the end of the second step the result is known to both
switches corresponding to final states, and may further be broadcast at successive steps. This
concludes the proof of Lemma 5.1. |

5.3 Logspace TM’s and Size Bounded LRN'’s

Let us next relate linear RN’s to space bounded TM’s. The main result of this section is the
equivalence of L and LRN(O(1), poly(N)). This is proved in the following two theorems.

Theorem 5.7 LEN(O(1), poly(N)) C L.

Proof: Let A be a problem solvable by the family R4 = {Rnx}n>1 in the LRN model in
d = O(1) steps. The size of the network Ry, solving all inputs of length N to A, is bounded
by some polynomial S(N). Let M9 be a TM that, given N, outputs a description of Ry while
using at most log S(N) = O(log N') work space. A minor modification of M§ yields a logspace
machine Mg that, when given N and ¢, 1 < ¢ < S(N), outputs the description of the ¢’th switch
in Ry including its local configuration during the first computation step.

In general, let Mil denote a logspace machine which, given some input [ of size IV, outputs
the configuration description taken by Ry at the (j+1)’st step on the input /. The description
includes the local configuration taken by every switch at the (j 4+ 1)’st step and the contents
of the switch buffers at the beginning of that step. Note that given M}, it is easy to construct
a logspace machine Z\Yﬁ that when given N, [ and ¢ (for some 1 < i < S(N)), outputs the
configuration of the ¢’th switch of Ry at the (j+1)’st step of Ry’s computation on the input I.
Finally, observe that presenting a logspace machine M4 completes the proof, as the description
includes also the contents of “output buffers”.
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Consider some configuration H of a network R in the LRN model. Given as input the
configuration description of H together with the 1d’s of two nodes s and ¢ in R, we construct a
logspace machine, M, .., solving the question whether s is connected to ¢ in H. The machine
M, cqcr, keeps several pointers to the input. For every exit from s, the machine visits node by
node the whole linear bus determined in H by this exit. Each node x reached by M, .. is
compared to ¢, and the next node of the bus is determined by the local configuration data of x.

Having defined Mil and Mix fory =1,2,---,dand M,.4ch, the theorem is proved by induction
on d, the number of steps of Ry. We construct a logspace machine M¢ which, given N and
any input instance I of size N, solves A by emulating Ry on I. The machine M4 outputs the
description of the configuration and the contents of buffers of Ry at the beginning of step d+1
(if the computation terminates at step d then only the contents of the buffers is important).

Clearly we have MY. Suppose that we have constructed M4~ By the above discussion, we
also have ]\7;11_1. The machine M;{ uses both logspace machines M,..,.;, and Z\Aﬂl‘_l in order to
determine for each switch s its local configuration at step d. This is accomplished by iterating
over all switches of Ry. For each switch ¢ we iterate over all other switches s, using M, .. to
determine if s and ¢ are connected. If s transmits a message during step d and is connected
to t then the message is written into the buffers of ¢t. M, 4., uses Mj_l in order to obtain the
local configuration of switches at step d — 1 of the emulated network Ry.

Note that the construction of M§ uses Z\Aﬂl‘_l rather than M49~". Thus the computation uses
only O(log N) cells of the work tape for each level of the (depth d) recursion. 1

Theorem 5.8 L C LRN(O(1), poly(N)).
The theorem will be proved by using the following lemmata.

Definition 5.9 CYCLFE is the following decision problem. The input is a permutation on N
vertices, i.e. a directed graph of out-degree 1 (given by its adjacency matriz), with two special
vertices a and b. The answer is 17 if a and b are on the same cycle.

Lemma 5.10 [CM87] CYCLE is complete for L with respect to NC' reductions. 1

Lemma 5.11 CYCLE € Mesh_.LRN(O(1), N, N).

Proof: Let the (¢, 7)’th switch get the (¢,7)’th bit in the input adjacency matrix. Thus there
is precisely one set bit in the input that is associated with the j’th column of the mesh (for
all 1 < 7 < N), indicating that j is moved to k in the input permutation. During the first
step, this information (i.e., k) is transmitted by (k,7) to all the switches of the j’th column.
During the second step, this information is transmitted by (j,j) to all the switches of the j’th
row. During the third step, j is transmitted by (j, k) to all the switches of the k’th column.
Intuitively, after the third step each switch at the j’th column knows both the element to which
7 is moved and the element that is moved to 7 in the input permutation.

Let a and b be given as input to node (1,1). This node transmits them to all the switches
(0,%) on the top row of the mesh in the fourth and the fifth steps. During the sixth step this
information is also transmitted on the a’th and the 6’th columns.
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Assume that in the input permutation, j is moved to k& and [ is moved to j. Consider the
switches of the j’th column, all of which know about k& and [. During the seventh step all
the switches of the j’th column configure (U — D, L — R), except for ({,7) and (j,7), whose
configurations, Conf(l,j) and Conf(j,j), are defined as follows.

Conf(l,j) =(L—D)and Conf(j,7)=(U—L), ifl<jandk <j,
Conf(l,j) = (L D) and Conf(y,5) = (U —R), ifl<jand k> j,
Conf(l,j)=(R—=U) and Conf(j,j) = (D —R), ifl>jand k < j,
Conf(l,j)=(R—=U) and Conf(j,j) = (D = L), ifl>jand k> j.

Claim 5.12 As a resull of the above setting, each cycle in the input permutation induces a
cycle in the mesh.

Proof: The node (, ) directs a signal coming on the I’th row to (j, 7). In turn, (j,j) forwards
this signal to (j, k), where it is forwarded to (k,k), and so on, until the signal reaches (I,1)
which closes the cycle by directing it back to ({,7). |}

During the seventh step, switches (a,a) and (b,b) transmit some (arbitrary) signal on the
bus in which their two connected edges take part. They also listen on that bus. An error state
occurs iff @ and b are in the same cycle of mesh edges, indicating a ’1” answer to the CYCLFE
decision problem.

The answer can be broadcast during the eighth step to all other switches of the mesh. This
completes the proof of Lemma 5.11. |

Using Lemma 5.11 we can now complete the proof of Theorem 5.8.

Proof of Theorem 5.8: Lemma 5.11 implies that CYCLE € LRN(O(1), N*). To complete
the proof of the theorem, we only need to show that the (NC") reduction from any logspace
problem can also be done in the LRN model with a polynomial size network and in constant
time. This follows from the general fact that LRN’s are closed under composition. Specifically,
let g : {0,1}" s {0,1} be a Boolean function computed by a logspace Turing machine. By
Lemma 5.10 there is a polynomial p(N) = m and functions yi, ..., Y, each on 1, .., xy, so that
g(x1,...,an) = CYCLE(y1, ..., ym). If we have the Boolean values y, ...,y at the appropriate
switches of a mesh of the appropriate size then by Lemma 5.11 we are done.

Let us assume w.l.o.g. that the reduction produces the adjacency matrix of the graph which
is the input to CYCLE. Then the size of the mesh computing CYCLFE, call it M, is about
Vm x y/m. Each value y; is an NC"* function and thus, by Lemma 4.4, can be computed by a
universal polynomial size mesh in constant time. Let M, denote the universal mesh computing
y;, and let s; denote the switch in M in which y; is expected as input when M computes y;.
All that remains to be done is to connect s; to M; and let M; compute y; in an initialization
phase. It is left to move the inputs to all the meshes M;. By Lemma 4.4, all of these meshes
are in the form of rectangles of width N, where the ¢th row is expecting the ith input bit. Thus
it is straightforward to connect all of them for distributing the input.

Finally, note that the description of the whole construction is uniformly generated by a
logspace Turing machine. The only subtlety here is that when writing the description of the
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universal mesh M; that is to compute y;, the set Rules of configuration rules corresponds
to the function y; = fi(xy,...,2n). More specifically, each switch should have two possible
configurations, out of which it chooses (in the computation step, see Lemma 4.4) according to
one of the input bits. Fortunately, the logspace Turing machine which writes the description
of M, can determine these configurations when given the description of the circuit computing
y; [BPRS91, Cle90, CL89]. The circuit itself is uniformly generated by a logspace machine (see
Sec. 4). 1

5.4 Symmetric TM’s and RN’s

A concept intermediate between determinism and nondeterminism is symmetry introduced by
Lewis and Papadimitriou. A symmetric Turing machine is a nondeterministic one in which
each transition may be executed in both directions: forwards and backwards. For the technical
details we refer to [LP82] The corresponding logspace complexity class is denoted by SL. The
main result of this section will be that RN (O(1),poly(N)) conincides with SLH, the Symmetric
Logspace Oracle Hierarchy which we introduce below.

The reachability problem for directed graphs is complete for NL ([Sav70]). If we restrict
this problem to undirected graphs, we get a problem, complete for symmetric logspace.

Definition 5.13 s-t CONNECTIVITY (or UGAP), is the following decision problem. The
input is an undirected graph G on N wvertices (given by its adjacency matriz), with two special
vertices s and t. The answer is '17if s and t are in the same connected component in G.

Lemma 5.14 ([LP82]) The s-t CONNECTIVITY problem is complete for SLwith respect to
NC*-reductions.

There are two standard mechanisms to construct hierachies over complexity classes: bounded
alternation and Turing reducibilities, i.e.: the use of oracle machines. In the case of nondeter-
ministic space classes the resulting hierarchies both collapse on the first level and coincide with
the original nondeterministic class (see [Imm88, Sze88]). For symmetric space the hierarchy
based on alternation was introduced in [Rei84]. In the following we shortly introduce an oracle
based analogue and then prove that it coincide with RN (O(1),poly(N)).

There are two main possibilities to relativize space bounded classes, i.e.: to equippe space
bounded machines with an oracle mechanism: In LL relativization, the approach of Ladner and
Lynch ([LL76]), the machine may use all of its power to generate oracle queries, while in RST
relativization, the approach of Ruzzo, Simon, and Tompa, the queries have to be generated
deterministically ([RST84]). The later is equivalent to a model, where the oracle machine does
not generate any query, but simply gives its current instantaneous description to the oracle,
which in this model also has access to the input word of the base machine. That means that an
oracle set B is now a subset of {(d, ) € X*x X*| /d/ =log(/I/) }. In this form we can carry
over RST relativization to symmetric space: certain states of the finite control of the symmetric
base machine are designated as query states. With each query state ¢ there are associated two
answer states gy and g_. Query descriptors are those containig a query state. Given an oracle
set B as above, an input word /, and a query descriptor d = (¢, W, i, w), where ¢ is a query
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state, we regard d to be symmetrically connected with dy := (¢, W,i,w) if (d,I) € B, and with
d_ = (q-,W,i,w) in case of (d,I) ¢ B. For a symmetric logspace bounded oracle machine M
and an oracle set B we denote the set of all words accepted by M with oracle B by L(M, B).
As usual, the use of parentheses is reserved for the LI mechanism, while the use of the RST
relativization is indicated by using angles. Furhter on, let SL{®) be the set of all languages
accepted by symmetric logspace bounded oracle machines with oracle B, and for a class B set
SLE) be the union over B in B of all SL{#). Using ideas of the proof of Theorem 5.8 it is
possible to show the following analogue of the nondeterministic case, which we state without
proof:

Proposition 5.15 For each oracle set B we have

SI(B) — gI(LOG(B)) — g (L”)
We are now in the position to define the symmetric logspace oracle hierarchy:

Definition 5.16 a. OX31:= SIL and OZf_{jI = SL{Om") for nonnegative k.
b. OIYE:= {X* \ B ‘ BCX* Be OZfL} for nonnegative k.

c. SLH:=J, OSSL,

We mention in passing, that the whole symmetric logspace alternation hierarchy is contained
in L°" which is a subset of O¥57. This resembles exactly the situation in the nonderministic
case before the result of Immerman and Szelepcsenyi ([RST84, Imm88, Sze88]).

Based on this definition we can state the first half of the main result of this subsection:

Theorem 5.17 a. For each positive integer k we have RN (k,poly(N)) C LO%" and hence

b. RN (O(1),poly(N)) C SLH

Proof: The proof of part a. follows via induction over the running time k of the RN: For & =1
we have to show RN(1,poly(N)) C L°*. To simulate one step of an RN R = {Rn}ys, on
an input I of length N, a deterministic logspace base machine M, repeatedly simulating the
logspace machine U describing the circuit, can go through all pairs (s,?) of nodes of Ry and
by asking an oracle from SL, can find out whether s and ¢ are connected. In this way M can
detect the global state of Ry reached after one step and hence can decide whether [ is to be
accepted.

Now lets assume the statement to hold for RN’s of running time & and let R = {Rn}ys,
be an RN of running time & + 1 recognizing a language A C X*. By the induction hypothesis
we know that the outcome of Ry after k steps of computation is representable as an element of
Lo By the construction of this proof it will follow that this pertains to the whole global sit-
uation of Ry after k steps. Thus the set Configuration(k) of all local configurations and the con-

tents of the switch buffers, is an element of LO%", Now, let us consider the sets Neighbour(k):=
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{(z,y) | after k steps switch x is a direct neighbour of switch y } and Transneighbour(k):=
{(z,y) | after k steps switch x is a transitive neighbour of switch y }. Obviously, a determin-
istic logspace machine can recognize Neighbour(k) when it has access to the oracle set Configura-
tion(k) That is, we have Neighbour(k) € [CEenfiguration(k) " The transitive closure Transneighbour(k)
of the symmetric relation Neighbour(k) can now be recognized by a symmetric logspace machine
when given Neighbour(k) as an oracle. Using Proposition 5.15 we get Transneighbour(k) €
S (Neighbour(k)) C GrALeem et ) G (Con figuration(k)) C Ox%,. Now, similar to the case
kE =1, a logspace base machine can recognize Configuration(k + 1) if it has oracle access to
Configuration(k) and Transneighbour(k). But the set Configuration(k)U Transneighbour(k) is an
element of Ofol, since this class is closed under union. In total, we have Configuration(k 4+ 1) €

LO%#1 and hence RN (k + 1,poly(N)) C LO%4, ]

Remark: It is up to now not known whether SL is closed under complement. If this should
be the case the previous theorem could be strengthened to RN (O(1),poly(N)) C SL.

Nisan showed in [Nis92] that the probabilistic class RL is contained in SC?*:= DTISP(pol,
log”n). Here SC denotes Steven’s class (see e.g. [KR90]) of all problems computable by
polynomial time , polylog space bounded Turing machines. As consequences we get:

Corollary 5.18 RN (O(1),poly(N)) C SC?

Proof: It is sufficient to show that SL3¢" C SC?, i.e.: that SC? is closed under symmetric
logspace Turing reducibilities. But given a conditional instance A of UGAP, that is an adjacency
matrix of a symmetric relation where the entries are membership problems in SC?, we can
simulate Nisan’s algorithm on the UGAP instance; each time this algorithm tries to read from
the input matrix, we first solve the SC?-problem encountered in the corresponding entry of the
input. I

In a simular way, it is possible to show that the containment of SL in DSPACE(log'” n)
(see [NSW92]) yields:
Corollary 5.19 RN (O(1),poly(N)) C DSPACE(log"’n).

In the second half of this subsection we will prove the converse of Theorem 5.17.

Theorem 5.20 SLH C RN (O(1),poly(N))

The proof will be done by proving OX2% C RN (O(1),poly(N)) via induction over k. To show
the case k = 1, i.e.: SL C RN(O(1),poly(N)), we need the following lemma stating that s-
CONNECTIVITY can be decided on the mesh in a constant number of steps. This result has
been established before by Wang and Chen [WC90a]. However, the proof we give next may be
of independent interest, since it shows how to solve the problem on an N%-switch N x N mesh
(the original proof used an N*-switch N? x N* mesh, or an N®-switch non-mesh reconfigurable
network).

Lemma 5.21 s —t CONNECTIVITY € Mesh_RN(O(1), N, N).
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Proof: We prove the lemma by exhibiting a program for solving the s —¢ connectivity problem
on the mesh. Let the (7, j)th switch get as input the (7, 7)th bit in the adjacency matrix of the
input graph. During the first two steps, the identity of s and ¢ which is input, say, at switch
(0,0) is broadcast on the upper most row (0,x*). During the third step, all processors having a
'0” as their input bit (from the adjacency matrix) connect (U — D, L — R), and all those having
a ’'l” and all “diagonal” switches ((¢,7) for all 0 <¢ < n —1) connect (U — L — D — R). Then,
processors (0,s) and (0,¢) transmit some signal on the bus connected to their D port.

Claim 5.22 The connected components in the inputl graph relate in a one-to-one fashion to the
connected components of the global configuration that is assumed by the mesh during the third
step.

Proof: Consider the ¢th column of the mesh during the third step. This column connects to
precisely all rows j such that ¢ and j are neighbors in the input graph. A similar observation
is true for the ith row. By induction, the claim follows. |

Having Claim 5.22 we conclude that during the third step, (0, s) and (0,¢) read an error state
on the bus which is connected to their D port, iff they are connected in the input graph. This
information can be broadcast to all mesh switches during the fourth step. Thus the outlined
program computes s — ¢t connectivity, completing the proof of Lemma 5.21. |

The next corollary now follows from combining Lemma 5.14 with Lemma 5.21, or alterna-

tively the results of [WC90a).
Corollary 5.23 SL C RN(O(1), poly(N)).

Proof: Lemma 5.21 implies that s —¢ CONNECTIVITY is in RN(O(1), N?). By Lemma 5.14
s —t CONNECTIVITY is complete for SL with respect to NC! reductions. Thus, we only
need to show that the reduction from any problem in SL can also be done in the RN model
with polynomial size and in constant time. The details and the construction are very much the
same as in the proof of Theorem 5.8, and are therefore omitted. |

Proof of Theorem 5.20: To conclude the proof we have to show the induction step from & to
k+1. So we assume OX3F to be a subset of RN(O(1),poly(N))for every k' < k. Further on, let
M be a symmetric logspace oracle machine and let B be an element of OX7%. We have to show

that A := L(M, B) can be recognized in O(1) steps by a polynomially sized RN R = (Rn)n>1.

By the induction hypothesis there exists an RN Ro = (Ron)n>1 recognizing B in some k
steps. In the following, let I be an arbitrary but fixed input to M of length N. All configurations
and descriptors considered from now on will be of size or length log V.

We will now design an RN Ry simulating M with oracle B on inputs of length N. Ry
will consist in base switches and oracle switches. For each descriptor d of M we use a base
switch s(d). With each query descriptor d of M we associate a copy RéN of Ry, built of
oracle switches. The details of the interconnection of these switches are very similar to those
of Lemma 5.1. The triplets (d,'*,Rules?) specifying the switch s(d) corresponding to the
descriptor d, now contains edges to all switches which correspond to descriptors which are
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possibly reachable by d in one step given an arbitrary input. Observe that these edges are
undirected, since M is a symmetric TM.

The steps performed by Ry are as follows:

Step 1: Initialization: distribute to each switch of Ry its required input bits of /. These could
be up to three, due to the technical details used in symmetric machines.

Steps 2,--- ,l% + 1: The oracle switches in all subnetworks RéN compute in i steps whether
(d, I) is an element of B or not. If this is the case, RéN establishes a connection between
the base switches s(d) and s(dy). Otherwise, s(d) and s(d_) are connected by R{ .

Step k + 2: In this last step the interconnection of the switch is done according to the transition
structure of M on input [: the base switches switch all those edges which correspond to
transitions which are consistent with the input /. Then the switch s(dy) corresponding
to the initial descriptor do := (qo, g, 1,1) transmits a signal on the bus it is connected to.
Obviously, M accepts its input [ with oracle B, if and only if the switch corresponding
accepting end descriptor detects this signal.

We finally mention that the construction of R is sufficiently uniform to be describable by a
deterministic logspace machine. |

As a consequence of Theorems 5.17 and 5.20 we get the main result of this subsection:

Corollary 5.24 RN (O(1),poly(N)) = SLH

end of

changes
5.5 Non-Deterministic TM’s and DRN'’s

The next-move mapping § of a non-deterministic TM may have several choices for the next
machine configuration, given a certain descriptor. The non-deterministic TM accepts its input
if there exists any sequence of choices of moves that leads to an accepting state. In particular,
N L is the set of problems solvable by a non-deterministic TM having O(log N') workspace. The
main result of this section is that NL = DRN(O(1), poly(N)).

Lemma 5.25 There exists a constant ¢ > 0 such that for every constructible f(N),
NSPACE(f(N)) € DRN(O(1), ¢m>xU(N)legN)y
Putting f(N) = O(log N), Lemma 5.25 implies

Theorem 5.26 NL C DRN(O(1),poly(N)). 1

Proof of Lemma 5.25: The proof starts with a construction of a TM U, similar to the one
described in the proof of Lemma 5.1. The machine U uses M, the non-deterministic Turing
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machine solving a problem A, in order to construct for every N a DRN Ry solving A on all
inputs of size N. The description of DRN’s is similar to the one given in the proof of Lemma
5.1 for RN’s, except that the triplets (d, ¥, Rules?), specifying the switch s(d) corresponding
to the descriptor d in the description of the DRN, include directions for the edges, and that
there may be several relevant out-edges for each input symbol and Turing machine configuration
(descriptor). As before, we set 'Y = (I'¢  T'¢Y | I?), with the following changes. The set I'¢,
contains s(d)’s in-edges, and I'? , is the set of s(d)’s out-edges. '\, = ¢ U ... U ’y|d2|, where
’y;l is the set of possible moves when the input symbol at the input head location (specified
by the descriptor d) is the j'th symbol in ¥, namely o;. As before, I* contains the pair of
descriptors PREV (d) and SUCC(d), directed into and out of the switch, respectively. As in
the undirected case, for any switch s(d), T'?, N T¢ = .

out

Let Ry be a DRN constructed according to the description output by U when given the
input N. Again, we have an initialization step and a computation step.

Algorithm NTM_SIMULATION:

The initialization step is the same as the one from the Algorithm TM_SIMULATION in the proof
of Lemma 5.1.

Computation Step: Suppose a switch s(d) received an input symbol o; € ¥ at the initial-
ization step. Then, during the computation step, s(d) connects all the in-edges from I'¢_ to all
the out-edges from ’y]d. All other out-edges remain disconnected.

After the configuration has been taken, the switch s(dy) corresponding to the descriptor
do = (qo, b, 1, 1) transmits a signal on the bus it is connected to.

Claim 5.27 Given an input instance I of size N, the signal transmitted by s(dy) at the com-
putation step reaches a switch s(d) if and only if there is a sequence of choices of moves of M
on I reaching the descriptor d.

Proof: We prove one direction of the claim by induction. Suppose that, given the input I,
there is a sequence of [ moves by M leading to d. For [ = 0 we have d = dy. For [ > 0, suppose
the claim holds for all switches corresponding to sequences of at most [ — 1 moves. Consider a
switch s(d') corresponding to a descriptor d’ of M. The descriptor d' is reachable in [ — 1 moves
of M on I, and d is reachable from d' in a single move, given the input /. By the assumption,
the signal transmitted by s(dy) reaches s(d'). By the definition of the DRN model and the
construction of Ry, there is an edge e directed from s(d’) to s(d). The edge e is connected to
all the in-edges of s(d'), given the input I. Thus the signal reaches s(d), too.

As for the other direction, if the signal reaches s(d) then there is a (directed) path P =
€1, €q,- -+, € from s(dy) to s(d). Each edge along the path corresponds to a valid move of M on
I, hence P corresponds to a sequence of such moves reaching d. |

In particular, Claim 5.27 implies that there is a switch s, corresponding to a final accepting
state g, which detects the signal if and only if there is a sequence of choices of moves by M on
I leading to ¢,. This concludes the proof of Lemma 5.25. |
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It is important to note that Claim 5.27 does not hold when the undirected RN model is
used. This is because the signal transmitted by s(dp) may take in-edges in the “opposite”
direction and hence reach switches corresponding to descriptors that may not be reached by
M in a valid sequence of moves. This is actually an inherent problem of the RN model; when
taking some configuration, the switch can not control the exits that an incoming signal may
take. This observation may conceivably lead to upper bounds on the computational power of
the RN model in order to “separate” it from the DRN model.

Theorem 5.28 DRN(O(1),poly(N)) C NL.

Proof: As the proof is similar to that of Theorem 5.7, we describe here only the necessary
modifications. Let A be a problem solvable by the family R4 = { Ry }n>1 in the DRN model in
d = O(1) steps. The “answer” to A is either a “1” or a “0”. As before, we say that the machine
outputs a 1 (respectively, 0) if it terminates in the accept state ¢, (resp., the reject state ¢,). A
non-deterministic machine N M¢ solving (all length-N inputs of) A may reject when given an
input instance I (of length N) for which the answer is a 1. The machine should always accept
when the answer is a 0. Moreover, N M4 should have a sequence of choices of moves leading to
an accepting state if the answer is a 1.

The construction of NM¢ is similar to that of M4 in the proof of Theorem 5.7, except that
the logspace machine M,.,.;, given there is replaced by a non-deterministic logspace machine
NM,eocr,. Let H denote some configuration of a network R in the DRN model. When the
configuration description of H together with the id’s of two nodes s and ¢ in R, are given as an
input instance, N M, ..., determines whether there is a (directed) bus in R, starting at s and
reaching t. For three distinguished symbols 0, 1 and 2 in the alphabet Y, SM, .., outputs 1
on its output tape if there exists a bus leading from s to ¢, 0 if no such bus exists, and 2 if the
answer is not determined by the machine.

Given NM, ..;, the construction of NM;{ follows that of M;{, where calls to M,.,.; are
replaced by calls to NM,...,. The only difference is that if NM,.,., outputs a “2” value then
NM¢? enters the reject state immediately. Otherwise, the computation proceeds as described
in the proof of Theorem 5.7.

It remains to show the construction of NM,...,. We observe that when each network
node is replaced by a cluster of (a constant number of) graph nodes, each holding a single
set of connected edges, then NM,..,.;, actually addresses the reachability problem: “given two
nodes s,t in a directed graph G, is there a (directed) path starting at s and leading to tI”.
Obviously, the original directed-network reachability problem is of the same complexity as the
graph reachability problem. Reachability is known to be (complete) in N L, thus there is a
non-deterministic logspace Turing machine N M., computing it. On the way to proving that
NL = Co— NL [Imm88, Sze88], it is shown in [Imm88] that the opposite question, namely
the directed unreachability problem, is also in N L. This is established by presenting a non-
deterministic logspace Turing machine N M,,, computing unreachability. Our machine N M, 4.1
executes both NM,.; and NM,, on its input (viewed as the graph reachability problem). It
then outputs 0 if NAM,, accepts, 1 if NM,.s accepts, and 2 if both NM,., and NM,, reject.
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Finally we note that, although no direct simulation is shown, the equivalence of NI and

DRN(O(1), poly(N)) implies that DRN(O(1), poly(N)) € CRCW* (cf. [KR90]).

6 Non-Monotonic Reconfiguring Networks

This section investigates the power of the NMRN model. It is instructive to note that this model
is more powerful than the commonly accepted parallel models (assuming PTITME # NC'), even
those equipped with a shared memory unit. The main result of this section is the following
theorem.

Theorem 6.1 PTIME = NMRN(O(1), poly(N)).

One direction of the theorem is implied by the following lemma:

Lemma 6.2 [BPRS91] Any circuit of depth d and constant fan-in can be simulated by a
non-monotonic RN in constant time and mazimum bus length d.

Proof: The switches of the NMRN model have a complete set of operators {—,V}. It is thus
straightforward to construct an RN whose underlying topology reflects the topology of the
simulated circuit. |

In particular, if the RN model allows for buses of polynomial length then every problem
in PI'IME can be simulated in this way in constant time, although the simulation is not
“uniform” or universal, and each circuit needs to be simulated individually. Since any problem
Ain PTIME is solvable by a family of circuits C4 of polynomial depth, we immediately have
the first direction of Theorem 6.1, namely, PTIMFE C NMRN(O(1),poly(N)).

Lemma 6.2 implies that the Circuit Value Problem (CVP) can be solved in constant time
by a non monotonic RN. However, this result has a somewhat non-uniform flavor. As a more
illustrative example to the power of non monotonic RN, let us consider the well studied problem
of computing the Lexicographically-First Mazimal Independent Set (Lex-MIS) in a given graph.
This problem is often used as a canonical example for a PTIM E-complete problem just as
is the CVP. In [BPRS91] it is shown that Lex — M 1S can be solved in constant time by a
VN x v/N mesh in the NMRN model.

Lemma 6.3 [BPRS91] Lex — MIS € Mesh NMRN(O(1),v/N,v/N). 1
From Lemma 4.8 and Theorem 5.2 we have

L C Mesh_.RN(O(1), poly(N),poly(N)) C Mesh-NMRN(O(1),poly(N), poly(N)) .

Thus we finally conclude the following.

Theorem 6.4 PTIME C Mesh-NMRN(O(1), poly(N), poly(N)).
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Proof: The problem is solved after the appropriate reduction to Lex — MIS. |

The remaining direction in the proof of Theorem 6.1, namely
NMRN(O(1), poly(N)) S NMRN(poly(N),poly(N)) € PTIME, (2)

involves a simple emulation of the networks and induction. Let A € NMRN(O(1), poly(N)).
Then A has a family R = {Rn}n>1 in the NMRN model, which is uniformly generated by
some Turing machine T%. The emulation begins by producing the network description D(Ry)
for the appropriate N, by an application of T’z. Given the initial description of the network
(or given its description for any time ¢), and the input instance, a polynomial TM emulates
the computation of every switch, producing a description of the network configuration at the
beginning of the second step (resp., at the beginning of the (¢ + 1)’st step). Broadcasting
messages at any step involves, say, a depth-first scan of the connected components.

This concludes the proof of Eq. (2), and hence Theorem 6.1. 1

7 Summary and Open Questions

Our results for the relations between reconfigurable complexity classes and parallel and tradi-
tional complexity classes are summarized in Figure 1. Established connections are drawn by
arrows. Downward vertical arrows hold trivially and are omitted.

The importance of these relations is in indicating how hard a problem may turn to be. For

example, consider the Transitive Closure (TC) problem. Wang and Chen [WC90a] showed that
TC € RN(O(1),N?);  TC € Mesh_RN(O(1), N* N?) .

The TC problem is related to the s — ¢t CONNECTIVITY problem. The solution of the T'C
for a graph G gives the answer for s — ¢ CONNECTIVITY for all pairs of nodes s and ¢ in G.
According to our results showing TC' € LRN(O(1), poly(N)) implies L = L %, thus resolving
a long-standing problem. Thus, although the constant time RN algorithm for T'C' is not very
complicated, we expect a solution for T'C' in the (constant-time polynomial-size) LRN model
to be either very difficult or impossible.

There are many other open questions. For example, the relation of the RN model to CREW
PRAM models is not fully understood. It is also open whether

LRN(O(1), poly(N)) é Mesh_ LRN(O(1), poly(N), poly(N))

The informal statement of these questions reflects the search for a deeper understanding of the
role of switch operation in determining the power of the model. The results of this paper show
that the answers correspond to complex issues in the theory of computational complexity.

Perhaps most important of all is the quest for more accurate complexity models for recon-
figuring networks. Our more powerful RN classes, DRN and NMRN, are founded on the same
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basic underlying assumptions of the general model, and particularly, the assumption that prop-
agation delay is independent of the bus lengths. This assumption may be unjustified for these
classes, due to the use of active devices along the transmission paths traversed by messages.
Consequently, further study of these stronger RN classes should attempt to formulate a more
realistic set of complexity assumptions for them. The computational power of programs in
these classes should then be re-evaluated under these more refined complexity assumptions.
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