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1 IntroductionIn sequential computation there is one widely acceptable model, namely, the von-Neumannmodel. In contrast, there is still no such popular equivalent for parallel computation. Inparticular, it is not clear which parallel model of computation is the best candidate to bridgethe \hardware - software gap," as discussed in [Val90]. The PRAM family is usually consideredas the ideal computational environment, for its freedom of restrictions on memory access. Atthe other extreme, the Fixed Connection Network model (FCN) is viewed to be a \realizable"parallel environment, since each processing element is connected to a constant number of otherelements. Recent developments in technology have made several other computational modelsviable. Such models may be as strong as (or even stronger than) the PRAM model on the onehand, and on the other hand exhibit realizability of the same level as (or even higher than)that of the FCNs.One of the most promising parallel models of computation is the Recon�gurable Network(RN) model. The basic idea of the RN model is to rely on bus communication, and enableexible connection patterns, by allowing nodes to connect and disconnect their adjacent edgesin various patterns. This yields a variety of possible bus topologies for the network, and enablesthe program to exploit this topological variability in order to speed up the computation.Informally, a recon�gurable network operates as follows. Essentially, the edges of the net-work are viewed as building blocks for larger bus components. The network operates in rounds,and dynamically recon�gures itself at each round, where an allowable con�guration is a parti-tion of the network into several connected components, or, a set of edge-disjoint buses. A crucialpoint is that the recon�guration process is carried out locally at each processor (or switch) ofthe network. That is, at the beginning of each round during the execution of a program onthe RN, each switch of the network �xes its local con�guration by partitioning its collectionof edges into some combination of subsets. Adjacent edges that are grouped by a switch intothe same subset are viewed as (hardware) connected, so that they form a bus. Any processorconnected to an edge participating in the construction of a certain bus, may choose to listen toany incoming or passing message transmitted on that bus.The basic assumption concerning the behavior of the recon�gurable model (as well as anyother bus model) is that in any con�guration, the time it takes to transmit along any bus isconstant, regardless of the bus length. This assumption is theoretically false, as the speed ofsignals carrying information is bounded by the speed of light. Hence with very fast processors,and assuming that the operation rate of the parallel machine has to equal that of the individualprocessors (i.e., that each processor cycle includes a round of communication), the actual buslengths that can be implemented are more limited. This partially explains why the RN modeland other bus models have not gained wide acceptance initially.Recently, however, implementations were suggested for the RN model, involving a variety ofnewly developed technologies, including optical communication and optical computing devices.Several dynamically recon�guring machines involving thousands of switches were actually built[TCS89, GK89, LM89, MKS89, WLH+87], showing that the RN model is implementable inmassively parallel architectures.Motivated by the existing implementations, there has been some work on the algorithmic1



and computational aspects of the RN model. Nakatani [Nak87] considered comparison-basedoperations like merging, sorting and selection on recon�gurable arrays. Miller, Stout, Reisisand Kumar [MPRS87] and Reisis and Kumar [RP87] considered parallel computations and datamovement operations on the recon�gurable mesh. In a recent series of papers, summarizedin [Wan91], Wang, Chen and others present many constant time algorithms for RN's. In[BS91, Sch91] the parameter of bus-usage is suggested as a measure for the e�ciency of RNalgorithms. Other papers consider image processing and fault tolerance on RN's.This expanding volume of algorithms and results calls for a more systematic approach anda theoretical evaluation of the classes of problems solvable using RN's. In particular it isevident that RN's solve large sets of problems in constant time. This power is attributed to theexponential number of global con�gurations that may be taken by the network at each step.When the problem is solvable by recon�guring locally according to the input, then the globalcon�guration gives the result instantaneously. Thus, for example, it is shown in [BPRS91] howto sort in constant time using one RN model, and how to solve a PTIME-complete problem inconstant time using another (stronger) RN model. Some comparisons and simulations of basicRN models are presented there as well.In an earlier work, Moshell and Rothstein [MR79] investigated the computational complex-ity of the Bus Automata (BA). The BA model is similar to the RN model. It is composed of ad-dimensional array of �nite automata with modi�able channels allowing long-distance commu-nication. Moshell and Rothstein showed that large classes of problems are solvable in constanttime on the BA. For example, they showed that the languages recognizable in constant time bya one-dimensional BA are exactly the regular languages.In this work we extend the ideas from [BPRS91] in order to evaluate the theoretical powerof several di�erent RN models. We concentrate on the classes of problems solvable in constanttime. Our approach, however, is di�erent from the one given in [MR79] in several aspects.In particular, the underlying topologies assumed for the networks are not necessarily uniformarrays (although we do show equivalence in several cases) and the switches di�er in theiroperation on passing messages. We show that variations in the switching assumptions resultin variations in the power of the model. Finally, we present results that relate these models tospace-bounded Turing machines and parallel complexity classes.The rest of this work is organized as follows. Section 2 describes the RN model in moredetail. In Section 3, the RN model is compared with the PRAM model, and some connectionsare established between the corresponding complexity classes. In Section 5 similar comparisonsare made with respect to Turing-machine based complexity classes. Section 4 concerns therestriction of the RN model to simple two-dimensional mesh topologies. Section 6 considersthe non-monotone RN model. Finally, Section 7 concludes with a discussion and some openproblems.
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2 Recon�gurable Models of Computation2.1 The General ModelA recon�gurable network (RN) is a network of switches operating synchronously. The switchesresiding at the nodes of the network perform the same program, taking local recon�guringdecisions and calculations according to the input and locally stored data. In this paper wefocus on networks of bounded degree, hence the number of possible con�gurations at a node isconstant. Input and output locations are speci�ed by the problem to be solved, so that initially,each input bit (or item) is available at a single node of the network, and eventually, each outputbit (or item) is stored by one.A single node of the network consists of a computing unit, a bu�er and a switch withreconnection capability. The bu�er holds either an input or an output item, or somethingthat was previously read from adjacent buses. The power (instruction set) of the computingunit is not central to the discussion, although it varies from section to section. For example,for the simulations of Turing machines by RN's we assume no computation power at all, sothat no arithmetic or logic operations are allowed. For the simulations of PRAM's (and byPRAM's) we assume the processor power of the simulating and simulated models to be thesame. In many cases, the sole objective of the computing unit is to decide the next state of theswitch1 according to the data stored at the local bu�er. In simulating other models by RN's,the size of the bu�ers typically remains small. If a word (whose length is determined by thebus bandwidth) is moved on the bus in a single step, then the size of the bu�er need only be aconstant number of words.A single round (or step) of an RN computation is composed of the following substeps.Substep 1: The network selects a con�guration H of the buses, and recon�gures itself to H.This is done by local decisions taken at each switch individually, depending on the input,the contents of messages previously read from adjacent buses and local computationresults. This substep may in principle extend over a (constant) number of processorcycles.Substep 2: One or more of the processors connected by a bus transmit a message on the bus.These processors are called the speakers of the bus.Substep 3: Some of the processors connected by the bus attempt to read the message trans-mitted on the bus by the speaker(s). These processors are referred to as the readers ofthe bus.Remark 1: It is sometimes helpful to make use of a message that has no inherent meaning(except for its origin and destination, determined by the bus con�guration). Such a message isreferred to as a signal. In such cases, information is conveyed by the knowledge of which of thereaders succeed in actually detecting the signal.At each round, a bus may take one of the following three states:1In the sequel we ignore these distinctions, and use the terms switch, node and processor interchangeably.3



� Idle: no processor transmits,� Speak: there is a single speaker,� Error: there is more than one speaker.An Error state, reecting a collision of several speakers, is detectable by all processors connectedby the corresponding bus, but the messages are assumed to be destroyed. (This de�nitionfollows the common model, but it is worth commenting that a number of other reasonablealternatives exist. For example, it is sometimes assumed that collisions go undetected. On theother extreme, a stronger model which may be useful is one assuming that the outcome of acollision is more informative, and yields some partial function of the transmitted messages, e.g.,their logical \OR".)The most popular recon�guring network in the existing literature is the mesh. An n �mmesh consists of an n�m array of switches beginning with switch (0; 0) at the upper left cornerand ending with switch (n� 1;m� 1) at the lower right corner of the mesh. Each switch hasfour I/O ports (L;R;U;D) for its Left;Right; Up and Down neighbors (except those on theperimeter of the mesh, which have three ports, and those in the corners which have only twoports each). For example, if port U is connected to port L and ports R and D are disconnected,then we denote by (U � L) the con�guration of the switch.2.2 Variations on OperationsThe general RN model, as presented above, does not specify the exact operation of the switches.As already shown in [BPRS91], the speci�c operation determines the power of the model. Weconsider the following four basic variants.General RN: The switch may partition its collection of edges into any combination of subsets,where all edges in a subset are connected as building blocks for the same bus. Thus thepossible con�gurations are any network partition of edge-disjoint connected subgraphs.Linear RN (LRN): The switch may partition its collection of edges into any combination ofconnected pairs and singletons. Hence buses are of the form of a path (or a cycle) andthe global con�guration is a partition of the network into paths, or a set of edge-disjointlinear buses.Directed RN (DRN): This model is similar to the Non-Linear RN model, except that edgesare directed, so messages travel in one direction only. Consequently, each connected subsetof edges is split into in-edges and out-edges. A message entering the switch for the �rsttime via either one of the in-edges, proceeds via all the out-edges connected to it.Non-Monotone RN (NMRN): This model is the same as the Directed RN model, but aswitch has an additional \inversion" capability. When this operation is activated by theswitch, a signal going via the switch is inverted. That is, a \0" (\no signal") turns into a\1" (\signal on") and vice versa. 4



By way of illustration, let us consider again the recon�gurable mesh operating in the LRNmodel. A switch may take one out of ten possible local con�gurations: (L � R;U � D),(L � D;R � U), (L � U;R � D), (U � D), (L � R), (R � D), (L � U), (R � U), (L � D),and (). When the mesh operates in the RN model, �ve more local con�gurations are possible:(L�R � U), (R� U �D), (U �D � L), (D � L �R), and (L�R� U �D).Discussion: It is important to observe that the notion of a bus for DRN's and NMRN's issomewhat di�erent than that of LRN's and RN's. The most signi�cant di�erence is that whilethe RN architecture is based on \passive" wires, the DRN and NMRN models make use of more\active" (hence slower) devices along the way.Another technical di�erence involves the way the destination set of a message is determinedin the DRN and NMRN models. This is done as follows. Suppose some processor z transmitsat round t, and let Ht denote the global con�guration that was chosen by the network duringstep t. Then the message issued by z on some connected set of out-edges reaches the subgraphof Ht consisting of all nodes that may be reached from z by a directed path starting at thoseout-edges.The notion of bus error for DRN's and NMRN's changes, too. A node y detects an errorduring step t if, in the con�guration Ht, y is reachable from two di�erent speakers. Hence itmay happen that a message issued by some speaker z will be correctly received by a reader,while other readers that are reachable from z detect an error since they are reachable fromother speakers too.Hence from an architectural point of view, the reference to the channel devices used in theDRN and NMRN as \buses" may be a bit stretched, and the assumption of constant propagationdelay is not as justi�ed in current technologies (although the development of very fast activeswitches is currently being investigated by various industries). Nevertheless, since the presentpaper focuses on a theoretical comparison of the computational power of the various models, weshall opt for uniformity of framework and terminology, by maintaining both the basic constant-delay assumption and the use of the term \buses" to describe the communication mechanismin all four models under discussion. Further research may be necessary to adjust our results toa more accurate model, taking these di�erences into account by modifying the assumptions onthe propagation delay.2.3 Complexity ClassesLet � denote a symbol-set and let �� = [i�1�i. A problem A is a mappingA : �� 7�! ��. Usingstandard reductions, the discussion can be restricted to Boolean problems A : �� 7�! f0; 1g.An input-instance I for A is said to be solved by presentingA(I). An RN family,R = fRNgN�1,of recon�guring networks is a set containing a network construction RN for each natural N .We say that the family R solves a problem A if for every N , RN solves all size N inputs for A,fI : jIj = Ng.We consider two measures for computation complexity in the RN model.Time: T (R) is the worst-case number of rounds it takes for the computation of the recon�g-uring network R to terminate, 5



Size: S(R) is the number of switches in the recon�guring network R.A recon�guring network family R = fRNg has time complexity f(N) if for every N � 1, acomputation of RN terminates within T (RN) = O(f(N)) rounds for all valid input instancesof length N . The family R has size complexity g(n) if for every N � 1, RN consists ofS(RN ) = O(g(N)) switches.The description D(R) of a recon�gurable network R, is a list of S = S(R) triplets of theform hx;�x; Rulesxi, one for each node x of the network. In this description, x is the node'sid, �x is the list of immediate neighbors of x in the underlying topology R, and Rulesx is a setof con�guration and output rules for x (depending on the inputs, the current round and thedata read from adjacent buses in previous rounds). Since we focus on constant-degree networksand constant-time programs, we may assume that a triplet consists of O(log S) bits. The totalnetwork description is thus of size O(S log S) bits.The class of recon�gurable networksRN (f(N); g(N)) in theRN model, is the set of familiesR with the following properties:(a) R is of time complexity f(N) and size complexity g(N), and(b) R is uniformly generated in SPACE(log(g(N))), i.e. there exists a Turing machine (TM),M , that given N produces the description of RN using O(log(g(N))) cells of its workingtape.Similar classes are de�ned analogously for the LRN , DRN and NMRN models. Corre-spondingly, these are denoted LRN (f(N); g(N)), DRN (f(N); g(N)) andNMRN (f(N); g(N)).We de�ne the set of problems RN(f(N); g(N)) to include any problem A for which thereexists a network familyR 2 RN (f(N); g(N)) solving it. The problem sets LRN(f(N); g(N)),DRN(f(N); g(N)) and NMRN(f(N); g(N)) are de�ned analogously.Some natural relationships exist among the above classes. For example, since a switch inthe RN model can simulate a switch in the LRN model, we immediately have:Lemma 2.1 For any two functions f(N) and g(N), LRN(f(N); g(N)) � RN(f(N); g(N)).We also need a notion of uniformity for the time/size functions. A function f(N) is said tobe constructible if it is computable by a TM Mf having N as its input and using O(f(N)) cellsof its working tape.3 PRAM Algorithms and RN'sIn this section we consider the question of how powerful polynomial size RN's are, comparedto parallel models of computation with a shared memory unit. In particular we are interestedin the common PRAM model (cf. [KR90]). 6



Theorem 3.1 A T -step computation of an N-switch RN with E edges can be simulated by anO(E)-processor CRCW PRAM in time O(T logN).Proof: Let R be an N -switch, E-edge RN. A CRCW PRAM algorithm for simulating R isconstructed as follows. The PRAM gets as its input both the adjacency matrix of the RNand the input to the RN. Each round of the RN is simulated by the PRAM in four phases asdescribed below.(1) The �rst phase incorporates only N of the PRAM processors, each simulating a singleswitch of R. This phase is dedicated to simulating the internal computation taken bythe RN switches, in which the bus splitting, speaking, reading and the (virtual) localcon�guration are decided.Once a switch decides on a certain local con�guration, its edges are grouped into connectedsets. Thus the global con�guration of R can be represented by an augmented graph ~Rby splitting each switch s of R into several logical copies, C(s) = fs1; : : : ; slg, one foreach connected component of its edges. Each original RN switch whose degree in R is d,is represented in ~R by at most d nodes. The total number of nodes in this augmentedgraph ~R is thus at most 2E, and each of these nodes has degree at most d. The crucialobservation here is that the connected components of ~R represent the buses in R.(2) Each of the nodes of ~R is emulated by a CRCW processor. In the second phase, the localcon�guration of a switch s in R is read by each processor emulating a node s0 2 C(s)in ~R, where s0 connects several of the edges of s. The processor emulating s0 needs alsothe id of the processors emulating neighboring nodes. This information is disseminatedrelatively fast; if d is the highest degree of any switch in R, then the second phase requiresO(d log d) reading steps, namely, constant time.(3) The processors of the CRCW PRAM, standing for nodes of the global con�guration graph~R, construct a balanced spanning tree for each bus (connected component) using theO(logN)-time connectivity algorithm of [SV82].(4) The speakers of each bus use the tree constructed at phase (3) to broadcast messages (anddetect errors). This can be achieved in O(logN) time via standard doubling techniques.Phases (1) and (2) require constant time, and phases (3) and (4) require O(logN) timeeach. Hence each step of the RN is simulated by the PRAM in O(logN) time, and the theoremfollows.A connection analogous to Thm. 3.1 was established in [BPRS91] between the LRN andEREW PRAM models.Theorem 3.2 [BPRS91] A T -step computation of an N-switch LRN with E edges can besimulated by an O(E)-processor EREW PRAM in time O(T logN).>From the two theorems we get 7



Corollary 3.3 A problem of input size N that is computable by a T (N)-step, polynomial-sizeLRN (respectively, RN), has an O(T (N) logN)-step EREW (resp., CRCW) PRAM program.In particular, a problem having O(logK N)-step, polynomial-size LRN's (resp., RN's) with uni-formly generated underlying topologies is in (uniform) EREW (K+1) (resp., CRCW (K+1)).In other words, the corollary implies that problems that are \inherently sequential", i.e.,that are \non parallelizable" using traditional parallel models, maintain this property underthe RN and the LRN models. Theorem 5.28 implies that this meta-claim holds for the DRNmodel, too. In contrast, the results of Section 6 imply that this is not the case for the NMRNmodel.As already mentioned, many problems requiring 
( logNlog logN ) steps on a CRCW PRAM (or
(logN) steps on an EREW PRAM) with polynomial number of processors, can be computedby a constant-time polynomial-size RN. The following theorem shows that this is not the casefor the opposite direction.Theorem 3.4 [BPRS91, WC90b] A (priority) CRCW PRAM with P (N) processors,M(N)memory cells and T (N) time can be simulated by a O(T (N))-step, P (N)�M(N) mesh operatingin the LRN model.4 Universality of the MeshIn this section we show that the two-dimensional mesh is computation universal and achieveshigh speedup. We say that a problem A is in the class Mesh LRN(t(N); r(N); c(N)) if foreach N , the r(N) � c(N) mesh solves all size N inputs to A in t(N) steps. Similar de�nitionsapply for the RN, DRN and NMRN models. Let us �rst review several known results for theLRN model.We follow [KR90] for the de�nitions of circuits and their depth. Given a family of (boundedfan-in) circuits C = fCig; i � 1, we say that C is in CKT (D(N)) if the depth of CN is O(D(N))for each N . The size of a circuit is its number of edges. A circuit C of size jCj is uniform if itsdescription can be generated by a Turing machine using O(log jCj) workspace (see Sec. 5.1). Aproblem A is in CKT (D(N)) if there is a family of uniform circuits fCNgN�1 in CKT (D(N)),that solves A.Lemma 4.1 [BPRS91] CKT (d) � LRN(O(1); 2(1+�)d) for every � > 0.In particular, putting d(N) = O(logN) or d(N) = O(log2N) we haveTheorem 4.2 [BPRS91]NC1 � LRN(O(1); poly(N))NC2 � LRN(O(1); NO(logN)) : 8



In fact, the result is stronger; there exist uniform \universal" constructions computing all func-tions of the same circuit complexity. The following lemma, the construction and the recon�g-uring program that follows, all use the constructions of Barrington [Bar86] and the subsequent[CL89, Cle90]. It is important to note that the results are constructive and uniformly generated.Lemma 4.3 [BPRS91] For every �xed �; c > 0 there exists a (universal) LRN network of sizeO(N c(1+�)) computing in constant time all functions that are computable by circuits of depthc logN .The above results can be used to prove the universality of the mesh, as follows. Consider aproblem A for which there are circuits of depth at most c logN solving all N -sized inputs. Wenow describe a simulation method that constructs, for a given N , an N �N c(1+�) mesh solvingall N -sized inputs in constant time. We refer to this mesh as the universal mesh for A and N .The Universal MeshThe construction of the rectangular N � poly(N) mesh is similar to the universal LRN con-struction of [BPRS91, Sect. 3,4] (also cf. [Sch91]), so we omit most details of the construction,and focus on the di�erences. The K-to-K permutation networks that are used in [BPRS91]are replaced by K � K meshes. Note that the LRN mesh supports any permutation of theleftmost column switches to the rightmost column switches in a single round (given that thelocal con�gurations are computed in advance).For the problem A and a given N , the universal mesh is composed of an initializing networkand a row of N (1+�)c meshes of sizeK�K. The row of meshes is easily embedded in a rectangleof size K �KN (1+�)c.The initializing network carries the switching information necessary to determine the per-mutations to be taken by the K �K meshes. This information consists of both the bits thatare determined by the emulated circuit and the N bits composing the input instance to theproblem. These (binary) inputs are given at the leftmost column of the mesh, so that the ithinput bit is given at switch (i; 0). The bulk of the input, namely the circuit data, determine thechoice of two speci�c permutations for each K �K mesh. We assume that these permutationsare computed and distributed in advance. In other words, we assume that it is known whichproblem is to be solved, and each switch has two local con�gurations, which are written in itwhen the mesh is created.The computation proceeds by an initialization phase and a single computation step, in whicha signal is sent from the source to exactly one of the sinks of the network. In the initializationphase, the N input bits are used in each K�K mesh for choosing one of the two permutations.Note that by the construction of the universal LRN (see [BPRS91, Sch91]), a single mesh usesonly a single input bit in order to determine which of the two permutations is appropriate.There may be, however, many meshes using the same input bits. Hence the initializing networkis constructed of N buses that are wired along the row of meshes. These carry the input bitsand are read at the appropriate columns.We have the following result. 9



Lemma 4.4 Every problem for which there are circuits of depth at most c logN solving allN-sized inputs, is computable in constant time by a universal N �N c(1+ 2logN+2 ) mesh.Proof: The total width of the construction described above is N . The K rows of the computingnetwork are also used for the initialization step. The construction length is KN (1+�)c. Notethat we assume K � N . Indeed, minimizing the number of switches involved by using therelation given in [BPRS91, Theorem 4.3], we �nd that K = O(2p2c logN) and � = q2=(c logN)are the optimal choices. Since the size of the input necessitates a rectangle of width at least N ,it is possible to reduce � further by choosing K = N and � = 2=(logN � 2).As an immediate corollary we getTheorem 4.5 NC1 �Mesh LRN(O(1); N; poly(N)).Next, let us discuss scaling techniques, enabling the use of a �xed-size mesh for solvingincreasingly larger problems. Suppose that we would like to compute some function having acircuit of depth O(c logN) on a given LRN mesh M whose dimensions are �xed (and are nota function of N). Let L1 � L2 be the dimensions of M . The N �KN (1+�)c rectangle used inTheorem 4.5 may be embedded on M , e.g., in a snake-like form. If the rectangle �ts into M inits entirety, then we are done. As N gets larger, however, computation can not be completedin a single sweep. Rather, it is executed in supersteps. Each superstep involves the embeddingof part of the rectangle on M , sending the inputs to the embedded columns and computing bysending the signal along the embedded part of the rectangle. The signal is transmitted from aswitch at the �rst (embedded) column. The switch detecting it on the last (embedded) columnis recorded and is used for transmission at the next superstep.There are several cases to consider while setting the parameters involved in the simulation.If L1 � N and L2 > 2N then the embedding and simulation is as described above. We needL1 � N for the width of the rectangle and we need L2 > 2N for the \curves" of the embeddedrectangle.Corollary 4.6 If L1 � N and L2 > 2N , then a problem having a O(c logN) depth circuit iscomputable by the L1 � L2 LRN mesh in O(N (1+2=(logN�2))c+1=(L1(L2 � 2N))) steps.The requirements L2 > 2N and L1 � N may be eased considerably, by choosing K � N .Then, we need L2 > 2K and L1 � K. The price for this modi�cation is in the originalrectangle construction becoming longer, so that the computation takes more steps. Also, sincethere are less than N rows in the embedded rectangle, inputs are transmitted in N=L1 steps.Input i is read at step j + 1 by all the switches of row p of M , where i � p (mod L1). Thisinput procedure is executed only once at the beginning of the computation.Observe that in the above setting there may be up to L1=K rectangle columns embeddedon the same column of M . These may be seeking for di�erent input bits. Since K consecutivecolumns seek for the same input bit, if L1=K � NK=L1 then there is enough time for allembedded columns to get their inputs during the input procedure. If, on the other hand,L1=K > NK=L1 then there is a need to either spend more time on the input procedure or onthe computation part. 10



Corollary 4.7 For all K � 16, if L1 � K, L2 > 2K and L21=K2 � N , then a problem thatis computable by a circuit of depth O(c logN) can be computed by the L1 � L2 LRN mesh inO(N=L1 +KN (1+2=(logK�2))c=(L1(L2 � 2K))) steps.Using the construction of Cai and Lipton [CL89], this bound can be improved further for thecase K � 5. The computation takes O(N=L1 + N1:81c=(L1(L2 � 2K))) steps on the L1 � L2LRN mesh.We now turn to showing that in the RN model, any general network R can be simulated bya mesh M whose size is approximately the square of that of R's size.Lemma 4.8 RN(O(1); S(N)) = Mesh RN(O(1); O(S(N)); O(S(N))).Proof: The non-trivial direction is to show thatRN(T; S(N)) �Mesh RN(O(T ); O(S(N)); O(S(N))) :Let R be a network in the RN model, having S = S(N) switches. Let E denote the set of edgesof R, E = fe1; e2; � � � ; ehg. Since R is of constant degree, h = O(S). Consider the recon�gurablemesh M of size h� h. M simulates a single step of R with the following algorithm.Basically, the i'th column and the i'th row provide M with the communication channelsupported in R by the edge ei. Their intersection with the other columns and rows is connectedif the corresponding edges are connected to ei at the simulated step. Suppose that the columnsand rows of M are connected in this way. Then by induction on the distance of ei and ej,it can be shown that the switches of row and column j read a message issued by a switch ofrow/column i if and only if ei and ej belong to the same connected component (in R, duringthe simulated step).We denote by sRk the k'th switch of R, and by sMi;j the (i; j)'th switch of the mesh M .Algorithm Uniform RN:The algorithm is composed of two parts per each emulated step, an initialization part and anemulation part. The initialization part involves several steps, while the emulation part involvesa single emulation step. During the steps of the initialization (except for the emulation of the�rst step) the con�gurations connect each row in a linear bus, while disconnecting \vertical"connections. Information is transmitted by several switches of the row and gathered by allothers.Initialization part: We describe in detail the initialization part of step t, for some t > 1.Suppose that ej and ei are connected to the same switch of R. Then, at some step of theinitialization part, sMi;j transmits on row i any message that it \read" on column j during theemulation part of the emulated step t�1. We note that the order of transmission on the i'th rowduring the initialization part may be determined in advance when the network is constructed,or simply by the natural order of id's of edges incident to ei in R. Also, since R has constantdegree, the number of transmitting switches during this part (for any row) is bounded by O(1).11



Emulation part: Let ei = (sRk1; sRk2). As a result of the initialization part, each switch of rowi of M stores all the data that is stored by sRk1 and sRk2 after the (t� 1)'st step. The switch sMi;jemulates the con�guration decision taken by the switch connecting (or disconnecting) ei andej. If the con�guration connects ei and ej in R during the t'th step, then sMi;j connects all itsedges during the emulation step. Else it connects its row edges to each other, and likewise forits column edges.For a switch sRk , let ei be an edge that is attached to it in R. Suppose ei is connected bysRk with several other edges at the emulated step t. Suppose also that in that set of connectededges, ei is the edge having the lowest-id. Using the information read during the initializationpart, sMi;i also decides to transmit a message m at the emulation step, depending on whether sRktransmits m at the emulated step on the set of edges to which ei is connected.It is left to show how the initialization part of the emulation of the �rst step is carried out.The main issue involves making the inputs that appear in R at some switch sRk known to allthe switches in the rows of M corresponding to all the edges attached to sRk . These inputsappear at sMl;l in M , where el is an arbitrary edge incident to sRk . During the �rst step (ofthe initialization part of the emulation of the �rst emulated step) sMl;l transmits the inputs oncolumn l of M , where it is read by all the switches. Suppose em = (sRl1; sRl2) and suppose thatthe inputs that appear in sRl1 and sRl2 in R, appear in sMl1;l1; sMl2;l2; : : : in M . Then after the �rststep the inputs that are required at row m are known to sMm;l1; sMm;l2; : : :. Next these switchestransmit the inputs on row m (in a pre-determined order) so that all the switches of that rowread them.5 Relations to Turing MachinesIn this section we show some basic relations between classes of problems computable in constanttime by polynomial-size RN's and classes of problems solvable by space bounded TM's.5.1 Notation and Basic De�nitionsLet us �rst give some notation and review the de�nitions for the components of the TMM . Thereader is referred to [HU79] for an introduction to related terminology that is not explained here(although, for the sake of simplicity, we somewhat deviate from the de�nitions given there).A TM has a �nite control consisting of a set Q of states, jQj constant, an input tape and awork tape, each tape with its corresponding read/write head. The tape symbols are taken froman alphabet � = f�1; �2; � � � ; �j�jg, for constant j�j. A single step of the TM consists of any orall of the following operations: change the state of the �nite control, read the symbols pointedto by either the input or the work heads, print a new symbol at the location pointed to by thework head, and move the tape heads, independently, one cell left (L) or right (R) or keep themstationary (S).The TM is formally denoted by a tuple hQ;�; �; b; q0; qa; qri, where b 2 � is the blank symbol,q0 2 Q is the initial state, qa; qr 2 Q are the �nal states in which the machine terminates itscomputation when the input string is accepted or rejected, respectively, and � : Q � �2 7!12



Q� (�� fL;R; Sg)2 is the next-move function.A descriptor of the TM is a four-tuple d = hq;W; i; wi, where q 2 Q is the �nite-controlstate, W is the contents of the (entire) work tape, and i (respectively, w) is the tape location towhich the input (resp., work) head is pointing. Let M be a TM with an input of size N and awork tape of size f(N). The number of di�erent valid descriptors for M is bounded (for someconstant c � 1) byjQj �N � f(N) � j�jf(N) = O(N � cf(N)) : (1)Suppose a TM M assumes a descriptor d at the beginning of a certain step t of somecomputation. Let �̂ denote the specialization of the next-move function, �, obtained by �xingthe contents of the work tape and the �nite-control state according to d. There are at mostj�j descriptors that are possible values of �̂, i.e., descriptors of the beginning of the next step,depending on the contents of the input tape in the location pointed to by the input head.Similarly, there were at most 9 � jQj � j�j valid descriptors for M at the beginning of the previousstep, as either of the heads may have moved, and a single location of the work tape and the�nite-control state may have changed.5.2 Space Bounded TM's and Size Bounded RN'sThe main relation between RN's and TM's is expressed in the following lemma, which is provedbelow. Here, L is the set of problems solvable by a deterministicTM havingO(logN) workspace.Lemma 5.1 There exists a constant c > 0 such that for every constructible f(N),SPACE(f(N)) � RN(O(1); cmax(f(N);logN)) :Putting f(N) = O(logN), Lemma 5.1 impliesTheorem 5.2 L � RN(O(1); poly(N)).In particular, all logspace reductions are carried in constant time in the RN model using apolynomial number of switches. This will be useful later when we consider the class PTIMEand its relation to the NMRN model. We can further generalize Lemma 5.1 and drop theconstructibility restriction for TM's with high space requirements.Lemma 5.3 There exists a constant c > 0 such that for every f(N) = 
(N)SPACE(f(N)) � RN(O(1); cf(N)) :Proof: The value f(N) for a certain problemAmay be computed by running the correspondingTM TA over all inputs of length N , counting the size of the work space and evaluating themaximum. This procedure takes only O(N + log f(N)) additional work space, thus f(N) isconstructible by de�nition, hence by Lemma 5.1, A 2 RN(O(1); cf(N)).Lemma 5.3 implies a universality result for the RN model. The same result was previouslyshown for the Bus Automata model [Rot76]. 13



Corollary 5.4 For every decidable problem A there exists a family of RN's solving it in con-stant time.Proof: The maximum (over all inputs of size N) work space f(N) that is used by the TM TAfor solving A is �nite (though not necessarily constructible). Now use Lemmas 5.1 and 5.3.Note that circuits are also a universal model, hence the results from [BPRS91] that arereviewed at Section 4 imply a stronger version of Corollary 5.4, namely a universality result forthe LRN model.Corollary 5.5 For every decidable problem A there exists a family of LRN's solving it inconstant time.The remainder of this subsection is dedicated to proving Lemma 5.1. Let us �rst restatethe problem.We are given a TM, M = hQ;�; �; b; q0; qr; qai, solving a problem A while using a workspace of size O(f(N)), for a constructible f(N). Let us denote byMf the TM that, givenN , produces f(N) using O(f(N)) space.We need to show the existence of a uniformly generated family of networks RN in the RNmodel, where for every N � 1, RN solves A for all input instances of size N , and RN isof size O(cf(N)) for some constant c.Proof of Lemma 5.1:The proof is constructive. That is, we show a TM U , that receives N as its input, computesf(N) by emulating Mf , and generates the description D(RN ) of the network RN as its outputwhile using O(f(N)) space.The program of RN consists of two steps: initialization and computation. Let us �rstdescribe only the part of the network that corresponds to the computation step, and remarkon the modi�cations necessary for the �rst (initialization) step at the end.For each descriptor d of the TM M , the network RN contains a corresponding switch,denoted s(d). By Eq. (1), the number of di�erent descriptors (hence the size of RN) is boundedby O(Ncf(N)) for some constant c.An edge connecting two switches s(d); s(d0), represents an allowable transition ofM betweenthe corresponding two descriptors d; d0. In the computation step, the switch settings are givenby �, the next-move function of M . The function � is encoded for each switch s(d) in its setRulesd of con�guration rules. Thus, Rulesd speci�es the next descriptor dl to be assumed byM , depending on the input symbol �l 2 � found on the input tape at the location of the inputhead while M assumes d.The description D(RN ) output by U consists of a list of triplets (d;�d; Rulesd), one for eachdescriptor d of M . The neighborhood relation �d = (�dout;�din) is determined by � as follows.The set �din contains all the descriptors from which d may result in a single step of M . The list14



�dout = fd1 ; � � � ; dj�jg contains the descriptors which may follow d at the next step, dependingon the input symbol found at the location of the input tape when M assumes d. Note thatboth lists contain a constant number of elements, hence RN is bounded-degree.We may view the edges of RN as though they were directed, since if y is a neighbor of xand appears in �xout, then x is not in �yout. In this case, we say that the edge (x; y) is virtuallydirected towards y and virtually directed out of x. Clearly, �dout \ �din = ;, since otherwise an\in�nite loop" may occur in some computation, contradicting the assumption that M alwaysstops after a �nite number of moves.In order for U to generate the description D(RN ), it keeps a counter for the descriptors.For each descriptor d, U generates the next descriptors d1 ; � � � ; dj�j, where di is generated byemulatingM (and its next-state function, �), starting from the machine con�guration given byd, and the input symbol �i 2 �. This also gives the encoding for Rulesd at the computation step,i.e., the con�guration rules for the corresponding switch at that step. The set �din is generatedfor d in a gradual manner, by adding a new entry d0 whenever discovering a descriptor d0 fromwhich d may have resulted.The total space used by U isO(f(N)) for computing f(N) by emulatingMf , andO(log(�(M)))for handling the descriptor counter, where �(M) is the number of di�erent descriptors assumedby M . Thus, by Eq. (1), the total work space used by U is bounded by O(f(N) + logN).Finally, the description of RN includes also a part concerning the initialization step. Inparticular, for every descriptor d, the neighborhood relation �d contains also a set of edgesId, consisting of edges to two descriptors PREV (d) and SUCC(d), the \previous" and \next"triplets in the description of the RN. That is, we assume that the triplets are generated inbatches having the same input head position. Thus the previous and the next triplets alwayshave the same input head location (except for \boundary cases" such as hq0;~b; i; 1i, where ~bdenotes the work tape full of blanks). The set Rules contains also the con�guration rules forthe initialization step, to be described directly later.Suppose RN is constructed from a description generated by U as described above. It remainsto show how it computes A, given an input I of size N .Algorithm TM Simulation:Initialization Step: At this step, each switch s(d) connects its Id edges. Consequently, alinear bus is formed, connecting all descriptors with the same input head location. The networkRN is con�gured into N connected components, each consisting of all switches corresponding todescriptors having some �xed location of the input head. The j'th input appears at the switchs(d(j)) representing the descriptor d(j) = hq0;~b; j; 1i. The switch s(d(j)) transmits the j'th inputsymbol to the rest of the switches on the linear bus to which it is connected.Computation Step: Suppose a switch s(d) received an input symbol �j 2 � at the initializa-tion step. Then, during the computation step, s(d) connects all its neighbors from �din togetherwith dj 2 �dout. All other neighbors remain disconnected. After the con�guration is set, theswitch s(d0) corresponding to the descriptor d0 = hq0;~b; 1; 1i transmits a signal on the bus it isconnected to. 15



Claim 5.6 The signal transmitted by s(d0) at the computation step is detected by a single switchcorresponding to a �nal state.Proof: It is rather straightforward to show that the signal is detected by the switch corre-sponding to the �nal state which is reached by M on the given input. Informally, a sequenceof valid moves of M induces a connected path in RN .It remains to be shown that the signal can not be detected by any other \�nal switch".Consider sf , a switch corresponding to a �nal state qf which is not the one reached by Mon the given input. Assume by contradiction that sf detects the signal. Thus during thecomputation step, there is a path E in RN (having no loops) connecting s(d0) to sf . Goingalong E from s(d0) to sf , let sl be the last switch corresponding to a descriptor which wasassumed by M during its computation on the given input.The state qf is �nal, so the edge in E connecting to sf must be virtually directed towards sf .Since there is at most one edge that is both virtually directed out of a switch and is connectedat the computation step, then by induction all edges along E are \virtually directed from sltowards sf". However this implies that there are two edges virtually directed out of sl (onealong E and the other along the computation path taken by M), which are connected duringthe computation step, a contradiction.Having the claim we conclude that at the end of the second step the result is known to bothswitches corresponding to �nal states, and may further be broadcast at successive steps. Thisconcludes the proof of Lemma 5.1.5.3 Logspace TM's and Size Bounded LRN'sLet us next relate linear RN's to space bounded TM's. The main result of this section is theequivalence of L and LRN(O(1); poly(N)). This is proved in the following two theorems.Theorem 5.7 LRN(O(1); poly(N)) � L.Proof: Let A be a problem solvable by the family RA = fRNgN�1 in the LRN model ind = O(1) steps. The size of the network RN , solving all inputs of length N to A, is boundedby some polynomial S(N). Let M0A be a TM that, given N , outputs a description of RN whileusing at most log S(N) = O(logN) work space. A minor modi�cation of M0A yields a logspacemachine cM0A that, when given N and i, 1 � i � S(N), outputs the description of the i'th switchin RN including its local con�guration during the �rst computation step.In general, let M jA denote a logspace machine which, given some input I of size N , outputsthe con�guration description taken by RN at the (j+1)'st step on the input I. The descriptionincludes the local con�guration taken by every switch at the (j + 1)'st step and the contentsof the switch bu�ers at the beginning of that step. Note that given M jA, it is easy to constructa logspace machine cM jA that when given N , I and i (for some 1 � i � S(N)), outputs thecon�guration of the i'th switch of RN at the (j+1)'st step of RN 's computation on the input I.Finally, observe that presenting a logspace machineMdA completes the proof, as the descriptionincludes also the contents of \output bu�ers".16



Consider some con�guration H of a network R in the LRN model. Given as input thecon�guration description of H together with the id's of two nodes s and t in R, we construct alogspace machine, Mreach, solving the question whether s is connected to t in H. The machineMreach keeps several pointers to the input. For every exit from s, the machine visits node bynode the whole linear bus determined in H by this exit. Each node x reached by Mreach iscompared to t, and the next node of the bus is determined by the local con�guration data of x.Having de�nedM jA and cM jA for j = 1; 2; � � � ; d andMreach, the theorem is proved by inductionon d, the number of steps of RN . We construct a logspace machine MdA which, given N andany input instance I of size N , solves A by emulating RN on I. The machine MdA outputs thedescription of the con�guration and the contents of bu�ers of RN at the beginning of step d+1(if the computation terminates at step d then only the contents of the bu�ers is important).Clearly we have M0A. Suppose that we have constructed Md�1A By the above discussion, wealso have cMd�1A . The machine MdA uses both logspace machines Mreach and cMd�1A in order todetermine for each switch s its local con�guration at step d. This is accomplished by iteratingover all switches of RN . For each switch t we iterate over all other switches s, using Mreach todetermine if s and t are connected. If s transmits a message during step d and is connectedto t then the message is written into the bu�ers of t. Mreach uses cMd�1A in order to obtain thelocal con�guration of switches at step d� 1 of the emulated network RN .Note that the construction of MdA uses cMd�1A rather than Md�1A . Thus the computation usesonly O(logN) cells of the work tape for each level of the (depth d) recursion.Theorem 5.8 L � LRN(O(1); poly(N)).The theorem will be proved by using the following lemmata.De�nition 5.9 CY CLE is the following decision problem. The input is a permutation on Nvertices, i.e. a directed graph of out-degree 1 (given by its adjacency matrix), with two specialvertices a and b. The answer is '1' if a and b are on the same cycle.Lemma 5.10 [CM87] CY CLE is complete for L with respect to NC1 reductions.Lemma 5.11 CY CLE 2Mesh LRN(O(1); N;N).Proof: Let the (i; j)'th switch get the (i; j)'th bit in the input adjacency matrix. Thus thereis precisely one set bit in the input that is associated with the j'th column of the mesh (forall 1 � j � N), indicating that j is moved to k in the input permutation. During the �rststep, this information (i.e., k) is transmitted by (k; j) to all the switches of the j'th column.During the second step, this information is transmitted by (j; j) to all the switches of the j'throw. During the third step, j is transmitted by (j; k) to all the switches of the k'th column.Intuitively, after the third step each switch at the j'th column knows both the element to whichj is moved and the element that is moved to j in the input permutation.Let a and b be given as input to node (1; 1). This node transmits them to all the switches(0; �) on the top row of the mesh in the fourth and the �fth steps. During the sixth step thisinformation is also transmitted on the a'th and the b'th columns.17



Assume that in the input permutation, j is moved to k and l is moved to j. Consider theswitches of the j'th column, all of which know about k and l. During the seventh step allthe switches of the j'th column con�gure (U � D;L � R), except for (l; j) and (j; j), whosecon�gurations, Conf(l; j) and Conf(j; j), are de�ned as follows.8>>><>>>: Conf(l; j) = (L�D) and Conf(j; j) = (U � L); if l < j and k < j;Conf(l; j) = (L�D) and Conf(j; j) = (U �R); if l < j and k > j;Conf(l; j) = (R� U) and Conf(j; j) = (D �R); if l > j and k < j;Conf(l; j) = (R� U) and Conf(j; j) = (D � L); if l > j and k > j:Claim 5.12 As a result of the above setting, each cycle in the input permutation induces acycle in the mesh.Proof: The node (l; j) directs a signal coming on the l'th row to (j; j). In turn, (j; j) forwardsthis signal to (j; k), where it is forwarded to (k; k), and so on, until the signal reaches (l; l)which closes the cycle by directing it back to (l; j).During the seventh step, switches (a; a) and (b; b) transmit some (arbitrary) signal on thebus in which their two connected edges take part. They also listen on that bus. An error stateoccurs i� a and b are in the same cycle of mesh edges, indicating a '1' answer to the CY CLEdecision problem.The answer can be broadcast during the eighth step to all other switches of the mesh. Thiscompletes the proof of Lemma 5.11.Using Lemma 5.11 we can now complete the proof of Theorem 5.8.Proof of Theorem 5.8: Lemma 5.11 implies that CY CLE 2 LRN(O(1); N2). To completethe proof of the theorem, we only need to show that the (NC1) reduction from any logspaceproblem can also be done in the LRN model with a polynomial size network and in constanttime. This follows from the general fact that LRN's are closed under composition. Speci�cally,let g : f0; 1gN 7! f0; 1g be a Boolean function computed by a logspace Turing machine. ByLemma 5.10 there is a polynomial p(N) = m and functions y1; :::; ym, each on x1; ::; xN , so thatg(x1; :::; xN) = CY CLE(y1; :::; ym). If we have the Boolean values y1; :::; ym at the appropriateswitches of a mesh of the appropriate size then by Lemma 5.11 we are done.Let us assume w.l.o.g. that the reduction produces the adjacency matrix of the graph whichis the input to CY CLE. Then the size of the mesh computing CY CLE, call it M, is aboutpm�pm. Each value yi is an NC1 function and thus, by Lemma 4.4, can be computed by auniversal polynomial size mesh in constant time. LetMi denote the universal mesh computingyi, and let si denote the switch in M in which yi is expected as input when M computes yi.All that remains to be done is to connect si to Mi and let Mi compute yi in an initializationphase. It is left to move the inputs to all the meshesMi. By Lemma 4.4, all of these meshesare in the form of rectangles of width N , where the ith row is expecting the ith input bit. Thusit is straightforward to connect all of them for distributing the input.Finally, note that the description of the whole construction is uniformly generated by alogspace Turing machine. The only subtlety here is that when writing the description of the18



universal mesh Mi that is to compute yi, the set Rules of con�guration rules correspondsto the function yi = fi(x1; :::; xN). More speci�cally, each switch should have two possiblecon�gurations, out of which it chooses (in the computation step, see Lemma 4.4) according toone of the input bits. Fortunately, the logspace Turing machine which writes the descriptionof Mi can determine these con�gurations when given the description of the circuit computingyi [BPRS91, Cle90, CL89]. The circuit itself is uniformly generated by a logspace machine (seeSec. 4).5.4 Symmetric TM's and RN's begin ofchangesA concept intermediate between determinism and nondeterminism is symmetry introduced byLewis and Papadimitriou. A symmetric Turing machine is a nondeterministic one in whicheach transition may be executed in both directions: forwards and backwards. For the technicaldetails we refer to [LP82] The corresponding logspace complexity class is denoted by SL. Themain result of this section will be that RN (O(1),poly(N)) conincides with SLH, the SymmetricLogspace Oracle Hierarchy which we introduce below.The reachability problem for directed graphs is complete for NL ([Sav70]). If we restrictthis problem to undirected graphs, we get a problem, complete for symmetric logspace.De�nition 5.13 s-t CONNECTIVITY (or UGAP), is the following decision problem. Theinput is an undirected graph G on N vertices (given by its adjacency matrix), with two specialvertices s and t. The answer is '1' if s and t are in the same connected component in G.Lemma 5.14 ([LP82]) The s-t CONNECTIVITY problem is complete for SLwith respect toNC1-reductions.There are two standard mechanisms to construct hierachies over complexity classes: boundedalternation and Turing reducibilities, i.e.: the use of oracle machines. In the case of nondeter-ministic space classes the resulting hierarchies both collapse on the �rst level and coincide withthe original nondeterministic class (see [Imm88, Sze88]). For symmetric space the hierarchybased on alternation was introduced in [Rei84]. In the following we shortly introduce an oraclebased analogue and then prove that it coincide with RN (O(1),poly(N)).There are two main possibilities to relativize space bounded classes, i.e.: to equippe spacebounded machines with an oracle mechanism: In LL relativization, the approach of Ladner andLynch ([LL76]), the machine may use all of its power to generate oracle queries, while in RSTrelativization, the approach of Ruzzo, Simon, and Tompa, the queries have to be generateddeterministically ([RST84]). The later is equivalent to a model, where the oracle machine doesnot generate any query, but simply gives its current instantaneous description to the oracle,which in this model also has access to the input word of the base machine. That means that anoracle set B is now a subset of f(d; I) 2 X��X�j =d= = log(=I=) g. In this form we can carryover RST relativization to symmetric space: certain states of the �nite control of the symmetricbase machine are designated as query states. With each query state q there are associated twoanswer states q+ and q�. Query descriptors are those containig a query state. Given an oracleset B as above, an input word I, and a query descriptor d = (q;W; i; w), where q is a query19



state, we regard d to be symmetrically connected with d+ := (q+;W; i; w) if (d; I) 2 B, and withd� := (q�;W; i; w) in case of (d; I) 62 B. For a symmetric logspace bounded oracle machine Mand an oracle set B we denote the set of all words accepted by M with oracle B by LhM;Bi.As usual, the use of parentheses is reserved for the LL mechanism, while the use of the RSTrelativization is indicated by using angles. Furhter on, let SLhBi be the set of all languagesaccepted by symmetric logspace bounded oracle machines with oracle B, and for a class B setSLhBi be the union over B in B of all SLhBi. Using ideas of the proof of Theorem 5.8 it ispossible to show the following analogue of the nondeterministic case, which we state withoutproof:Proposition 5.15 For each oracle set B we haveSLhBi = SLhLOG(B)i = SLhLBiWe are now in the position to de�ne the symmetric logspace oracle hierarchy:De�nition 5.16 a. O�SL0 := SL and O�SLk+1:= SLhO�SLk i for nonnegative k.b. O�SLk := nX� nB ��� B � X�; B 2 O�SLk o for nonnegative k.c. SLH := SkO�SLk :We mention in passing, that the whole symmetric logspace alternation hierarchy is containedin LSL which is a subset of O�SL2 . This resembles exactly the situation in the nonderministiccase before the result of Immerman and Szelepcsenyi ([RST84, Imm88, Sze88]).Based on this de�nition we can state the �rst half of the main result of this subsection:Theorem 5.17 a. For each positive integer k we have RN (k,poly(N)) � LO�SLk and henceb. RN(O(1),poly(N)) � SLHProof: The proof of part a. follows via induction over the running time k of the RN: For k = 1we have to show RN (1,poly(N)) � LSL. To simulate one step of an RN R = fRNgN�1 onan input I of length N , a deterministic logspace base machine M , repeatedly simulating thelogspace machine U describing the circuit, can go through all pairs (s; t) of nodes of RN andby asking an oracle from SL, can �nd out whether s and t are connected. In this way M candetect the global state of RN reached after one step and hence can decide whether I is to beaccepted.Now lets assume the statement to hold for RN's of running time k and let R = fRNgN�1be an RN of running time k + 1 recognizing a language A � X�. By the induction hypothesiswe know that the outcome of RN after k steps of computation is representable as an element ofLO�SLk . By the construction of this proof it will follow that this pertains to the whole global sit-uation of RN after k steps. Thus the set Con�guration(k) of all local con�gurations and the con-tents of the switch bu�ers, is an element of LO�SLk . Now, let us consider the sets Neighbour(k):=20



fhx; yi j after k steps switch x is a direct neighbour of switch y g and Transneighbour(k):=fhx; yi j after k steps switch x is a transitive neighbour of switch y g. Obviously, a determin-istic logspace machine can recognize Neighbour(k) when it has access to the oracle set Con�gura-tion(k) That is, we haveNeighbour(k) 2 LConfiguration(k). The transitive closure Transneighbour(k)of the symmetric relation Neighbour(k) can now be recognized by a symmetric logspace machinewhen given Neighbour(k) as an oracle. Using Proposition 5.15 we get Transneighbour(k) 2SLhNeighbour(k)i � SLhLConfiguration(k)i = SLhConfiguration(k)i � O�SLk+1: Now, similar to the casek = 1, a logspace base machine can recognize Con�guration(k + 1) if it has oracle access toCon�guration(k) and Transneighbour(k). But the set Con�guration(k)[Transneighbour(k) is anelement ofO�SLk+1, since this class is closed under union. In total, we haveCon�guration(k + 1) 2LO�SLk+1 and hence RN (k + 1,poly(N)) � LO�SLk+1 .Remark: It is up to now not known whether SL is closed under complement. If this shouldbe the case the previous theorem could be strengthened to RN (O(1),poly(N)) � SL.Nisan showed in [Nis92] that the probabilistic class RL is contained in SC2:= DTISP(pol,log2 n). Here SC denotes Steven's class (see e.g. [KR90]) of all problems computable bypolynomial time , polylog space bounded Turing machines. As consequences we get:Corollary 5.18 RN(O(1),poly(N)) � SC2Proof: It is su�cient to show that SLSC2 � SC2, i.e.: that SC2 is closed under symmetriclogspace Turing reducibilities. But given a conditional instanceA of UGAP, that is an adjacencymatrix of a symmetric relation where the entries are membership problems in SC2, we cansimulate Nisan's algorithm on the UGAP instance; each time this algorithm tries to read fromthe input matrix, we �rst solve the SC2-problem encountered in the corresponding entry of theinput.In a simular way, it is possible to show that the containment of SL in DSPACE(log1:5 n)(see [NSW92]) yields:Corollary 5.19 RN(O(1),poly(N)) � DSPACE(log1:5 n).In the second half of this subsection we will prove the converse of Theorem 5.17.Theorem 5.20 SLH � RN(O(1),poly(N))The proof will be done by proving O�SLk � RN (O(1),poly(N)) via induction over k. To showthe case k = 1, i.e.: SL � RN (O(1),poly(N)), we need the following lemma stating that s-tCONNECTIVITY can be decided on the mesh in a constant number of steps. This result has end ofchangebeen established before by Wang and Chen [WC90a]. However, the proof we give next may beof independent interest, since it shows how to solve the problem on an N2-switch N �N mesh(the original proof used an N4-switch N2�N2 mesh, or an N3-switch non-mesh recon�gurablenetwork).Lemma 5.21 s� t CONNECTIVITY 2Mesh RN(O(1); N;N).21



Proof: We prove the lemma by exhibiting a program for solving the s� t connectivity problemon the mesh. Let the (i; j)th switch get as input the (i; j)th bit in the adjacency matrix of theinput graph. During the �rst two steps, the identity of s and t which is input, say, at switch(0; 0) is broadcast on the upper most row (0; �). During the third step, all processors having a'0' as their input bit (from the adjacency matrix) connect (U �D;L�R), and all those havinga '1' and all \diagonal" switches ((i; i) for all 0 � i � n� 1) connect (U � L�D �R). Then,processors (0; s) and (0; t) transmit some signal on the bus connected to their D port.Claim 5.22 The connected components in the input graph relate in a one-to-one fashion to theconnected components of the global con�guration that is assumed by the mesh during the thirdstep.Proof: Consider the ith column of the mesh during the third step. This column connects toprecisely all rows j such that i and j are neighbors in the input graph. A similar observationis true for the ith row. By induction, the claim follows.Having Claim 5.22 we conclude that during the third step, (0; s) and (0; t) read an error stateon the bus which is connected to their D port, i� they are connected in the input graph. Thisinformation can be broadcast to all mesh switches during the fourth step. Thus the outlinedprogram computes s� t connectivity, completing the proof of Lemma 5.21.The next corollary now follows from combining Lemma 5.14 with Lemma 5.21, or alterna-tively the results of [WC90a].Corollary 5.23 SL � RN(O(1); poly(N)).Proof: Lemma 5.21 implies that s� t CONNECTIVITY is in RN(O(1); N2). By Lemma 5.14s � t CONNECTIVITY is complete for SL with respect to NC1 reductions. Thus, we onlyneed to show that the reduction from any problem in SL can also be done in the RN modelwith polynomial size and in constant time. The details and the construction are very much thesame as in the proof of Theorem 5.8, and are therefore omitted.Proof of Theorem 5.20: To conclude the proof we have to show the induction step from k to begin ofchangesk+1. So we assume O�SLk0 to be a subset of RN (O(1),poly(N))for every k0 � k. Further on, letM be a symmetric logspace oracle machine and let B be an element of O�SLk . We have to showthat A := LhM;Bi can be recognized in O(1) steps by a polynomially sized RN R = (RN )N�1.By the induction hypothesis there exists an RN R0 = (R0;N)N�1 recognizing B in some k̂steps. In the following, let I be an arbitrary but �xed input toM of length N . All con�gurationsand descriptors considered from now on will be of size or length logN .We will now design an RN RN simulating M with oracle B on inputs of length N . RNwill consist in base switches and oracle switches. For each descriptor d of M we use a baseswitch s(d). With each query descriptor d of M we associate a copy Rd0;N of R0;N , built oforacle switches. The details of the interconnection of these switches are very similar to thoseof Lemma 5.1. The triplets (d;�d; Rulesd) specifying the switch s(d) corresponding to thedescriptor d, now contains edges to all switches which correspond to descriptors which are22



possibly reachable by d in one step given an arbitrary input. Observe that these edges areundirected, since M is a symmetric TM.The steps performed by RN are as follows:Step 1: Initialization: distribute to each switch of RN its required input bits of I. These couldbe up to three, due to the technical details used in symmetric machines.Steps 2; � � � ; k̂ + 1: The oracle switches in all subnetworks Rd0;N compute in k̂ steps whetherhd; Ii is an element of B or not. If this is the case, Rd0;N establishes a connection betweenthe base switches s(d) and s(d+). Otherwise, s(d) and s(d�) are connected by Rd0;N .Step k̂ + 2: In this last step the interconnection of the switch is done according to the transitionstructure of M on input I: the base switches switch all those edges which correspond totransitions which are consistent with the input I. Then the switch s(d0) correspondingto the initial descriptor d0 := hq0;~b; 1; 1i transmits a signal on the bus it is connected to.Obviously, M accepts its input I with oracle B, if and only if the switch correspondingaccepting end descriptor detects this signal.We �nally mention that the construction of R is su�ciently uniform to be describable by adeterministic logspace machine.As a consequence of Theorems 5.17 and 5.20 we get the main result of this subsection:Corollary 5.24 RN(O(1),poly(N)) = SLH end ofchanges5.5 Non-Deterministic TM's and DRN'sThe next-move mapping � of a non-deterministic TM may have several choices for the nextmachine con�guration, given a certain descriptor. The non-deterministic TM accepts its inputif there exists any sequence of choices of moves that leads to an accepting state. In particular,NL is the set of problems solvable by a non-deterministic TM having O(logN) workspace. Themain result of this section is that NL = DRN(O(1); poly(N)).Lemma 5.25 There exists a constant c > 0 such that for every constructible f(N),NSPACE(f(N)) � DRN(O(1); cmax(f(N);logN)) :Putting f(N) = O(logN), Lemma 5.25 impliesTheorem 5.26 NL � DRN(O(1); poly(N)).Proof of Lemma 5.25: The proof starts with a construction of a TM U , similar to the onedescribed in the proof of Lemma 5.1. The machine U uses M , the non-deterministic Turing23



machine solving a problem A, in order to construct for every N a DRN RN solving A on allinputs of size N . The description of DRN's is similar to the one given in the proof of Lemma5.1 for RN's, except that the triplets (d;�d; Rulesd), specifying the switch s(d) correspondingto the descriptor d in the description of the DRN, include directions for the edges, and thatthere may be several relevant out-edges for each input symbol and Turing machine con�guration(descriptor). As before, we set �d = (�dout;�din; Id), with the following changes. The set �dincontains s(d)'s in-edges, and �dout is the set of s(d)'s out-edges. �dout = d1 [ � � � [ dj�j, wheredj is the set of possible moves when the input symbol at the input head location (speci�edby the descriptor d) is the j'th symbol in �, namely �j. As before, Id contains the pair ofdescriptors PREV (d) and SUCC(d), directed into and out of the switch, respectively. As inthe undirected case, for any switch s(d), �dout \ �din = ;.Let RN be a DRN constructed according to the description output by U when given theinput N . Again, we have an initialization step and a computation step.Algorithm NTM Simulation:The initialization step is the same as the one from the AlgorithmTM Simulation in the proofof Lemma 5.1.Computation Step: Suppose a switch s(d) received an input symbol �j 2 � at the initial-ization step. Then, during the computation step, s(d) connects all the in-edges from �din to allthe out-edges from dj . All other out-edges remain disconnected.After the con�guration has been taken, the switch s(d0) corresponding to the descriptord0 = hq0;~b; 1; 1i transmits a signal on the bus it is connected to.Claim 5.27 Given an input instance I of size N , the signal transmitted by s(d0) at the com-putation step reaches a switch s(d) if and only if there is a sequence of choices of moves of Mon I reaching the descriptor d.Proof: We prove one direction of the claim by induction. Suppose that, given the input I,there is a sequence of l moves by M leading to d. For l = 0 we have d = d0. For l > 0, supposethe claim holds for all switches corresponding to sequences of at most l� 1 moves. Consider aswitch s(d0) corresponding to a descriptor d0 of M . The descriptor d0 is reachable in l�1 movesof M on I, and d is reachable from d0 in a single move, given the input I. By the assumption,the signal transmitted by s(d0) reaches s(d0). By the de�nition of the DRN model and theconstruction of RN , there is an edge e directed from s(d0) to s(d). The edge e is connected toall the in-edges of s(d0), given the input I. Thus the signal reaches s(d), too.As for the other direction, if the signal reaches s(d) then there is a (directed) path P =e1; e2; � � � ; el from s(d0) to s(d). Each edge along the path corresponds to a valid move of M onI, hence P corresponds to a sequence of such moves reaching d.In particular, Claim 5.27 implies that there is a switch sa corresponding to a �nal acceptingstate qa which detects the signal if and only if there is a sequence of choices of moves by M onI leading to qa. This concludes the proof of Lemma 5.25.24



It is important to note that Claim 5.27 does not hold when the undirected RN model isused. This is because the signal transmitted by s(d0) may take in-edges in the \opposite"direction and hence reach switches corresponding to descriptors that may not be reached byM in a valid sequence of moves. This is actually an inherent problem of the RN model; whentaking some con�guration, the switch can not control the exits that an incoming signal maytake. This observation may conceivably lead to upper bounds on the computational power ofthe RN model in order to \separate" it from the DRN model.Theorem 5.28 DRN(O(1); poly(N)) � NL.Proof: As the proof is similar to that of Theorem 5.7, we describe here only the necessarymodi�cations. Let A be a problem solvable by the familyRA = fRNgN�1 in the DRN model ind = O(1) steps. The \answer" to A is either a \1" or a \0". As before, we say that the machineoutputs a 1 (respectively, 0) if it terminates in the accept state qa (resp., the reject state qr). Anon-deterministic machine NMdA solving (all length-N inputs of) A may reject when given aninput instance I (of length N) for which the answer is a 1. The machine should always acceptwhen the answer is a 0. Moreover, NMdA should have a sequence of choices of moves leading toan accepting state if the answer is a 1.The construction of NMdA is similar to that of MdA in the proof of Theorem 5.7, except thatthe logspace machine Mreach given there is replaced by a non-deterministic logspace machineNMreach. Let H denote some con�guration of a network R in the DRN model. When thecon�guration description of H together with the id's of two nodes s and t in R, are given as aninput instance, NMreach determines whether there is a (directed) bus in R, starting at s andreaching t. For three distinguished symbols 0, 1 and 2 in the alphabet �, SMreach outputs 1on its output tape if there exists a bus leading from s to t, 0 if no such bus exists, and 2 if theanswer is not determined by the machine.Given NMreach, the construction of NMdA follows that of MdA, where calls to Mreach arereplaced by calls to NMreach. The only di�erence is that if NMreach outputs a \2" value thenNMdA enters the reject state immediately. Otherwise, the computation proceeds as describedin the proof of Theorem 5.7.It remains to show the construction of NMreach. We observe that when each networknode is replaced by a cluster of (a constant number of) graph nodes, each holding a singleset of connected edges, then NMreach actually addresses the reachability problem: \given twonodes s; t in a directed graph G, is there a (directed) path starting at s and leading to t?".Obviously, the original directed-network reachability problem is of the same complexity as thegraph reachability problem. Reachability is known to be (complete) in NL, thus there is anon-deterministic logspace Turing machine NMyes computing it. On the way to proving thatNL = Co � NL [Imm88, Sze88], it is shown in [Imm88] that the opposite question, namelythe directed unreachability problem, is also in NL. This is established by presenting a non-deterministic logspace Turing machineNMno computing unreachability. Our machine NMreachexecutes both NMyes and NMno on its input (viewed as the graph reachability problem). Itthen outputs 0 if NMno accepts, 1 if NMyes accepts, and 2 if both NMyes and NMno reject.25



Finally we note that, although no direct simulation is shown, the equivalence of NL andDRN(O(1); poly(N)) implies that DRN(O(1); poly(N)) � CRCW 1 (cf. [KR90]).6 Non-Monotonic Recon�guring NetworksThis section investigates the power of the NMRNmodel. It is instructive to note that this modelis more powerful than the commonly accepted parallel models (assuming PTIME 6= NC), eventhose equipped with a shared memory unit. The main result of this section is the followingtheorem.Theorem 6.1 PTIME = NMRN(O(1); poly(N)).One direction of the theorem is implied by the following lemma:Lemma 6.2 [BPRS91] Any circuit of depth d and constant fan-in can be simulated by anon-monotonic RN in constant time and maximum bus length d.Proof: The switches of the NMRN model have a complete set of operators f:;_g. It is thusstraightforward to construct an RN whose underlying topology reects the topology of thesimulated circuit.In particular, if the RN model allows for buses of polynomial length then every problemin PTIME can be simulated in this way in constant time, although the simulation is not\uniform" or universal, and each circuit needs to be simulated individually. Since any problemA in PTIME is solvable by a family of circuits CA of polynomial depth, we immediately havethe �rst direction of Theorem 6.1, namely, PTIME � NMRN(O(1); poly(N)).Lemma 6.2 implies that the Circuit Value Problem (CVP) can be solved in constant timeby a non monotonic RN. However, this result has a somewhat non-uniform avor. As a moreillustrative example to the power of non monotonic RN, let us consider the well studied problemof computing the Lexicographically-First Maximal Independent Set (Lex-MIS) in a given graph.This problem is often used as a canonical example for a PTIME-complete problem just asis the CVP. In [BPRS91] it is shown that Lex �MIS can be solved in constant time by apN �pN mesh in the NMRN model.Lemma 6.3 [BPRS91] Lex�MIS 2Mesh NMRN(O(1);pN;pN).From Lemma 4.8 and Theorem 5.2 we haveL � Mesh RN(O(1); poly(N); poly(N)) � Mesh NMRN(O(1); poly(N); poly(N)) :Thus we �nally conclude the following.Theorem 6.4 PTIME �Mesh NMRN(O(1); poly(N); poly(N)).26



Proof: The problem is solved after the appropriate reduction to Lex�MIS.The remaining direction in the proof of Theorem 6.1, namelyNMRN(O(1); poly(N)) � NMRN(poly(N); poly(N)) � PTIME ; (2)involves a simple emulation of the networks and induction. Let A 2 NMRN(O(1); poly(N)).Then A has a family R = fRNgN�1 in the NMRN model, which is uniformly generated bysome Turing machine TR. The emulation begins by producing the network description D(RN )for the appropriate N , by an application of TR. Given the initial description of the network(or given its description for any time t), and the input instance, a polynomial TM emulatesthe computation of every switch, producing a description of the network con�guration at thebeginning of the second step (resp., at the beginning of the (t + 1)'st step). Broadcastingmessages at any step involves, say, a depth-�rst scan of the connected components.This concludes the proof of Eq. (2), and hence Theorem 6.1.7 Summary and Open QuestionsOur results for the relations between recon�gurable complexity classes and parallel and tradi-tional complexity classes are summarized in Figure 1. Established connections are drawn byarrows. Downward vertical arrows hold trivially and are omitted.The importance of these relations is in indicating how hard a problem may turn to be. Forexample, consider the Transitive Closure (TC) problem. Wang and Chen [WC90a] showed thatTC 2 RN(O(1); N3) ; TC 2Mesh RN(O(1); N2; N2) :The TC problem is related to the s � t CONNECTIVITY problem. The solution of the TCfor a graph G gives the answer for s� t CONNECTIVITY for all pairs of nodes s and t in G.According to our results showing TC 2 LRN(O(1); poly(N)) implies L = LSL, thus resolvinga long-standing problem. Thus, although the constant time RN algorithm for TC is not verycomplicated, we expect a solution for TC in the (constant-time polynomial-size) LRN modelto be either very di�cult or impossible.There are many other open questions. For example, the relation of the RN model to CREWPRAM models is not fully understood. It is also open whetherLRN(O(1); poly(N)) ?� Mesh LRN(O(1); poly(N); poly(N))The informal statement of these questions reects the search for a deeper understanding of therole of switch operation in determining the power of the model. The results of this paper showthat the answers correspond to complex issues in the theory of computational complexity.Perhaps most important of all is the quest for more accurate complexity models for recon-�guring networks. Our more powerful RN classes, DRN and NMRN, are founded on the same27



basic underlying assumptions of the general model, and particularly, the assumption that prop-agation delay is independent of the bus lengths. This assumption may be unjusti�ed for theseclasses, due to the use of active devices along the transmission paths traversed by messages.Consequently, further study of these stronger RN classes should attempt to formulate a morerealistic set of complexity assumptions for them. The computational power of programs inthese classes should then be re-evaluated under these more re�ned complexity assumptions.AcknowledgementsWe are grateful to Ilan Newman for helping us with the proof of Theorem 5.8. Independently begin ofchangeof us, observations related to Theorems 5.17 and 5.20 were recently made by Koji Nakano and end ofchangeH. Yasuura [NY].
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Figure 1: Recon�gurable complexity classes (classes are constant-time and polynomial-size).
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