
Site Selection for Real-Time Client Request Handling*

Vinay Kanitkar and Alex Delis
Department of Computer and Information Science

Polytechnic University
Brooklyn, NY 11201

Abstract

In a conventional client-server database system (CS-
DBS), a transaction and its requisite data have to be colo-
cated at a single site for the operation to proceed. This has
traditionally been achieved by moving either the data or the
transaction. Today, the availability of powerful worksta-
tions and high-bandwidth networking options has led users
to expect real-time guarantees about the completion times
of their tasks. So as to offer such guarantees in a CS-DBS,
a transaction should be processed by any means that allows
it to meet its deadline. In this paper, we explore the option
of moving both transactions and data to the most promising
sites for successful completion. We propose a load-sharing
mechanism that oversees the shipment of data and trans-
actions in order to increase the efficiency of a client-server
cluster. Additionally, we make use of the concept of grouped
locks to schedule the movement of data objects in the clus-
ter in a more efficient manner. An experimental evaluation
shows that the use of our load-sharing algorithm provides
a considerable improvement in the real-time processing ef-
ficiency of a CS-DBS even in the presence of very high vol-
umes of update transactions.

1 Introduction

Contemporary systems are expected to provide dis-
tributed data access and support real-time constraints on in-
dividual tasks. Such systems are found in many diverse
application domains including financial environments, net-
work management and process control systems as well as
computer integrated manufacturing. In many such applica-
tion areas, client-server database systems (CS-DBS) have
utilized increasingly powerful processing capabilities and
network bandwidths to successfully manage data and pro-
vide high transaction throughput. However, real-time trans-

*This work was supported in part by the National Science Foundation
under Grant NSF IIS-9733642 and the Center for Advanced Technology in
Telecommunications, Brooklyn, NY.

action processing in a CS-DBS has not been examined
in much detail, and presents an important new challenge.
Transaction processing in a CS-DBS has generally been per-
formed either by sending the transaction to the location of
the data (transaction-shipping)[9, 15], or by moving the data
to the location of the transaction (object-shipping) [6, 16].
Althoughboth these techniques offer several advantages, in-
dividually they have limited flexibility for use in general
real-time application environments. In this paper, we pro-
pose a new framework that ships the data or the transaction
or both to the site that is most likely to execute the transac-
tion within its deadline.

In real-time databases, a transaction completes success-
fully only if it finishes its execution within a pre-specified
deadline. Deadlines are introduced to satisfy quality of ser-
vice requirements or control the operation of physical sys-
tems. Therefore, the key measure of performance is the per-
centage of all transactions that complete within their dead-
lines rather than the average transaction response time or
throughput. We have previously observed [13] that a client-
server real-time database system (CS-RTDBS) can be more
efficient than a centralized system in the presence of the fol-
lowing conditions: (i) if there is a reasonable amount of
spatial and temporal locality in client data access patterns,
and (ii) the percentage of data accesses that are updates is
low. If the number of updates is large then centralized sys-
tems demonstrate better performance than their client-server
counterparts. This is because a large volume of updates
increases the overhead incurred in coordinating distributed
concurrency and shipping objects among sites significantly.
Thus, transactions at client sites are forced to block for long
periods of time waiting for their required data objects and
locks to become available.

In order to avoid such potential delays, we propose a
load-sharing algorithm that can substantially improve real-
time processing in a CS-RTDBS. Unlike the basic object-
shipping client-server model [6, 16, 25, 26], we introduce
an approach which performs either transaction-shipping or
object-shipping or both in order to speed up processing of
real-time transactions. This flexible approach offers greater



opportunities for timely transaction completion. The site
to which a transaction is shipped is decided by means of
heuristics that combine the availability of data and the cur-
rent processing load of that site. To test our hypothesis,
we have developed detailed prototypes of the three configu-
rations: centralized (CE-RTDBS), basic client-server (CS-
RTDBS), and load-sharing client-server (LS-CS-RTDBS).
The results of our experiments show that the load-sharing al-
gorithm in the LS-CS-RTDBS allows it to demonstrate con-
siderable performance gains over the CE-RTDBS and CS-
RTDBS, even when the percentage of updates is heavy. We
also confirm that, when update transactions are sparse, the
basic CS-RTDBS can provide better performance than its
centralized counterpart.

The rest of the paper is organized as follows. The next
section discusses the used system models. In Section 3, we
present the basic techniques of transaction-shipping, trans-
action decomposition, and object migration. Section 4 out-
lines our load-sharing algorithm and our experimental eval-
uation is described in Section 5. Section 6 describes related
work and the last section contains our conclusions.

2 System Features and Real-Time Aspects

In a centralized architecture, the database server per-
forms all the transaction processing. Clients are assumed
to be simple terminals and act as user-interface points only.
User transactions are initiated at the clients and are for-
warded to the server for execution. Once they arrive at the
server, the real-time scheduler assigns priorities to them and
executes them in that order. All transactions are scheduled
according to a single global schedule. The results of execut-
ing the transactions are communicated to the users through
the clients.

In object-shipping CS architectures, transactions are ex-
ecuted at client sites. If an object referenced by a trans-
action is not cached locally (either main memory or disk)
then it is fetched from the server. The locally available
disk/memory buffers and CPU of the client are used to carry
out the necessary processing. The server performs only low-
level database functionalities (I/Os, buffering and manage-
ment of concurrency) on the behalf of requesting clients.
The set of objects cached at a client is treated as a local data-
space and is stored in the client’s short and long-term mem-
ory. All future requests for the cached data can now be sat-
isfied at the client itself. In this paper, we support the client
framework used in [16, 25, 26] where clients cache the locks
for objects as well. Since several clients can cache the same
database objects, the server maintains a global lock table to
serialize updates to cached data.

There are two kinds of locks, Shared (SL) and Exclu-
sive (EL) [16]. A client transaction can update a cached
database object only if the client has an EL on that object.

The locking scheme is a variant of strict two phase locking
(2PL) for distributed environments. Unserialized accesses
to the database are prevented by ensuring that no two clients
are able to acquire conflicting locks on an object simultane-
ously. If a client’s lock request on an object conflicts with
locks presently granted to other clients then the server calls
back all such locks. Once these locks have been released, the
server grants the lock to the requesting client and sends the
object over. We have modified the lock callback scheme in
order to allow greater latitude for data sharing. Now, when
the server requests a client to give up an EL on a database
object, it also specifies the type of lock the requesting client
desires. If the other client has requested a SL then the client
that holds the EL returns the object to the server but only
downgrades its own lock to a SL. Now, transactions at both
clients can continue to access the object in shared mode.

Each client in the system has its own scheduler to priori-
tize local transactions. Clients also have their own local lock
managers to ensure that concurrent transactions at the client
access the data in a serialized manner. Transactions in both
the centralized and client-server models are scheduled ac-
cording to the Earliest Deadline First (ED) policy. In this
scheduling policy, the transaction with the earliest deadline
is assigned the highest priority. We assume that the system
has no knowledge of task execution times so we are unable
to use the Least Slack scheduling discipline to assign prior-
ities to transactions [1]. Since the ED policy does not use
the estimated processing time of jobs it can possibly sched-
ule jobs that have already missed their deadline. To avoid
this inefficiency, we use an additional criterion that tasks that
have missed their deadlines are not processed at all. It is in
this CS framework that we have employed our load-sharing
algorithm in order to improve its real-time processing effi-
ciency. The techniques used in our load-sharing algorithm
are described in the following section.

3 Techniques for Improved Real-Time Pro-
cessing

This section describes the techniques that we have used
in our load-sharing algorithm, namely, transaction-shipping
[9], transaction decomposition [19], object migration, and
object request scheduling.3.1 Transaction-Shipping

In object-shipping client-server environments different,
and possibly overlapping, sets of database objects are
cached by clients. At times, clients may not be able to
commence transaction execution because other sites have
locked solicited objects in a conflicting manner. In these
cases, it may be beneficial for a client to ship the trans-
action to the site that has locked the object(s) in question.



Such transaction-shipping requires up-to-date knowledge
of database object locations and load at each client. This
knowledge can be maintained at the server since it stores the
global lock tables for all database objects and is in frequent
contact with all clients. There are two cases when it is fea-
sible to make use of a transaction-shipping mechanism: (i)
If a significant percentage of a transaction’s required data is
already cached at another site, and (ii) If the client where a
transaction has been launched is heavily loaded.

Transaction-shippingcan offer several advantages in dis-
tributed real-time systems, namely: (a) the client can initi-
ate processing of transactions that it is possible to execute
locally, (b) a shipped transaction will have at least as much
chance of successful completion at that site as at its originat-
ing site, and (c) network traffic can be reduced by shipping
transactions instead of database objects.3.2 Transaction Decomposition

Transaction decomposition refers to the disassembly of
multiple object requests from a client transaction and the
quest to individually fulfill independent object requests.
Transaction decomposition consists of three phases: request
disassembly, materialization, and answer synthesis. For ex-
ample, if a transaction needs objects already cached in four
different locations then, the requesting client can communi-
cate its data and processing needs to these four clients. This
communication could be facilitated by the server which is
aware of the locations and the lock status of cached objects.
Once the four clients retrieve the necessary objects in par-
allel (materialization phase), they can forward the results to
the requesting client for further processing and final transac-
tion handling (answer synthesis). In order to make transac-
tion decomposition easier to accomplish, an a priori classi-
fication of transactions based on data access/update patterns
may be established.

In general, decomposition may assist in the off-loading
of a client site in two major ways: (i) when a client requests
objects that have been cached in numerous sites (a situation
reminiscent of data fragmentation in distributed databases),
and (ii) when a set of client transactions can be considered
all together and the client database manager can take advan-
tage of the common object requests that these transactions
demonstrate [19, 20]. The advantages of transaction decom-
position are similar to those of transaction-shippingwith the
added benefit that each of the subtasks could be processed in
parallel and may take considerably shorter time to process.
A disadvantage of such parallel subtask processing is that
the failure of any subtask to meet the transaction deadline
implies the failure of the entire transaction.

3.3 Object Request Scheduling
In a non real-time environment, the order in which client

object requests are served is often First-Come First-Serve.
However, in a real-time system, object requests can be pri-
oritized according to the deadlines of the requesting transac-
tions. Object requests by clients can convey the deadline in-
formation of the requesting transactions. Requests by trans-
actions with earlier deadlines are satisfied before others. If
a client transaction has already missed its deadline then the
server can unilaterally decide not to ship the object to that
client. In fact, if reasonably accurate estimates of transac-
tion execution times were available, the server could decide
whether to satisfy certain object requests at all viz. requests
by transactions that are expected to miss their deadlines.3.4 Object Migration Among Clients

The movement of database objects within a cluster can
play a significant role in improving the efficiency of the sys-
tem. To this end, we group the granting and release of locks
requests by multiple clients on the same object [2]. Assum-
ing that a transaction accesses n data objects, the first phase
of Standard 2PL will involve n requests from the client to
the server and n replies from the server. In the second phase,
the client sends n messages to release the locks on the ob-
jects and return all modified objects to the server. There-
fore, the total number of messages sent is 3n. In a CS-DBS
that allows inter-transaction caching, the client may retain
the objects and locks until the server calls them back. If the
client does not return some objects voluntarily, the server
may have to call each of them back individually. Therefore,
the total number of messages required during this interaction
could be as high as 4n. An example interaction using 2PL
is shown in Figure 1. which indicates that moving an ob-
ject from Client A to Client B (through the server) requires
7 messages.

1 2 3

4

5

6

7

Client A Client B

Server

1: Client A requests an object from server
2: Server ships the object to A
3: Client B requests the same object from server
4: Server recalls object from A
5: Client A returns object to the server
6: Server sends object to Client B
7: B voluntarily returns object to the serverFigure 1. The 2PL Protocol

In the request grouping technique, the object server col-
lects all the lock requests for each database object for a spec-
ified time interval (collection window) in an ordered list
(forward list) [2]. At the end of the collection window, the
lock is granted to the first transaction in the forward list and
the object is shipped to the respective client along with the



forward list. When this transaction commits, the client ships
the object to the next client in the forward list. Finally, after
the last transaction on the forward list completes, the object
is returned to the server. Therefore, in this scheme, the lock
release of the previous client is combined with the lock grant
of the next client. For n requests on a database object within
a collection window, the lock grouping protocol will require
only 2n+1 messages. An example interaction that requires
only 5 messages is shown in Figure 2. In a real-time envi-
ronment, the forward list can be prioritized according to the
deadlines of the requesting transactions. The deadline in-
formation is stored in the forward list and is used to ignore
transactions that have missed their deadlines. Appropriate
information can also be placed in the forward list to indicate
parallel read-only access to data.

1
23

4

5

Client A Client B

Server

1: Client A requests an object from server
2: Client B requests the same object from server
3: Server ships object and forward list to A
4: Client A forwards object to B
5: B returns object to the serverFigure 2. The Lock Grouping Protocol

4 Load Sharing

In this section, we describe a load sharing algorithm that
makes use of the techniques described so far. In the con-
text of real-time systems, the primary objective is to min-
imize the number of transaction that miss their deadlines.
A major advantage of CS-DBSs is that the clients and the
server are in frequent contact. Therefore, information about
the current processing load at clients can be conveyed to the
server piggybacked on object requests and releases. This al-
lows the server to maintain up-to-date information about the
load on the clients without incurring an additional messag-
ing overhead. There are two reasons to ship a transaction
to another site: (i) if a transaction is expected to miss its
deadline at the client where it is initiated. Since we do not
have accurate transaction execution times, we use the ob-
served transaction times as a heuristic (H1) to assist in mak-
ing this decision, and (ii) we have observed that most of the
transaction blocking time is spent in waiting for clients that
have conflicting locks to release them. Therefore, executing
a transaction at a site which has to acquire the least num-
ber of conflicting locks is the most efficient available option
(H2). In the description of both heuristics, consider a trans-
action T that has been initiated at Client A.H1 : If Client A has n transactions before transaction T

in its priority queue then transaction T has a reason-
able chance of successfully completing at Client A if

(CurrentT ime + n � ATLA) � Tdeadline, whereATLA is the average execution time for all completed
transactions at Client A.H2 : The time spent by a transaction waiting for its req-
uisite data to become available is a key factor re-
sponsible for the failure of real-time transactions [13].
Therefore, for transaction T , we consider Client A to
be a better processing site than Client B if T has to
wait for fewer conflicting locks to be released if it is
processed at A.

Transaction decomposition can be incorporated into the load
sharing algorithm in an elegant manner. If a transaction is
decomposable then it can be executed as a set of indepen-
dent tasks. Each of these tasks is processed as a separate
operation by the load sharing algorithm. The object migra-
tion scheme works orthogonally to the load sharing algo-
rithm. However, when a client requests an object’s location,
the server refers to the object’s forward list and reports the
last client in the list as the object’s location.

In the description of the load-sharing protocol, we use
granting of locks and the shipping of objects interchange-
ably. The load-sharing algorithm works as follows:� TransactionT is initiated at a client.� IF T can be accommodated in the local processing queue with a reasonable

chance (H1) of meeting its deadline THEN

– the client looks in its local cache (memory/disk)for the objects/locks
requested by the transaction. For all objects that are not available lo-
cally the client sends requests to the server.

– IF the server can grant all the objects/locks requested by transactionT THEN these objects are locked appropriately on behalf of that
client and shipped to it. The transaction is executed by the client lo-
cally. ELSE� the server does not ship any objects over but instead sends the

locations for the requested objects that have been locked in
conflicting modes by other clients.� IF another client is in a better position to complete this trans-
action (H2) THEN the transaction is shipped to that client
ELSE the client sends a message to the server indicating that
the transaction will be processed locally and asks that the req-
uisite objects be shipped over as soon as possible.

ELSE

– the client queries the server for information about the location of the
required objects and the processing loads on the other clients.

– Once this information is received, the most suitable client (H2) is
picked and the transaction is shipped to that client. Requests for ob-
jects required by that transaction are sent to the server on behalf of
that client.� IF necessary, the results of executing the transaction are communicated to

the originating client.

From the above pseudocode, it can be seen that the final
decision about transaction-shipping is made by the clients.
Off-loading the load sharing effort from the server is impor-
tant because in situations of high load, the server may lag in
serving object requests, maintaining load tables and forward
lists.



5 Prototype Experiments

In order to evaluate the effectiveness of the load-sharing
algorithm we have developed prototypes of the centralized
real-time database (CE-RTDBS), client-server real-time
database system (CS-RTDBS), and the load-sharing CS-
RTDBS (LS-CS-RTDBS) using Solaris socket and thread li-
braries. In this section, we describe the experimental setup
and discuss the results of our prototype experiments. The
main questions that our investigationattempts to answer are:
(i) how does the performance of the client-server database
model compare with that of the centralized model in a real-
time environment?, and (ii) do the load sharing and object
migration techniques used in the LS-CS-RTDBS allow a
better level of performance than the CS-RTDBS?5.1 Methodology

The test environment for our experiments was a sys-
tem consisting of 5 Sun ULTRAs residing on a 10-Mbps
Ethernet LAN. The database server executed by itself on
one machine and the clients were uniformly divided on the
remaining workstations. The Paged-File (PF) layer, from
the MiniRel system [23], is used to create and manage a
database containing 10,000 objects. The PF layer imple-
ments a file page buffer manager, and allows the storage and
retrieval of uniquely numbered fixed-sized pages from its
memory buffers and disk file. For convenience, we assume
that the size of the database objects and that of the PF layer
pages used to store the database are the same, i.e., 2 KB. Ta-
ble 1 states the values of the parameters used in our proto-
type experiments.

Parameter Value
Database Size 10,000 objects

Centralized RTDBS Server
Main Memory Capacity 5,000 objects
CS-RTDBS Server Main

Memory Capacity 1,000 objects
Client Disk Cache Size 500 objects

Client Memory Cache Size 500 objects
Average Transaction Inter-Arrival Time 10 sec.

(Poisson Distribution)
Average Transaction Length 10 sec.
(Exponential Distribution)

Average Transaction Deadline 20 sec.
(Exponential Distribution)

Percentage of Updates 1%, 5%, 20%
Average Number of Objects 10

Accessed by Each TransactionTable 1. Experimental Parameters
The prototypes for all three systems have been developed

in C. Communication between the clients and the server is
done using TCP sockets. In all implementations, the server
is designed as a concurrent connection-oriented program.
Once a connection is created between a client and the server,

it is maintained for the duration of the experiment. This is
done so that the relatively high overhead of establishing a
socket connection between the clients and the server is in-
curred only once. The server executes one thread per client
which handles all future interaction with it. In the LS-CS-
RTDBS, we ensure that client-to-client communication is
not always routed via the server by using a specialized di-
rectory server. The only function of this directory server is
to forward data or messages to their intended recipients.

The transaction stream at each client is a mixture of up-
dates and queries. Ten percent of all submitted transactions
were decomposable. A transaction is constructed by us-
ing calls to PF layer functions to load and update database
objects from the UNIX disk file. Objects (pages) are read
into the buffer space allocated to the transaction either from
the disk or PF memory buffer. Updated objects are marked
as dirty and are automatically written back to the disk file
by the PF buffer manager when the page is replaced in the
buffer. The “processing” performed by each transaction is
the calculation of products of random numbers until the pre-
scribed transaction execution time has elapsed. The CE-
RTDBS server has been designed to be able to process as
many as one hundred transactions simultaneously depend-
ing upon the availability of memory buffer space and access
to database objects. This is done by executing each transac-
tion as a separate thread.

Lock managers are used to ensure that conflicting ac-
cesses to the object database are not allowed. In the central-
ized system, the lock manager ensures that transactions can-
not obtain conflicting locks on database objects. In the CS-
RTDBS, the global lock manager arbitrates between lock
requests from clients. Wait-for graphs are used to detect
deadlocks. When an object request is received by the server,
it is added to the request queue only if it does not cause a
deadlock cycle in the wait-for graph. Since each program
is multi-threaded, we synchronize accesses to the database,
lock table, and other shared variables by using of Solaris mu-
tex primitives. In our database access pattern, which we call
Localized-RW, 75% of each client’s accesses were made to
a particular portion of the database according to the Uniform
distribution while the other 25% of the accesses were to the
remainder of the database according to the Zipf distribution
[8, 12].5.2 Results

We have evaluated the CE-RTDBS, CS-RTDBS, and the
LS-CS-RTDBS with the Localized-RW database access pat-
tern and a varying percentage of updates. The percentage
of transactions that completed within their deadlines in the
three configurations for 1% updates is shown in Figure 3.
We first compare the performance of the CE-RTDBS and the
CS-RTDBS. For a small number of clients, the centralized



system performs better than the CS-RTDBS. The faster pro-
cessing ability of the centralized system and the low con-
tention for database objects allow the CE-RTDBS to ex-
hibit a very high degree of concurrent transaction execution.
However, as the number of clients increases, the perfor-
mance of the CE-RTDBS system deteriorates rapidly. For
more than 40 clients, the centralized system does not per-
form as well as the CS-RTDBS. The locality in every client’s
data accesses and the low percentage of updates means that
a high percentage of client data object requests can be satis-
fied locally (Table 2). The server is also able to satisfy most
object requests withina very short time (Table 3). An impor-
tant factor that causes client transactions (in the CS-RTDBS)
to fail is the delay in obtaining objects/locks that are held
by other clients. The LS-CS-RTDBS is able to reduce this
blocking delay in many cases by using the load-sharing al-
gorithm and the object migration policies, thus, resulting in
a significantly higher percentage of successful transactions.
The number of requests that have been pushed along with
the objects in forward lists is significant, and a correspond-
ing reduction can be seen in the number of messages passed
for object recalls and returns (Table 4).

70.00

72.00

74.00

76.00

78.00

80.00

82.00

84.00

86.00

20 40 60 80 100

LS−CS−RTDBS

CS−RTDBS

CE−RTDBS

Number of Clients

Percentage of successfully completed transactions 
(Localized−RW, 1% updates)

Figure 3. Percentage of Transactions Com-pleted Within Their Deadlines (1% updates)
Number of Clients CS-RTDBS LS-CS-RTDBS

1% 5% 20% 1% 5% 20%
20 87.08 84.63 79.74 89.63 87.11 84.31
60 85.54 78.18 74.64 88.63 84.11 81.71
100 82.63 75.52 62.29 86.55 82.21 66.90Table 2. Average Cache Hit Rates in the CS-RTDBS and LS-CS-RTDBS

Number of Clients CS-RTDBS LS-CS-RTDBS
Shared Exclusive Shared Exclusive
Locks Locks Locks Locks

20 0.024 0.487 0.027 0.433
60 0.063 0.538 0.052 0.509

100 0.069 0.850 0.058 0.628Table 3. Average Object Response Times (inseconds) for 1% updates
CS-RTDBS LS-CS-RTDBS

Object Request Messages (client to server) 109,911 104,314
Objects Sent (server to client) 108,273 94,596

Object Requests Satisfied Using Forward Lists - 9,718
(client to client)

Objects Recall Messages (server to client) 45,130 41,071
Objects Returned (client to server) 45,136 41,020Table 4. Number of Messages Passed in theCS-RTDBSs (100 Clients, 1% updates)

The performance of the three models for 5% updates is
shown in Figure 4. As the curves show, the increased con-
tention resulting from a higher percentage of updates affects
the performance of all three systems adversely. In the cen-
tralized system, the effect of this increased contention is in
the degree of transaction concurrency that can be achieved
but, the CS-RTDBS is affected the most by the increased
locking conflicts. Lock conflicts between clients cause data
objects to be returned to the server and re-fetched much
more frequently. This results in long blocking periods for
client transactions. Particularly, when an object in a client’s
frequently accessed region has to be returned to the server,
the delay in re-fetching it can affect many transactions. The
LS-CS-RTDBS can avoid such delays in a large number of
cases. Rather than wait for the data be sent to the trans-
action’s client, the transaction itself is shipped to the client
which has presently locked the data. This flexibility in the
execution of transactions allows the LS-CS-RTDBS to out-
perform the CS-RTDBS and centralized system (once the
number of clients is greater than 20).

Figure 5 shows the performance of the three models for
20% updates. The overall performance trends match those
seen in the two earlier scenarios. The CS-RTDBS and the
LS-CS-RTDBS demonstrate a very small deterioration in
performance as the load increases whereas the CE-RTDBS’s
efficiency degrades much more rapidly. Although the CE-
RTDBS does better than the LS-CS-RTDBS initially, its
rapid performance degradation makes it worse when the
number of clients becomes larger than 40. The CS-RTDBS
is affected severely by the very high number of update trans-
actions. A large percentage of object requests cannot be
granted by the server immediately. Similarly, an increased
number of objects have to be given up and re-fetched from



66.00

68.00

70.00

72.00

74.00

76.00

78.00

80.00

82.00

Number of Clients

20 40 60 80 100

CS−RTDBS

CE−RTDBS

LS−CS−RTDBS

Percentage of successfully completed transactions 
(Localized−RW, 5% updates)

Figure 4. Percentage of Transactions Com-pleted Within Their Deadlines (5% updates)
the server. These delays are instrumental in causing the CS-
RTDBS to perform worse than the CE-RTDBS (for up to
80 clients). It is only the locality in each client’s data ac-
cesses that causes the CS-RTDBS to do better than the CE-
RTDBS when the number of clients is 100. The LS-CS-
RTDBS completes almost 10% more transactions success-
fully than the CS-RTDBS. In a real-time environment, this
is a very sizeable improvement.

6 Related Work

Many techniques have been suggested for load sharing
in shared memory multi-processor machines [5, 7, 17, 18].
Since the data is visible to all processors, the load sharing ex-
clusively concerns CPU loads. Real-time systems have also
exploited available information about the submitted tasks so
as to guarantee their completion. This information includes
the task’s deadline, its expected processing time and I/O re-
quirements, and the priority assigned to it. Scheduling tech-
niques have been proposed to make use of this information
in order to maximize the number of transactions that com-
plete within their deadlines [1, 10]. Optimization of assign-
ment of tasks in distributed soft real-time environments has
been studied in [14]. The Imprecise Computation Server
[11], advocates the use of approximate but usable results so
as to maintain an acceptable level of system performance.

Techniques for load sharing have also been proposed in
distributed database systems. The application of an eco-
nomic model to adaptive query processing and dynamic
load-balancing in a non real-time context was proposed in
[22]. Load-balancing heuristics for use in a distributed real-

58.00

60.00

62.00

64.00

66.00

68.00

70.00

72.00

74.00

76.00

78.00

80.00

Number of Clients

20 40 60 80 100

CS−RTDBS

LS−CS−RTDBS

CE−RTDBS

Percentage of successfully completed transactions 
(Localized−RW, 20% updates)

Figure 5. Percentage of Transactions Com-pleted Within Their Deadlines (20% updates)
time system are described in [21]. An algorithm that mi-
grates tasks from one node of a distributed real-time system
to another if the latter offers a higher probability of success-
ful task completion is described in [4].

The primary distinction between the works described
above and our load-sharing algorithm is that we examine
the problem of scheduling real-time tasks in a CS-DBS en-
vironment. In this setting, the availability of database ob-
jects/locks is essential for a transaction to proceed. Our
load-sharing algorithm also uses information about the lo-
cation of data and available client resources in order to min-
imize the percentage of missed deadlines.

7 Conclusions

The use of client-server systems for database computing
is pervasive. In this paper, we have utilized a set of tech-
niques to enhance the real-time processing capabilities of a
client-server database. These techniques are: transaction-
shipping and decomposition as well as object migration
scheduling. Exploiting the above techniques, we have de-
signed a load-sharing algorithm that transfers processing
tasks to clients that can provide immediate access to the re-
quired data and may be less loaded. To evaluate our load
sharing algorithm, we developed operational prototypes
of the centralized (CE-RTDBS), basic client-server (CS-
RTDBS), and load-sharing client-server (LS-CS-RTDBS)
real-time databases. From the experimental results, our key
conclusions are: (i) The client-server systems provide a very
consistent level of performance as compared to the central-
ized real-time database system. As the number of clients



increase, the performance of the CE-RTDBS degrades very
rapidly while those of the CS-RTDBS and LS-CS-RTDBS
show very little deterioration. (ii) The use of load-sharing
and object migration policies in the LS-CS-RTDBS signifi-
cantly improve its efficiency over that of the CS-RTDBS. In
fact, the LS-CS-RTDBS completes 10% more transactions
than the CS-RTDBS under the Localized-RW access pattern
with 20% updates. This is a considerable improvement in a
real-time environment. (iii) An increase in the percentage of
updates affects the client-server systems more than the cen-
tralized one. However, the LS-CS-RTBDS is able to avoid
unnecessary data movement and offer a much better level of
performance than the CS-RTDBS.

This paper evaluates the processing efficiency of CS-
RTDBSs with pessimistic data locking. In the future, we
intend to study the use of optimistic concurrency control
and speculative transaction processing techniques to evalu-
ate their impact on real-time system performance [24, 3].
Acknowledgements: We would like to thank Krithi Ra-
mamritham and Joel Wein for their helpful suggestions in
the preparation of this paper as well as the referees for their
comments.

References

[1] R. Abbott and H.Garcia-Molina. Scheduling Real-Time
Transactions: A Performance Evaluation. ACM Transac-
tions on Database Systems, 17(3), 1992.

[2] S. Banerjee and P. K. Chrysanthis. Data Sharing and Recov-
ery in Gigabit-Networked Databases. In Proceedings of the
Fourth International Conference on Computer Communica-
tions and Networks, September 1995.

[3] A. Bestavros and S. Braoudakis. Timeliness via Speculation
for Real–Time Databases. In Proceedings of the IEEE Real–
Time Systems Symposium, December 1994.

[4] A. Bestavros and D. Spartiotis. Probabilistic Job Schedul-
ing for Distributed Real-Time Applications. In Proceedings
of the 1st IEEE Workshop on Real-Time Applications, May
1993.

[5] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. Assigning
Real–Time Tasks to Homogeneous Multiprocessor Systems.
IEEE Transactions on Computers, 44(12), December 1995.

[6] M. Carey, M. Franklin, M. Livny, and E. Shekita. Data
Caching Tradeoffs in Client-Server DBMS Architecture. In
Proceedings of the ACM SIGMOD Conference, May 1991.

[7] Y. Chow and W. Kohler. Models for Dynamic Load Bal-
ancing in a Heterogenous Multiple Processor System. IEEE
Transactions on Computers, 28(5), May 1979.

[8] A. Dan, P. S. Yu, and J. Chung. Characterization of Database
Access Skew in a Transaction Processing Environment. In
Proceedingsof the SIGMETRICS and PERFORMANCE ’92
International Conference on Measurement and Modeling of
Computer Systems, June 1992.

[9] A. Delis and N. Roussopoulos. Performance Comparison of
Three Modern DBMS Architectures. IEEE Transactions on
Software Engineering, 19(2), February 1993.

[10] W. Feng and J.-S. Liu. Algorithms for Scheduling Real-Time
Tasks with Input Error and End-To-End Deadlines. IEEE
Transactions on Software Engineering, 23(2), 1997.

[11] D. Hull, W. Feng, and J. Liu. Enhancing the Performance
and Dependability of Real-Time Systems. In Proceedingsof
the IEEE International Computer Performanceand Depend-
ability Symposium, pages 174–182, April 1995.

[12] Y. Ioannidis. Universality of Serial Histograms. In Proceed-
ings of the 19th VLDB Conference, Dublin, Ireland, 1993.

[13] V. Kanitkar and A. Delis. A Case for Real-Time Client-
Server Databases. In Proceedings of the 2nd International
Workshop on Real-Time Databases, September 1997.

[14] B. Kao and H. Garcia-Molina. Subtask Deadline Assignment
for Complex Distributed Soft Real-Time Tasks. In Proceed-
ings of the 14th IEEE ICDCS, June 1994.

[15] A. Keller and J. Basu. A Predicate-Based Caching Scheme
for Client-Server Database Architectures. The VLDB Jour-
nal, 5(1), 1996.

[16] E. Panagos,A. Biliris, H. V. Jagadish, and R. Rastogi. Client-
Based Logging for High Performance Distributed Architec-
tures. In Proceedings of the 12th International Conference
on Data Engineering, Feb-March 1996.

[17] K. Ramamritham, J. Stankovic, and P. Shiah. Efficient
Scheduling Algorithms for Real-Time Multiprocessor Sys-
tems. IEEE Transactions on Parallel and Distributed Sys-
tems, 1(2), April 1990.

[18] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A Simple
Load Balancing Scheme for Task Allocation in Parallel Ma-
chines. In ACM Symposium on Parallel Algorithms and Ar-
chitectures, 1991.

[19] T. Sellis. Multiple-query optimization. ACM Transactions
on Database Systems, 13(1), March 1988.

[20] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transac-
tion Chopping: Algorithms and Performance Studies. ACM
Transactions on Database Systems, 20(3), September 1995.

[21] J. Stankovic, K. Ramamritham, and S. Cheng. Evaluation of
a flexible task scheduling algorithm for distributed hard real-
time systems. IEEE Transactionson Computers, 34(12), De-
cember 1985.

[22] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A Wide-Area
Distributed Database System. The VLDB Journal, January
1996.

[23] The MiniRel Development Team. The MiniRel Relational
DBMS. University of Wisconsin, Madison, 1989.

[24] A. Thomasian. Distributed optimistic concurrency con-
trol methods for high-performance transaction processing.
Transactions on Knowledge and Data Engineering, 10(1),
January/February 1998.

[25] Y. Wang and L. Rowe. Cache Consistency and Concurrency
Control in a Client/Server DBMS Architecture. In Proceed-
ings of the ACM SIGMOD Conference, May 1991.

[26] K. Wilkinson and M. Neimat. Maintaining Consistency of
Client-Cached Data. In Proceedings of the 16th VLDB Con-
ference, August 1990.


