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Abstract—The network-on-chip (NoC) design problem requires
the generation of a power and resource efficient interconnection ar-
chitecture that can support the communication requirements for
the SoC with the desired performance. This paper presents a ge-
netic algorithm-based automated design technique that synthesizes
an application specific NoC topology and routes the communica-
tion traces on the interconnection network. The technique oper-
ates on the system-level floorplan of the system on chip (SoC) and
accounts for the power consumption in the physical links and the
routers. The design technique solves a multi-objective problem of
minimizing the power consumption and the router resources. It
generates a Pareto curve of the solution set, such that each point
in the curve represents a tradeoff between power consumption and
associated number of NoC routers. The performance and quality of
solutions produced by the technique are evaluated by experimen-
tation with benchmark applications and comparisons with existing
approaches.

Index Terms—Design automation, genetic algorithms, net-
work-on-chip (NoC), routing.

I. INTRODUCTION

F UTURE system-on-chip (SoC) architectures will consist
of hundreds of processing and memory elements com-

municating at several gigabytes per second, and will be imple-
mented in nanoscale technologies. Communication architecture
will be a key determinant of the overall performance and power
consumption of these architectures. Network-on-chip (NoC) has
emerged as the dominant solution for the interconnection archi-
tecture design problems of SoC design in nanoscale technolo-
gies by both academia [1], [2] , and the industry [3].

This paper addresses the design of an NoC in the context of
application specific SoC architecture. Application specific SoC
design offers the opportunity for incorporating custom NoC ar-
chitectures that are optimized for the target problem domain,
and do not necessarily conform to regular topologies such as
mesh or torus. Specifically, this paper addresses the following
problem [4]. Given:
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• Directed communication trace graph (CTG) ,
where each denotes either a processing element or
a memory unit (henceforth called a node), and the directed
edge denotes a communication trace
from to . For every , the height and width
of the core is denoted by and , respectively. The
CTG is a generalized representation of the communication
traces that allows cycles, and multiple edges between two
processing cores.

• For every , denotes the bandwidth
requirement in bits per cycle, and denotes the latency
constraint in hops.

• Router architecture, where denotes the maximum
number of input/output ports of the router, and denotes
the peak input and output bandwidth that the router can
support on any one port. Thus, each port of a router
can support equal bandwidth in input and output modes.
Since a node is attached to a port of a router, the
bandwidth to any node from a router, and from any node
to a router is less than . Two quantities and that
denote the power consumed per megabits per second of
traffic bandwidth flowing in the input and output direction,
respectively for any port of the router.

• Value that denotes the maximum allowable distance
between two routers to ensure single clock cycle data
transfer.

• Physical link power model denoted by with units nW
per Mbps per mm.

• System-level floorplan of the cores in the SoC.
Let denote the set of routers utilized in the synthesized

architecture, represent the set of links between two routers,
and represent the set of links between routers and nodes. The
objective of the NoC design problem is to generate a network
topology such that:

• for every , there exists a route
in that satisfies ,

and ;
• the bandwidth constraints on the ports of the routers are

satisfied;
• the total system-level power consumption for inter-core

communication is minimized.
The application specific network topology generation

problem is a variation of the generalized steiner forest problem
[5], which is known to be NP hard. A survey of existing
approaches that address application specific NoC design was
presented by Benini [6]. Existing techniques for NoC de-
sign with irregular topologies [7]–[12] have largely ignored
the length constraints posed by physical links and also their
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Fig. 1. Design flow for synthesis of application specific NoC.

contribution to the overall power consumption of the intercon-
nection architecture. Consequently, they do not consider the
system-level floorplan during NoC design. Srinivasan et al.
[4] observed that the physical links are expected to consume
upward of 30% of the NoC power consumption. In this paper,
we also consider the system-level floorplan of the SoC, and
account for the length constraints and power consumption due
to the physical links. In contrast to [4] and [13] which utilize
linear programming and deterministic heuristic techniques
to solve the problem defined above, the paper proposes a
novel genetic algorithm (GA)-based approach.1 Our GA-based
technique solves a multi-objective problem that addresses
NoC power consumption and interconnection resources. The
GA-based technique has the ability to escape local minima and
generate excellent quality solutions in reasonable time. Further,
the GA-based technique can generate a set of Pareto points
where each point represents a solution with a certain power
and router resource consumption. The Pareto points provide
the designer with an option to choose a solution corresponding
to the desired tradeoff between power and router resource
consumption. We demonstrate the quality of results produced
by our technique by experimenting with several benchmark
designs and comparisons with existing approaches.

II. GENETIC ALGORITHM FOR NOC TOPOLOGY DESIGN

AND ROUTE GENERATION

The overall design flow for application specific NoC syn-
thesis is depicted in Fig. 1 with the help of an example. Our
technique takes the communication trace graph, a system-level
floorplan and interconnection architecture elements as input. As
a first step, our technique allocates routers at physical locations

1The research presented in this paper is an extended version of our conference
paper [10].

in the floorplan. The selection of the router locations should re-
duce the design space of the GA, and thus its runtime. Similar
to [4], the possible router locations are assumed to be at the cor-
ners of the computation cores as shown in Fig. 1. As the pos-
sible physical locations of the routers are known, we can deter-
mine the shortest distance from any node to the routers. By the
same argument, we can also determine all inter-router distances.
Therefore, we can estimate the link lengths (and resulting link
power consumption) in the NoC with a high degree of confi-
dence. The physical link lengths of inter-router and node-router
connections are constrained by the clock period of the core that
is initiating the write operation. The designer can specify a max-
imum length of the physical link that permits the single clock
cycle data transfer.

As the next step, our GA-based automated design technique
selects the routers to be utilized in the NoC, maps the nodes
to router ports, constructs the topology of the network, and
routes the traffic traces on the interconnection architecture. The
final layout in Fig. 1 shows the node to router mapping by the
dotted lines, and the NoC topology by the thick lines. During
topology generation, the physical dimensions of the routers
were neglected. At the end of the topology generation stage,
we adjust the SoC floorplan such that the area of the routers
is taken into account. However, since the router dimensions
are small, we do not expect a significant variation between the
floorplans before and after the router dimensions are taken into
account.

The NoC architectures generated by our technique can result
in deadlocks between various traffic traces. We address dead-
lock avoidance during NoC generation phase, as well as a post
processing step. Our static routing algorithm utilizes the knowl-
edge of the underlying router architecture to generate deadlock
avoiding routes. In case deadlocks cannot be avoided, our post
processing step adds virtual channels in suitable router ports to
break the deadlocks [1], [14].

A. Overview of GA

A GA is based on the biological phenomenon of genetic evo-
lution. It maintains a set of solutions known as the population
or a generation. GA operates in an iterative manner and evolves
a new generation from the current generation by application of
genetic operators. A new generation is created by first increasing
the population by generating new individual solutions, and then
selecting a constant number of solutions based on their fitness
criteria. The fitness criteria is a cost function that captures the
optimization goal. The selection of solutions based on their fit-
ness criteria models the evolutionary behavior known as the sur-
vival of the fittest. A GA-based technique typically applies three
operators namely reproduction, crossover, and mutation to pro-
duce new members. Reproduction duplicates a solution across
generations, crossover combines two solutions to generate two
new solutions, and mutation modifies an existing solution to
generate one new solution. The algorithm continues to operate
in an iterative manner until the termination condition is reached.

B. Data Structures for Representation of Solution

GA-based optimization requires a representation of the pop-
ulation that supports efficient application of genetic operators.



676 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 5, MAY 2009

Fig. 2. Hierarchical representation.

Our GA-based technique models the population in a hierarchical
manner consisting of three levels. The first level represents the
number of routers, the second level denotes the mapping of the
CTG nodes to the ports of the routers in the solution, and fi-
nally the third level specifies the routing of the communication
traces from the source node to the sink node possibly via the
ports of intermediate routers. Fig. 2 shows the hierarchical rep-
resentation of the population in our GA-based technique. At the
first level, our technique maintains different architectures with
various number of routers in each architecture. At the second
level, for each router specification at level 1, our technique saves

different node to port mappings. Finally, at the third level,
our technique maintains different mappings of the commu-
nication traces on the ports of the routers for every node to port
mapping at level 2. Note that our technique does not explicitly
model the physical links between the routers. Rather, the phys-
ical links are derived from the mapping of the communication
traces. For the rest of the paper we will refer to the 3 levels as
router level or level 1, node level or level 2, and trace level or
level 3, respectively.

1) Router Level Data Structure: Application of the ge-
netic operators requires the representation of the population
as strings of chromosomes. Strings of chromosomes are rep-
resented by sets of arrays. Fig. 3 depicts the chromosome
representation of the solution shown in Fig. 2. At the first

Fig. 3. Array-based data-structure.

level, the number of routers in a solution is represented by a
binary array , where
is the total number of routers in the architecture. Note that the
location and number of routers are determined before the GA is
invoked. is only the upper-limit on the routers
that can be utilized. For the example shown in Figs. 2 and 3,

. We denote each router by where is
an integer such that . Each router
that can be possibly utilized in the architecture is assigned a
random location in the array given by . For example,
may be assigned to location , may be
assigned to location , and so on. Finally,
all ports of the maximum number of routers that can possibly
be utilized in the architecture are assigned a unique number.
Hence, the four ports of at location are numbered 0,
1, 2, and 3, the four ports of at location are numbered
4, 5, 6, and 7, and so on. The GA maintains instances of
array at the first level. is a binary array where a
“1” in location “i” denotes that the router assigned to
is possibly utilized in the architecture, and a “0” denotes that
the router is not utilized. We say that the router is possibly
utilized because even though the router is in the architecture, a
communication trace may not be routed through it.

2) Node Level Data Structure: As mentioned earlier, for each
instance of array, the GA maintains instances of node to
port mapping. The node to port mapping at the second level is
stored in an integer array given by . Location con-
tains the port number to which node is assigned. In
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Fig. 3, the string represents one such node to port map-
ping where node 0 is mapped to port 1, node 1 is mapped to port
2, node 2 is mapped to port 8, and so on. Note that since each
port can map only one node, a port is not repeated in the string.

Our technique can generate NoC topologies with hetero-
geneous routers that have variable number of input/output
ports. The number of ports in a particular router are only
known once the final solution has been generated. Therefore,
our technique initially assumes a constant maximum number
of ports at each router. The number of ports is given by the
router with maximum number of ports in the router library. For
example, if the maximum number of ports in a router that is
available in the IP library are 8, the GA initially assumes that
all routers have 8 ports. Once the topology has been generated,
the required number of ports in each router is known, and the
suitable IP-block can be selected from the component library.
Thus, our NoC design topology supports heterogeneous router
architectures.

3) Trace Level Data Structure: Our GA maintains in-
stances of communication trace mappings for every instance of

array. The communication trace mapping is represented
by a linked list of integer arrays , where the th array
refers to the communication mapping of trace . For example in
Fig. 3, the first array refers to trace , second array
refers to trace and so on. Each array is an ordered set of
ports indicating the flow of the traffic. For example, the commu-
nication trace passing through ports in that order
is represented by a array given by .

C. Legality Criteria for Solution Representation

In this section, we present the necessary and sufficient legality
criteria for solution representation at the router, node and trace
level. A violation of the criteria results in an infeasible solution.

We note that a node is mapped to a unique port. Therefore,
at the router level, the only legality criterion to be satisfied is
that the total number of ports, which is given by the number of
“1”s in the router level string multiplied by the number of ports
per router, is greater than or equal to the number of nodes in the
CTG.

At the node level, the following legality criteria must hold.
1) Since a port can map only one node, a port is assigned to

one and only one location in .
2) A port cannot belong to a router that is not included

in the corresponding router level string. Therefore, all
ports that are in belong to a router that is in-
cluded in the corresponding router level string. That is,

.
3) The distance between the node to the port must be less

than or equal to the maximum designer specified distance
to enable single clock cycle data transfer.

The GA has to check for several legality conditions at the
trace level. The conditions are enumerated as follows.

1) Since the traffic trace routes are represented by arrays,
every traffic trace has an associated array.

2) The array starts at position 0 with the port to which the
source of the trace is mapped, followed by a different port
of the same router. The array ends with an integer that
represents a port mapped to the sink node.

3) A port that is assigned to a node represents the origin or ter-
mination of traces that have that particular node as a source
or sink, respectively. Therefore, no other port number in
the array (except for the ports mapping source and sink
nodes) represents a port mapped to a node.

4) If a trace enters a port of a router, it must leave the router
through one of its output ports. In order to represent this
constraint, we adopt the convention that even numbered
positions in the array represent ports into which the trace
enters, and odd numbered positions in the array represent
ports from which the trace leaves.

5) From the previous constraint, it follows that if a trace enters
a port, the next integer is the port number from which the
trace leaves the same router.

6) In order to avoid cycles, a port number in the array is not
repeated.

7) Since the route does not contain cycles, at most two ports of
a router can appear in an array. Violation of the constraint
will result in a router being visited more than once, thus
resulting in a cycle. This constraint, along with constraints
4 and 5 ensures that the number of ports belonging to the
same router appearing in the trace array is either two or
zero.

8) If a pair of ports adjacent to each other represent ports of
two different routers, they should be consistent over all ar-
rays. This pair represents two ports of different routers con-
nected together by a physical link. This constraint forbids
a port from being connected to multiple ports.

9) If a traffic is routed through a router, it must pass through
two ports of that router. The two ports combined contribute
toward one router hop. Therefore, the length of the array
must be less than or equal to twice the latency constraint,
where latency constraint is represented in number of hops.

10) The distance between two adjacent routers in the trace
array must permit single clock cycle transfer of a word be-
tween the routers. As explained earlier the designer speci-
fies the maximum distance between two routers for single
clock cycle transfer. Therefore, this constraint can be sat-
isfied if the length of the physical link between two routers
is less than the designer specified distance.

11) The bandwidth constraint at the ports included in the array
is not violated.

A communication trace mapping is legal if it contains legal ar-
rays corresponding to all traffic traces.

D. Generation of Initial Population and Modified Shortest
Path Algorithm (MSP)

In this section, we discuss the algorithms utilized for gener-
ation of initial population. An initial population is obtained by
generating router allocation arrays, node to port mapping
arrays for each router allocation, and communication trace
mapping arrays for each node mapping. The initial router al-
location is generated by uniformly random assignment of “0”s
and “1”s to all locations of every instance of array. Simi-
larly, the node to port mapping is obtained by uniformly random
selection of a node of the CTG and mapping it to a port which
is also selected by a uniformly random function. The node to
port assignment is subject to the legality criterion described in
Section II-C.
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Fig. 4. Communication trace mapping.

The generation of an initial communication trace mapping is
more involved. Initially, a trace is selected at random, and a MSP
is applied to generate the traffic mapping from the source to the
sink node, respectively. As mentioned earlier, a trace mapping is
denoted by an array of port numbers. Every trace that is mapped
through ports of multiple routers establishes a physical link be-
tween two consecutive ports of different routers. MSP differs
from classic shortest path since it maps the traffic along the
shortest route subject to the links established by already mapped
traces, and the bandwidth constraints on the ports of the routers.
Moreover, it generates traffic routes such that they minimize the
possibility of deadlock. In the following paragraphs, we present
the algorithm in detail. Deadlock avoidance will be discussed
later in Section II-A.

Since the MSP algorithm finds routes with minimum power
consumption, the distance between any two routers is measured
in terms of link and router power consumption. Given two
routers and , the cost of establishing a path from to
for a trace is given by

if and no
bandwidth or port violations in and

otherwise

where is the Manhattan distance between routers
and , and is the maximum allowable distance between
two routers to ensure single clock cycle data transfer. Therefore,
the cost function establishes the following two properties.

• A shortest path directly corresponds to a path with min-
imum power consumption.

• If routers and are further than the maximum allowed
inter-router distance apart, or the route results in bandwidth
or port violations in or , the cost is set to and the
trace is not routed through that link.

Consider the CTG and initial node to port mapping shown
in Fig. 4. The flow of the algorithm is denoted by the dotted
arrows. The communication trace mapping is generated by se-
lecting a trace at random, for example “b”. We show the trace
“b” by a dotted curve since it is routed through just one router.

Similarly, traces “c” and “f” are also shown by dotted curves.
The next trace that is selected is “d”. As the source (node 1) and
sink (node 4) of trace “d” are mapped to different routers, we in-
voke the MSP. The distance between source and sink nodes of
a communication trace is given as the path from source to sink
with minimum power consumption, subject to the previously
mapped traces, and bandwidth constraints on the ports. Since,
no inter-router trace has been mapped, traffic “d” is mapped by
the shortest path. Mapping of trace “d” effectively establishes a
link between the routers to which nodes 1, and 4 are mapped. In
other words, routers and are connected by a physical link.
The next trace that is picked is “a”, and its routing establishes
a physical link between the routers mapping the corresponding
nodes, which are routers and . Finally, trace “e” is routed.
First, it is routed from router to router since it is the only
router that lies within the maximum allowed distance for single
clock cycle data transfer. This establishes a link between routers

and . The remaining part of the route is generated by uti-
lizing the already existing link between routers and .

It is possible that MSP is unable to find a path from the source
to sink, or the available path violates the latency constraint. In
such a case, the traffic trace is left unmapped, and a penalty is
accrued as described in the discussion on the fitness function in
the following section.

Fig. 5 presents the MSP algorithm. Line 1 is the initialization
phase where all traces are marked “free”. The algorithm iterates
until “free” traces are available. In each iteration of the loop,
it obtains a random free trace (line 3), and attempts to obtain a
shortest path for the trace. If a valid route is not found, the trace
is unmapped (line 6). On the other hand, if a valid route is found,
the corresponding physical links are updated to accommodate
the route (line 8). At each iteration, the selected trace is tagged,
such that it is not explored again.

E. Pareto Points and Fitness Calculation

Our technique generates the Pareto points on the power con-
sumption versus router requirement plot for a given application.
For example, Fig. 6 depicts three Pareto points corresponding to
the solutions with least power consumption for NoC topologies



LEARY et al.: DESIGN OF NoC ARCHITECTURES WITH A GENETIC ALGORITHM-BASED TECHNIQUE 679

Fig. 5. Pseudo code for MSP algorithm.

Fig. 6. Pareto points for NoC generation.

with one, two and three routers, respectively. We observe that it
is prudent to choose a solution with two routers, over a solution
with one router that results in high power consumption, and a
solution with three routers that results in a small reduction in
power consumption. Given the Pareto curve for a particular ap-
plication the designer can select the solution that offers the best
tradeoff between power consumption and router requirement.

In order to generate the Pareto curve, we define the well
known concept of dominant solutions in the context of multi-ob-
jective optimization [15]. In the GA, a solution is said to
dominate if is better than in all objectives. In Fig. 6,
solution 3 dominates solution 4, as solution 3 has lower power
consumption, as well as lower number of router resources. A so-
lution is non-dominant if there exists a solution that dominates
it. In the example shown in Fig. 6, the solution with four routers
consumes more power than the solution with three routers, and
hence, is not part of the Pareto curve. At each generation, cor-
responding to each router, our GA maintains the legal solution
(with legal routes for all traces) that consumes least power. On
termination, the GA outputs the Pareto curve obtained from the
set of solutions belonging to the last generation.

The size of the population is larger than the number of Pareto
points. Therefore, in addition to the Pareto points, the GA also
maintains non-dominant solutions for each generation. A non-
dominant solution is selected on the basis of its fitness. The fit-
ness calculation of each solution includes the area under the so-
lution on the power consumption versus router requirement plot.
The area under the solution is given by the product of the projec-
tions on the - and -axes, respectively. Higher the area under
the solution, lower the fitness of the solution, and vice versa.

In a particular generation not all members of the population
represent solutions in which all traces are routed. Such solutions

Fig. 7. GA for custom NoC design.

are denoted as illegal solutions. An illegal solution can occur if
the MSP is unable to route all traces successfully. As mentioned
earlier, a dominant solution is a legal solution. A non-dominant
solution can be an illegal solution.

The overall fitness of a non-dominant solution is given by

fitness(solution)

where is the number of routers in the topology, is the power
consumption, is the weight given to unmapped traces, is
the number of unmapped traces. The value denotes the
area of the solution on the power consumption versus router
requirement plot. The value of is set very high to effectively
pull down the fitness of illegal solutions.

During the evolution of the next generation of a population,
the GA first selects the dominant solutions and then selects the
non-dominant solutions based on their fitness.

F. Overview of the Optimization Technique

Fig. 7 shows the top level flowchart of our GA-based opti-
mization technique. The input to the technique is the set of router
architectures, the communication trace graph , and the
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Fig. 8. Trace level crossover.

system-level floorplan. An initial population of solutions is gen-
erated using the algorithms described in Section II-B, and the fit-
ness of each trace level string (solution) is calculated. Initially,
the exit criterion is set to false. Our technique applies genetic
operators at the three levels of solution hierarchy with different
probabilities. For each genetic operation at a higher level of hi-
erarchy, the GA explores several operations at the lower levels.
This approach aids in a structured design space exploration for
the problem. At each level the number of solutions produced by
crossover is much larger than those produced by mutation. At
each hierarchical level new individual solutions are produced
by the application of the genetic operators. A new generation is
produced by selection of the fittest members among the cur-
rent generation and the new individual solutions, where
for level 1, for level 2, and for level 3. Selec-
tion of members of current generation for the next generation
models the reproduction operation. At all three levels of the hi-
erarchy, the fitness is given by the strongest complete solution
at the trace level. Since each router allocation has instances
of node mapping and every node mapping has instances of
trace mapping, the fitness of a particular router allocation (at
level 1) is given by the strongest trace among the pos-
sible trace level mappings. Termination condition is reached if
the successive generations do not result in any change in the
Pareto curve. We set to summation of the number of nodes
and edges in the CTG, that is .

G. Genetic Operators

In this section, we discuss the crossover and mutation opera-
tors that are utilized to produce new individuals from an old gen-
eration. The reproduction operator is implicitly applied during
the creation of the new generation from the set of current gener-
ation, and new members. Since the solution is modeled at three
levels, we will consider the application of these operators at
three levels.

1) Crossover Operation: The crossover operator selects two
solutions or parents from the previous generation and produces
two new solutions or children. In this section, we discuss the
crossover operation of strings at the trace, node, and router
levels.

Trace Level Crossover: The trace level crossover operation
is applied to every set of traces to generate new in-

dividuals. The trace level crossover operation is illustrated in
Fig. 8. Two trace mapping link lists belonging to the same node
mapping are chosen randomly from the linked lists. Each of
the two linked lists is partitioned into two at the same randomly
selected cut point. The cut point for the two lists is shown by
vertical dotted line in the top of Fig. 8. In Fig. 8, the linked lists
are divided into , and sub-lists, respectively. The
crossover operator proceeds to create two new individual solu-
tions by appending the lists as , and . As a con-
vention, during the concatenation, the first half of the list ( or

) dominates the second half ( or ). Therefore, based on
the communication trace mapping of , some trace mappings
of may violate the legality criteria presented in Section II-C.
The violations that can occur are as follows.

• It may not be possible to generate a physical route for the
trace due to the previously imposed physical connections
by traces belonging to A.

• Mapping the trace on the links may lead to a bandwidth
violation in one or more ports of the routers.

If a communication trace mapping in is not legal due to
a trace mapping in , that particular communication trace is
remapped by invoking the MSP algorithm. For example, in the
left part of Fig. 8, trace “d” is remapped as the route for trace
“c” is modified by crossover. A communication trace is left un-
mapped if the MSP is unable to generate a route from source to
destination.

Node Level Crossover: The node level crossover operation is
applied to every set of mappings to generate new in-
dividuals. The node level crossover operation is illustrated in
Fig. 9. Two node level arrays belonging to the same router al-
location are chosen at random from the mappings. The two
arrays are divided into two ( , and in the figure)
at the same randomly selected position. The two arrays are con-
catenated as , and such that a port is mapped to
at most one node. The second legality condition for node level
crossover (see Section II-C) is automatically satisfied as the chil-
dren and parent strings always belong to the same router level
string. As in the case of trace level crossover, the mapping in

or dominates the mapping in or . It is possible that
the some of the nodes belonging to (or ) cannot be mapped
as the corresponding port in the parent string (or respec-
tively) maps a different node. In such cases, a new mapping for
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Fig. 9. Node level crossover.

Fig. 10. Router level crossover.

the node is generated randomly. For example, as shown in the
figure, the mapping of node 5 in array is initially left
blank since port 4 is occupied by node 1. Hence, the mapping of
node 5 is generated randomly. Similarly, the mapping of nodes
4 and 5 are randomly selected in the array .

Once the node level mappings are defined, the communica-
tion trace mappings are generated for the two new individual so-
lutions. The technique duplicates as many communication trace
mappings as possible from the parents’ trace mappings to the
children. The technique picks the first trace level strings of A
and B, and duplicates as many routes as possible on the first
trace level string of the child, such that the trace level legality
constraints are not violated. The procedure is repeated for the
remaining trace level strings of the parents. Since the node map-
ping of the children is not identical to that of the parents, some
of the duplicated routes (trace mappings) for the traces may be
illegal. These traces are not duplicated, and are instead regener-
ated by invoking the MSP algorithm.

Router Level Crossover : The router level crossover opera-
tion is applied to every set of router allocations to generate

new individuals. The router level crossover mechanism
is illustrated in Fig. 10. Two router level allocations are chosen
randomly from arrays, and a random point is selected to divide
each array into two. In Fig. 10, the two parts have been shown as

, and , respectively. Two new solutions are created
by concatenating the arrays as and , respectively.
If the number of ports in the new string is less than , the
crossover is rejected, and the process is repeated with re-selec-
tion of router allocation arrays. Once the router level allocations
are defined, node level and communication trace mappings are
generated for the two individual solutions. As before, as many
node level mappings and corresponding trace routes are dupli-
cated in the children as possible. All node level mappings of
sub-array (and ) are duplicated. All node level mappings of
sub-array (and ) are also duplicated subject to legality cri-
teria for node mapping, presented in Section II-C. Nodes whose

mapping violated the legality criteria are randomly assigned to
open ports. The communication trace mappings are generated
as in the node level crossover.

2) Mutation Operation: In this section, we discuss the muta-
tion operation at the trace, node, and router levels, respectively.
At each level, the mutation operator randomly selects a parent
solution from the current generation, and randomly causes a
small local change to generate a new individual solution.

Trace Level Mutation: The trace level mutation operation is
applied to every set of traces to generate new indi-
viduals. The mutation operator is applied to every set of trace
level mappings for every node level mapping in the population.
The trace level mutation operator first selects a trace mapping at
random from the traces assigned to a particular node. At the
trace level, there are some traces that are mapped to the archi-
tecture, and some are left unmapped due to violation of legality
criteria. The mutation operator then selects a mapped trace at
random and adds it to the set of unmapped traces. Next, it pro-
ceeds to randomly select an unmapped trace and map it to the
architecture by invocation of the MSP algorithm. The process
continues until as many unmapped traces are mapped as pos-
sible subject to the legal mapping constraints.

Node Level Mutation: The node level mutation operation is
applied to every set of mappings to generate new Indi-
viduals. The node level mutation is applied to every set of node
mappings for every router allocation in the current generation.
Two ports in a particular router allocation are selected at
random. A node mapping for the same router allocation is also
selected at random. If the node mapping has either one or two
nodes assigned to or , their mapping is exchanged. If the node
mapping has only one node mapped to a port, say , its mapping
is changed to . If the node mapping has no nodes assigned to
either or , the process is repeated by selection of two new
ports. Once a new node mapping is generated, all communica-
tion traces associated with the moved nodes are added to the set
of unmapped traces in all trace mappings. The MSP algorithm
is invoked for each communication trace mapping to map un-
mapped traces.

Router Level Mutation: The router level mutation operation
is applied to every set of router allocations to generate
new individuals. The router level mutation is applied to every
router allocation in the current generation. As mentioned before,
the router allocation is specified by an array of binary digits.
Router level mutation is applied by the selection of a random
location in the array, and the inversion of the corresponding bit.
If a “0” is inverted to “1” a router is added and no change is ap-
plied to the lower levels. On the other hand, if a “1” is inverted
to “0” a router is removed. Hence, all node level mappings that
contain any ports belonging to the removed router and associ-
ated communication traces are regenerated similar to the initial
population creation.

H. Post-Synthesis Floorplan Adjustment

During the interconnection architecture stage, we assume that
the routers are located at the corners of the cores of the floorplan.
After the NoC topology generation stage, we adjust the floorplan
such that the actual size of the routers are taken into account. As
mentioned before, the area occupied by the routers is very small,
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and our router architecture with 5 ports, first-input–first-output
(FIFO) depth of 16, width of 32, and 2 virtual channels con-
sumed only 0.19 mm in 65-nm technology. Therefore, this ad-
justment of the floorplan after NoC synthesis does not cause sig-
nificant difference between the pre-synthesis and post-synthesis
floorplans.

I. Deadlock Avoidance

The MSP router discussed earlier attempts to avoid certain
types of deadlocks. The router architecture assumed by our tech-
nique has separate input and output ports to route traffic to and
from the router.2 In other words, the traffic traces entering and
leaving the router from a port are isolated. The MSP algorithm
assigns the same path in the forward as well as the return di-
rections (subject to bandwidth constraints) to route traces be-
tween two routers in the NoC topology. Consequently, it avoids
deadlocks that occur due to overlap between forward and return
paths.

However, shortest path strategy that is aimed at power con-
sumption minimization cannot prevent deadlocks in general. As
we utilize static routing scheme we can detect the possibility
of deadlock a priori by construction of a channel dependency
graph [16]. A routing technique is deadlock free if the channel
dependency graph does not contain cycles. As MSP is a deter-
ministic custom routing algorithm, it provides us the opportu-
nity to statically inspect the routes to determine which router
ports can cause deadlocks. Additional virtual channels can be
added to these ports such that the routing is deadlock free [16].

III. RESULTS

In this section, we present the results obtained by execution
of our technique on several multimedia benchmark applications.
We compare the results generated by the GA with an optimal
ILP-based technique [4], and a recursive partitioning based
heuristic called ANOC [13] that address the same problem. We
also evaluate the overall design flow by comparing the designs
obtained by post- and pre-floorplanning NoC synthesis. Finally,
we present the NoC designs and Pareto curve for the set-top
box application.

A. Experimental Setup

1) Benchmark Applications: We generated custom NoC ar-
chitectures for five multimedia (rows G1-G5), and five network
processing (rows G6-G10) benchmarks (see Table I). For the
benchmarks G1 through G7, the size of the ARM core was esti-
mated to be 2.25 mm . For benchmarks G8 through
G10, the size of the cores were provided in [20]. The network in-
terface, whose area is estimated to be 0.2 mm [21] was included
in the calculation of the core area. The router architecture uti-
lized in the paper consists of 2 virtual channels, FIFO depth of
16, and width of 32 bits. In 65-nm technology, the area of the
router was estimated to be 0.19 and 0.37 mm for 5- and 9-port
routers, respectively.

2) Power Models and Floorplanner: We characterized our
router architecture in a 65-nm TSMC low power library. In this
technology, the power consumption for the input and output

2The detailed explanation of the architecture can be obtained from [4].

TABLE I
BENCHMARKS

TABLE II
TECHNIQUE NOMENCLATURE

port was estimated to be 204 nW/Mb/s and 94 nW/Mb/s, re-
spectively. The link power consumption was estimated to be
89 nW/Mb/s/mm. We utilized the Parquet floorplanner [22] to
obtain our floorplans.

3) Number of Ports Per Router and Maximum Link Length:
Our experiments were guided by two parameters namely, max-
imum number of ports per router that can be synthesized such
that the timing constraints are met, and the maximum link length
that ensures a single clock cycle transmission. The IP library
may either provide a hard router architecture core with a fixed
number of ports, or a soft core with parameterizable number
of router ports. If the router architecture is a hard IP, the NoC
synthesis tool must take the number of ports of the router as a
constraint. On the other hand, if the IP is a soft core, the con-
straint on the number of ports is not applicable. We present re-
sults when the number of ports per router is limited to 5 (hard
router IP core), as well as when the number of ports is parame-
terizable (soft IP core).

For 65-nm technology, we estimated the link delay to be
0.02 ns/mm. At a router operating frequency of 333 MHz, this
delay does not contribute significantly to the overall delay,
and can be ignored. Benini et al. [2] predict that in the future,
NoCs will be clocked at 5 GHz or more. At this frequency, the
router delay will be of the order of a tenth of a nanosecond.
The link delay is expected to stay at almost the same value
of 0.02 ns/mm [2]. Thus, the link and router delay are com-
parable, and this puts a constraint on the maximum allowable
link length between two routers. More recently, Vangal et al.
[23] presented a 5-port router aimed at mesh topologies that
can operate at 4 GHz in 65-nm technology. The inter-router
distance in their design was 1.5 mm along the -axis and 2 mm
along the -axis. We obtained experimental results with and
without link length constraints. For the constrained case similar
to Vangal et al. [23], we set a maximum link length of 2.5 mm.

Table II assigns a unique name for the instances of our tech-
nique with and without link length constraints, and with and
without port constraints, respectively.

B. GA Tuning Parameters

We utilized experimental data to determine the GA tuning
parameters. It was observed that a GA population size of 1000
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TABLE III
COMPARISON AGAINST EXISTING APPROACHES

served as a good tradeoff between design space available for
exploration, and the runtime of the algorithm. The population
size of 1000 was divided into 10 router level strings, 10 node
level strings per router level string, and 10 traffic level strings
per node level string. We set the termination condition to be

iterations with no change in Pareto curve. The router
level crossover probability was set at 0.1, node level probability
at 0.5, and trace level probability at 1. The value of used in
the calculation of fitness of the solution was set to 1 000 000.

C. Results and Discussion

1) Comparison With Existing Approaches: We compared the
results produced by our GA with an optimal ILP-based tech-
nique [4], and a heuristic technique called ANOC [13] that ad-
dress the same problem. The ILP has an exponential runtime
complexity, and takes several hours to generate optimal solu-
tions for many benchmarks. ANOC is a technique that oper-
ates on the given system-level floorplan, and invokes a recur-
sive bi-partitioning-based heuristic to generate the final NoC.
Both ILP and ANOC are single objective techniques that min-
imize power consumption. Further, the ANOC technique does
not consider constraints on the number of ports in the router.

Table III presents the results for the four different cases dis-
cussed in the experimental setup section. The values in the table
are normalized to the corresponding results produced by the
optimal ILP-based technique. In the table for each design con-
straint (link length and number of port) combination we present
the power and router requirements for minimum power and min-
imum router design generated by our GA based approach. Fi-
nally, the last column of the table presents the average values
for the power and router requirement comparisons.

In comparison to ILP, the GA designs for minimum power on
an average consume only slightly higher power (maximum is
3.4% for ). However, the GA designs for minimum router
on an average require fewer resources than the designs produced

TABLE IV
RUNTIMES

by ILP. This is due to the fact that the ILP-based approach pri-
marily optimizes power consumption and does not directly opti-
mize router resource consumption. The low deviation in average
power consumption for the GA designs with minimum power
in comparison to ILP reinforces our claim on the quality of the
solutions generated by the GA. The slightly lower power con-
sumption of the ILP comes at a much higher runtime.

ANOC was able to generate solutions only when the port con-
straints were not imposed. Thus, the table includes compara-
tive results for and .3 Our GA based ap-
proach out performs ANOC in all instances. ANOC is a low
complexity heuristic, and does not explore a large design space
before arriving at the final solution. On the other hand, the GA
explores several solutions as it evolves through successive gen-
erations, and consequently generates superior designs.

Table IV presents the comparison of run times of the three
techniques. It took the ILP several hours to converge to the op-
timal solution. On the other hand, the GA converged to its best
solution in a few minutes. Due to its low complexity, ANOC
was able to generate solutions within 1 s for all benchmarks.
Although the GA takes more time to generate solutions, its so-
lution quality is better than ANOC.

Our router architecture included two virtual channels per
input port, and two virtual channels per output port. For this

3When no port constraints and no link length constraints are imposed, it is
possible to generate a solution trivially by connecting all the cores to a single
router. However, due to the contribution of link power consumption, a solution
with only one router may not always be the optimal solution. Consequently, the
results generated by the various techniques are different.
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TABLE V
COMPARISON BETWEEN �� AND ��

Fig. 11. Our approach versus existing approach.

architecture, we determined that deadlocks do not occur in any
of our designs. The two virtual channels are able to successfully
break any cycles in the channel dependency graph.

2) Comparison of Pre- and Post-Floorplan NoC Synthesis:
In this section, we compare our approach of synthesizing the
NoC on the system-level floorplan with an approach that syn-
thesizes the NoC and then invokes the floorplanner to generate
the layout. We compared the results for the four cases, ,

, , and . In each of the four cases, we
utilized the Parquet floorplanner to generate the system-level
layout, and our GA based technique for NoC architecture
generation.

Table V contrasts our approach with existing approach.
Our approach ( ) invokes a system-level floorplanner,
followed by the GA for NoC topology generation, and finally,
floorplan adjustment to generate the NoC design (see Fig. 11).
The existing approach ( ) generates the NoC topology
by invoking the GA, followed by a call to the floorplanner to
obtain the final NoC with floorplan. In Table V, we present
normalized (with respect to ) power consumption and
router requirement values for the minimum power designs
generated by the two design flows.

Comparison for : generates the interconnec-
tion architecture without any knowledge of the floorplan, and
then floorplans the NoC with link bandwidth as net weights such
that the link power consumption is minimized. Since the NoC
architecture generation phase has no information about the link
lengths, the final solution has long links that violate the link
length constraints. In our experiments, the link lengths were vi-
olated for all benchmarks except G6 and G7. On the other hand,
our approach generates the NoC with the knowledge of the link
lengths, and therefore, is able generate valid solutions for all
benchmarks. Further, even for benchmarks G6 and G7 our tech-
nique results in solutions with lower power consumption. Again,

the difference is due to lower link power consumption in our de-
signs (as the number of routers are same).

Comparison for : Since link lengths and corre-
sponding link power consumption was not taken into consid-
eration during the synthesis stage, trivially generated
solutions with just one router. Consequently, the final floorplan
had link length violations on all designs except G1, G6, and G7.
Again, the power consumption of our designs was consistently
lower than even though the number of routers were
some times higher (G6 and G7). As in the previous experiment
the difference was due to the lower link power consumption.

Comparison for : In this case, was able to
generate valid solutions. However, all the solutions had higher
power consumption as opposed to our designs. On an average
the solutions generated by consumed 1.671 times more
power than our designs even though the router requirements
were comparable (about 0.918 times our designs). Again, as our
technique accounts for link power consumption it consistently
generates superior designs.

Comparison for : In this case, neither port con-
straints nor link length constraints were applied. As a result,

generated solutions with just one router, which is triv-
ially the best solution when link power consumption is not
considered. But when the floorplanner was invoked, long link
lengths resulted in larger power consumption. On the other
hand, due to the knowledge of the floorplan, our approach was
able to optimize the link power consumption, and introduce
additional routers to generate solutions with lower overall
power consumption. The solutions on an average con-
sume 1.53 and 0.467 times the power consumption and routers,
respectively, in comparison to our designs.

Summary of Design Flow Comparisons: The comparisons
presented in the above paragraphs demonstrate the need for inte-
grating system-level floorplanning in the NoC design flow. The
results for and demonstrate that a floorplan ag-
nostic NoC synthesis stage followed by a call to an existing
floorplanner results in long link lengths that violate the link
length constraint. Further, even in the absence of link length
constraints our technique consistently generates superior solu-
tions in comparison to as it accounts for the link power
consumption. On an average for legal solutions our approach
consumes 36.83% lower power in comparison to an approach
that does NoC synthesis before system-level floorplanning.

3) NoC Designs for Set-Top Box: We present NoC designs
produced by the GA for the set-top box application (benchmark
G5). We refer the reader to [18] for the CTG of the set-top box
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TABLE VI
CORE DESCRIPTIONS FOR THE SET-TOP BOX

Fig. 12. Pareto curve for the set-top box application.

application. Table VI presents the description of the nodes in the
CTG.

Fig. 12 depicts the Pareto curve for the benchmark. The
-axis of the figure denotes the number of router resources in

the solution, and the -axis denotes the corresponding power
consumption. The set-top box application generated five Pareto
points corresponding to 9–13 routers. As can be observed from
the Pareto curve for the set-top box, the best tradeoff between
power consumption and the corresponding router resources
required was offered by the solution with 11 routers. This
particular design and observation can only be obtained by
generating a Pareto curve, thus substantiating our approach.

Figs. 13 and 14 present the custom topologies for the designs
with minimum power and least number of routers, respectively
for the set-top box application produced by our GA-based tech-
nique with 5-port routers and a link length constraint of 2.5 mm.
The black squares in the floorplan denote the routers. The solid
grey lines on the floorplan represent the connectivity of the cores
to the routers.

Fig. 15 plots the variation in power consumption in successive
generations for the five Pareto points of the set-top box bench-
mark. The plot is normalized to the highest power consumption
among all generations. The least power solution did not improve
for the 9 and 10 router solutions. The 11 and 12 router solutions
improved 3 times, and the 13 router solution improved twice.
The 9 and 10 router solutions remained dominant over all gen-
erations. The 11, 12, and 13 router solutions became dominant
in the 17th, 87th, and 84th generation, respectively. Fig. 16 plots
the number of illegal solutions at the end of each generation. At

Fig. 13. NoC design for set-top box: least power solution.

Fig. 14. NoC design for set-top box: least router solution.

Fig. 15. Power consumption across generations.

the end of the first generation, there were several illegal solu-
tions in the population. However, due to their low fitness value,
illegal solutions were filtered away in successive generations.
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Fig. 16. Number of illegal solutions across generations.

As the number of generations evolved, the number of illegal so-
lutions reduced to only a few in number.

IV. CONCLUSION

In this paper, we presented a novel GA-based technique for
application specific custom NoC design. Our overall design flow
consists of two phases namely, system-level floorplanning, and
interconnection architecture generation. In the first phase, we
invoke an existing flooplanner with an objective of minimizing
a power-performance cost function. For the second phase, we
presented a novel GA-based technique for application specific
on-chip interconnection network generation. We compared our
technique with an optimal ILP formulation [4], and an existing
heuristic technique called ANOC [13]. While ILP and ANOC
suffer from high runtime and low solution quality respectively,
experimental results on several multimedia and network pro-
cessing benchmarks demonstrate that our GA based technique
is able to generate close to optimal solutions (within 3% for
minimum power consumption solutions) in a reasonable time.
Further, in comparison to an approach that synthesizes a NoC
architecture with out the knowledge of a system-level floorplan
our methodology can accept link length constraints, and our de-
signs on an average consume over 36.83% lower power. Our
future work will address integration of NoC design techniques
with the computation architecture design stage.
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