
Multilayer neural networksand polyhedral dichotomiesC. Kenyon and H. Paugam-MoisyLIP, URA 1398 CNRSENS Lyon, 46 all�ee d'ItalieF69364 Lyon cedex 07, FRANCEOctober 23, 1997AbstractWe study the number of hidden layers required by a multilayer neural network withthreshold units to compute a dichotomy f from Rd to f0; 1g, de�ned by a �nite set ofhyperplanes. We show that this question is far more intricate than computing Booleanfunctions, although this well-known problem is underlying our research. We presentrecent advances on the characterization of dichotomies, fromR2 to f0; 1g, which requiretwo hidden layers to be exactly realized.1 INTRODUCTIONThe number of hidden layers is a crucial parameter for the architecture of multilayer neuralnetworks. Early research, in the 60's, addressed the problem of exactly realizing Boolean1



functions with binary networks or binary multilayer networks. On the one hand, more recentwork focused on approximately realizing real functions with multilayer neural networks withone hidden layer [7, 8, 13] or with two hidden units [2]. On the other hand, some authors[1, 14] were interested in �nding bounds on the architecture of multilayer networks for exactrealization of a �nite set of points. Another approach is to search the minimal architectureof multilayer networks for exactly realizing real functions, from Rd to f0; 1g. Our work,of the latter kind, is a continuation of the e�ort of [5, 6, 9, 10] towards characterizing thereal dichotomies which can be exactly realized with a single hidden layer neural networkcomposed of threshold units. We show how this research is related to geometric algorithms,linear programming and combinatorial optimization.1.1 De�nitions and notationsA �nite set of hyperplanes fHig1�i�h de�nes a partition of the d-dimensional space intoconvex polyhedral open regions (the union of the Hi's being neglected as a subset of measurezero). A polyhedral dichotomy is a function f : Rd ! f0; 1g, obtained by associating a class,equal to 0 or to 1, to each of those regions. Thus both f�1(0) and f�1(1) are unions of a �nitenumber of convex polyhedral open regions. The h hyperplanes which de�ne the regions arecalled the essential hyperplanes of f . A point P is an essential point if it is the intersectionof some set of essential hyperplanes.In this paper, all multilayer networks are supposed to be feedforward neural networks ofthreshold units, fully interconnected from one layer to the next, without skipping intercon-nections. A network is said to realize a function f : Rd ! f0; 1g if, for an input vector x,the network output is equal to f(x), almost everywhere in Rd. The functions realized byour multilayer networks are the polyhedral dichotomies.2



1.2 Polyhedral dichotomies and Boolean functionsBy de�nition of threshold units, each unit of the �rst hidden layer computes a binary functionyj of the real inputs (x1; : : : ; xd). Therefore, subsequent layers compute a Boolean function.Since any Boolean function can be written in DNF-form, two hidden layers are su�cient fora multilayer network to realize any polyhedral dichotomy. Two hidden layers are sometimesalso necessary, e.g. for realizing the \four-quadrant" dichotomy which generalizes the XORfunction [5].For all j, the jth unit of the �rst hidden layer can be seen as separating the space by thehyperplane Hj : Pdi=1 wijxi = �j. Hence the �rst hidden layer necessarily contains at leastone hidden unit for each essential hyperplane of f . Thus each region R can be labelled by abinary number y = (y1; : : : ; yh) (see [6]). The jth digit yj will be denoted by Hj(R).Usually there are fewer than 2h regions and not all possible labels actually exist. TheBoolean family Bf of a polyhedral dichotomy f is de�ned to be the set of all Boolean functionson h variables which are equal to f on all the existing labels.2 EARLY RESULTSIt is straightforward that all polyhedral dichotomies which have at least one linearly separablefunction in their Boolean family can be realized by a one-hidden-layer network. However theconverse is far from true. A counter-example was produced in [6]: adding extra hyperplanes(i.e. extra units on the �rst hidden layer) can eliminate the need for a second hidden layer (see�gure 1). These hyperplanes are called redundant hyperplanes. Hence the problem of �ndinga minimal architecture for realizing dichotomies cannot be reduced to the neural computationof Boolean functions. Finding a generic description of all the polyhedral dichotomies whichcan be realized exactly by a one-hidden-layer network is a challenging problem.3
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Figure 1: A one-hidden-layer network, with 6 hidden units on the �rst layer (correspondingto the essential hyperplanes), cannot realize the dichotomy, but a network with a 7th extraunit (associated to the redundant hyperplane H7, in dotted line) can.2.1 Geometrical approachOne approach consists of �nding geometric con�gurations which imply that a function is notrealizable with a single hidden layer. There are three known such geometric con�gurationswhich involve two pairs of regions: the XOR-situation, the XOR-bow-tie and the XOR-at-in�nity, as summarized on Figure 2.
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PFigure 2: Geometrical representation of XOR-situation, XOR-bow-tie and XOR-at-in�nityin the plane (black regions are in class 1, grey regions are in class 0).Theorem 1 If a polyhedral dichotomy f , from Rd to f0; 1g, can be realized by a one-hidden-layer network, then it cannot be in an XOR-situation, nor in an XOR-bow-tie, nor in anXOR-at-in�nity. 4



The proof can be found in [11, 6] for the XOR-situation, in [17] for the XOR-bow-tie, andin [6] for the XOR-at-in�nity. The sketch of these proofs is always the same: the four regions(two in each class) and their respective labellings induce an inconsistency in the system ofinequalities associated to a one-hidden-layer solution.2.2 Network approachIn contrast with our geometrical de�nitions, note that in [16], Takahashi, Tomita and Kawa-bata have presented a notion of \cyclicity", in the same context of research, but with adi�erent point of view. They start from the notion of summability of boolean functions [15],and n-cyclicity can be viewed as a reinterpretation of n-summability. Given the hyperplanesassociated to the hidden units of a �xed network (essential hyperplanes, plus redundant hy-perplanes), �nding the weights which realize the polyhedral dichotomy amounts to solvinga system of linear inequalities. The authors of [16] claim that this system has a solution i�there is no \cyclicity", but their notion of cyclicity is only de�ned with respect to a �xednetwork. If f is in any of our three cases of XOR, then, no matter what hidden units areadded, \cyclicity" occurs. On the other hand, for the example of �gure 1, \cyclicity" occurswith six hidden units but not with seven hidden units. Our approach is di�erent since wewant a characterization of the polyhedral dichotomies which can be realized by a one-hidden-layer perceptron, independently of the network realizing f . The problem can be addressedin another di�erent way, even less geometric than [16], as presented below.2.3 Topological approachAnother research direction, implying a function is realizable by a single hidden layer network,is based on a topological approach. The proof uses the universal approximator property of5



one-hidden-layer networks, applied to intermediate functions obtained constructively addingextra hyperplanes to the essential hyperplanes of f . This direction was explored by Gibson[10], for two dimensions input space. Gibson's result can be reformulated as follows:Theorem 2 If a polyhedral dichotomy f is de�ned on a compact subset of R2, if f is not inan XOR-situation, and if no three essential hyperplanes (lines) intersect, then f is realizablewith a single hidden layer network.Unfortunately Gibson's proof is not constructive, and extending it to remove some of theassumptions seems challenging. Both XOR-bow-tie and XOR-at-in�nity are excluded by hisassumptions of compactness and no multiple intersections. In the next section, we explorethe cases, in R2, which are excluded by Gibson's assumptions. Gibson's present directions ofresearch are turned towards extending the de�nitions and proofs to go to higher dimensions,where new cases of inconsistency emerge in subspaces of intermediate dimension [12].3 RECENT ADVANCES3.1 Local realization in R2The next two theorems proved that, in R2, the XOR-bow-tie and the XOR-at-in�nity arethe only restrictions to local realizability. Their proofs can be found in [4, 3].Theorem 3 Let f be a polyhedral dichotomy on R2 and let P be a point of multiple intersec-tion. Let CP be a neighborhood of P which does not intersect any essential hyperplane otherthan those going through P . The restriction of f to CP is realizable by a one-hidden-layernetwork i� f is not in an XOR-bow-tie at P .6



The proof is in three steps: �rst, we reorder the hyperplanes in the neighborhood of P ,so as to get a nice looking system of inequalities (see �gure 3); second, we apply Farkas'lemma; third, we show how an XOR-bow-tie can be deduced.
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hidden layer. Note that all the geometric con�gurations which implies that a two-hidden-layer network is required can be de�ned in Rd (XOR con�gurations and critical cycle). Therestriction to R2 is only necessary for advances on converse results.3.2 Critical cyclesA minimum of twelve regions are required to de�ne the con�guration of critical cycle (cf.�gure 4). Note that one can augment the �gure in such a way that there is no XOR-situation,no XOR-bow-tie, and no XOR-at-in�nity. De�nition and proof are based on bicolor graphconsiderations and can be found in [4, 3].
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