
A Continuous Media Data Transport Service and Protocol for Real-
Time Communication in High Speed Networks *

Bernd Wolfinger 1

Mark Moran

The Tenet Group
Computer Science Division, Department of EECS,

University of California, Berkeley
and

International Computer Science Institute
Berkeley, CA 94720, USA.

ABSTRACT

An important class of applications with real-time data transport requirements is defined
by applications requiring transmission of data units at regular intervals. These applications,
which we call continuous media (CM) clients, include video conferencing, voice communica-
tion, and high-quality digital sound. The design of a data transport service for CM clients and
its underlying protocol (within the XUNET II project) is presented in this paper. The service
makes use, in particular, of an a priori characterization of future data transmission requests by
CM clients.

First, we will give a few examples of CM clients and their specific data transmission
needs. From these clients, we then extract a generalized list of data transport requirements for
CM and describe the basic features of a service designed to meet these requirements. This ser-
vice provides unreliable, in-sequence transfer (simplex, periodic) of so-called stream data units
(STDUs) between a sending and a receiving client, with performance guarantees on loss,
delay, and throughput. An important feature of the solution is the use of shared buffers to elim-
inate most direct client/service interactions and to smooth traffic patterns, which may be bursty
due to fluctuations in the arrival process of data and variability of network delays. The paper
concludes with some aspects of implementation.

1. Introduction
Applications with real-time data transport requirements fall into two categories:

those which require transmission of data units at regular intervals, hereafter referred to as
continuous media (CM) clients, and those which generate data for transmission at rela-
tively arbitrary times, hereafter referred to as (real-time) message-oriented clients. Exam-
ples of the former are video conferencing, in which video frames (of fixed or variable
length) are sent from source to destination once per frame time (e.g. 33 ms), voice com-
munication, playback of high-quality digital sound, and transmission of sensor data that
is measured and transferred with strict periodicity. Examples of real-time message-
oriented clients are those which require urgent messages or transactions, and mail service
with guaranteed delivery latency.

It is generally accepted that dedicated transport protocols are necessary for high
speed networks. Adaptation of existing transport protocols, originally designed for lower
speed networks (such as OSI Transport Protocol Class 4 or TCP), to high speed environ-
ments is not straight-forward, and may not provide satisfactory performance to transport
hhhhhhhhhhhhhhh
* This research was supported by the National Science Foundation and the Defense Advanced Research Projects Agency

(DARPA) under Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives, by AT&T

Bell Laboratories, Hitachi, Ltd., the University of California under a MICRO grant, and the International Computer Science

Institute. The views and conclusions contained in this document are those of the authors, and should not be interpreted as

representing official policies, either expressed or implied, of the U.S. Government or any of the sponsoring organizations.
1 On sabbatical leave from the University of Hamburg, Computer Science Dept., Bodenstedtstr.16, D-2000 Hamburg 50

service users of future networks. Therefore, considerable research has been conducted in
the design of completely new transport protocols to support high speed end-to-end com-
munication between users. Surveys of the general requirements these protocols must
satisfy, and of existing protocol proposals can be found in e.g., [DDK90], [LPS91],
[WrT90], [Zit91]. In these publications, it is suggested that new algorithms be developed
to support basic transport protocol functionality (such as flow control, error detection and
correction, connection management, etc.). In addition, the use of specific implementation
techniques, e.g. parallel processing, is advocated. Current transport protocols designed
for high speed networks include, e.g., Delta-t Transport Protocol, cf. [Wat89], Network
Block Transfer Protocol (NETBLT), cf. [CLZ87], Versatile Message Transaction Proto-
col (VMTP), cf. [ChW89], Express Transport Protocol (XTP/PE), cf. [Che88], and the
protocol designed by Netravali et al. and described in [NRS90].

The literature suggests general agreement among network designers that transport
protocols should be tailored to meet the various transport service requirements of end
users. Requirements of various users can be supported by using rather general transport
services and providing options to flexibly adapt the service to the differing requirements
of users (e.g. during establishment of a transport connection). Alternatively, it is also pos-
sible to split the transport service a priori into two (or more) different, cleanly separated,
services. Each service would support a class of users with similar data transport require-
ments. This second solution is chosen in this paper, as we will describe a transport ser-
vice designed for continuous media clients, which we expect to coexist with a transport
service designed for message-oriented clients. For surveys on the requirements of con-
tinuous media applications for data transport, the reader is referred to [HSS90] and to
[ITC91]. Requirements of video transfer, in particular, can be found in [LiH91]. Section
2 details the arguments in favor of a separate transport service for CM clients.

2. Necessity of a Dedicated Transport Service for Continuous Media Applications
Because CM clients are better able to characterize their future behavior than

message-oriented clients, a dedicated CM data transport service can potentially provide
them with a more cost-effective service by characterizing the future resource demands of
such clients a priori.

In addition to the efficiency advantages mentioned above, a dedicated CM data
transport service could provide better functionality for CM clients than a traditional
message-oriented transport service, because of the many incompatible functional require-
ments of these two classes of applications. For example, a dedicated transport service
could provide the abstraction of logical (data) streams between CM clients. A stream
here denotes a continuous sequence of data units (continuous only with respect to some
limited granularity in time) provided and to be transmitted during a given time interval,
which corresponds to the duration of the stream. As we also assume in-sequence delivery
of the data units of a stream, we can consider such streams to be generalization of Lixia
Zhang’s "flows" (defined as a "stream of packets that traverse the same route from the
source to the destination and that require the same grade of transmission service" in
[Zha91]). At any instant in time, each established connection between two CM clients is
used by at most one stream. By making such streams visible to the data transport service,
network and system resources could be conserved between streams. More importantly,
some connection parameters may be redefined for the duration of the stream, allowing
conservation of resources and providing better cooperation between sender, receiver, and
the transport service (e.g. the current stream could be stopped and a new, slower stream
started to support video playback with "freeze frame" and "slow motion"). Streams also
provide a natural mechanism for synchronizing data from different connections (e.g.
video and audio). Such streams would be difficult to implement on top of a message-
oriented transport service, because of the requirement that streams (and their associated
parameters) be visible to the transport service. Since this functionality would not be used
by most message-oriented clients, implementing a new service is preferable to adding

this functionality to a message-oriented service.
A dedicated CM transport service can also provide error-handling mechanisms that

are more suitable for CM clients. Although most message-oriented clients cannot use
data which is only partially correct, many CM clients can tolerate limited data loss, and
some can even utilize corrupted data. [HTH89]

Finally, while message-oriented clients cannot predict the time of their next data
transfer, and so must explicitly inform the system to initiate each transfer, the time of
each data transfer for a CM client can be deduced; therefore, the requirement that data
transfer be initiated via an explicit interaction with the system introduces unnecessary
overhead. This situation is exacerbated when data is provided for network transfer by a
DMA-like device, e.g. a hardware coder-decoder (codec) for compressed video, since a
(user) process must intervene between data generation and transmission.

The above differences in data transport requirements between message-oriented and
CM clients justify design of a dedicated CM data transfer service which could provide
better service for CM applications in four ways:
(1) a better traffic model for characterizing CM traffic and specifying performance

requirements;
(2) the abstraction of (logical) streams, which are visible to the transport service;
(3) CM specific error handling, including delivery of all correctly received data and

(possibly) of corrupted data, and of optionally replacing corrupted/lost data with
dummy data; and

(4) the elimination of the need for a rendezvous (e.g. via a system call) between the
client and the service for each data transmission.
At this point, we would like to emphasize that there is no fundamental reason a

message-oriented transport service could not offer a service that included (1) - (3); how-
ever, as we argued above, these capabilities are neither required nor desirable for most
message-based applications, and hence it seems wiser to implement a new service to pro-
vide them to CM clients.

3. Data Transport Requirements of Continuous Media Clients
In this section, we will give a few examples of CM clients and their data transport

requirements. From these clients we extract a generalized list of data transport require-
ments for CM. In section 4 we will describe the basic features of a service designed to
meet these requirements. All the applications listed require a strict upper bound on delay
and on delay-jitter, where delay-jitter is defined as the difference between the maximum
and minimum delay. If an upper bound is provided on delay, delay-jitter will result only
in early delivery, and can therefore be absorbed by buffering in the service provider if
enough buffers are available. Therefore, delay-jitter is not listed as a requirement for the
clients. However, it should be noted that a network which controls jitter would allow less
buffer space to be allocated to the connection on the receiving end-system.
Typical continuous media applications include:
g Compressed Video: Variable rate; delays <= 300 ms, if interactive; DMA-like cod-

ing devices; loss tolerant; synchronization with audio or text; variable period
(slow-motion or fast-forward) or suspend transmission (freeze frame).

g Uncompressed CD quality digital audio: Constant rate; loss sensitive.
g Multiplexed, interactive digital voice: Constant rate; delay <= 300 ms; loss tolerant;

silent periods.
g Multimedia distributed classroom: Phases of instruction (e.g. lecture, movie);

interactive.

From these examples we have determined the following list representing data transport
requirements of most CM clients:
(R1) Periodic delivery of data without gaps.
(R2) Bounded delay of stream between sender and receiver.
(R3) Logical stream abstraction: used to communicate redefinition of stream parame-

ters to receiving client and data transport service provider, and for synchroniza-
tion of data from separate connections.

(R4) Delivery of all correctly received and possibly of corrupted data.
(R5) Notification of undelivered or corrupted data.
(R6) No requirement for explicit interactions with system for each data transfer (i.e.

delivery of data is periodic, not event-driven).

4. Definition of the Continuous Media Transport Service
We now briefly describe a continuous media transport service (CMTS) designed to

meet the needs of CM clients (a considerably more detailed specification of this service
and its underlying protocol is given in [MoW91]). This service provides unreliable, in-
sequence transfer (simplex, periodic) of stream data units (as defined below) between a
sending client (CS) and a receiving client (CR), with performance guarantees on loss,
delay, and throughput. The CMTS service satisfies all of the requirements (R1),...,(R6) as
listed above. Data is passed from CS to the CMTS entity on its end-system (CMS) via a
shared circular buffer. Synchronization between CS and CMS is provided via traffic and
performance parameters, and through explicit synchronization variables.

All traffic and performance parameters are defined in relation to two basic units: the
stream data unit (STDU) and the periodicity of the conversation (T). An STDU is a data
unit whose boundaries must be preserved by the CMTS and indicated to CR . It is CS ,
which decides how the stream to be transferred to CR is mapped onto a sequence of
STDUs as illustrated in Fig. 1. Typically, for a CM application, the information to be
transmitted (e.g. voice signal, sequence of images) is digitalized prior to its transmission
by a coding process (or possibly a sequence of such processes). The coding process
maps a continuous signal function (in the sense of coding theory, e.g. voice, moving
scene) onto a sequence of code words (cf. coding theory again). A CM application then
has several options in mapping these code words into a sequence of STDUs:
a) Sequence of code words mapped onto sequence of bytes (byte stream), 1 byte

corresponding to 1 STDU;
b) one-to-one mapping of code words onto STDUs;
c) concatenation of several code words to build one STDU, e.g. in the case, where dif-

ferent sub-streams are multiplexed (time-multiplex) by an application to form one
overall stream;

d) combination of a code word and a time-stamp into one STDU (where a "time-
stamp" is a reference to the period the code word represents); e.g. relevant in
transmitting a stream, which had been stored, along with the timing information
required to reconstruct its original timing.
The periodicity, T, of a stream can also be specified by an application. The periodi-

city characterizes the frequency of coding events (typical values chosen for periods
would be T=k×0.125 ms in PCM-voice coding or T =k×33 ms in transfer of a video
stream, where k is an integer). The data corresponding to a period maps into an integral
number of STDUs. The CMTS service recreates on the receiver, the stream that had been
seen on the sender at the granularity (in time) of a period, T. This implies, in particular,
that data associated with period ∆ti at the sender must arrive before the beginning of the
corresponding period ∆τi at the receiver. Of course | ∆ti | = | ∆τi | =T, for all i, if | I |
denotes the length of interval I. Fig. 2 illustrates the basic timing within transfer of a

sample stream (e.g. of voice or video data). It should be noted, however, that this figure
does not reflect the fact, that we allow some "work-ahead" to the sender of the stream and
some time "behind-schedule" to the receiver, as described below.

The conversation between CS and CR consists of a sequence of logical streams, with
intervals of (medium- or long-term) silence between streams. A logical stream consists of
a periodic sequence of STDUs which may be fragmented for actual transmission by the
network. CS must inform CMS of the beginning and end of each logical stream. The
model we are using for interactions between CS and CR is that data generated during an
interval ∆ti by CS is needed by CR during the corresponding interval ∆τi , where t −t 0
represents the elapsed time of the stream at the sender and τ−τ0 represents the elapsed
time of the stream at the receiver (t 0 and τ0 denoting beginning of stream as observed by
sender and receiver respectively). Therefore, after indicating the beginning of a logical
stream, CS is obligated to ensure that all the STDUs corresponding to a given period are
in the shared buffer before the end of that period, where periods are defined at regular
intervals (of length T) from the beginning of stream transmission (t 0 in this case).
Because a sender may have difficulty providing data corresponding to an interval exactly
within that interval (e.g. due to contention for CPU or memory bus), another parameter,
NSslack , is defined as the number of bytes, CS is allowed to provide to CMS ahead of
schedule (i.e. before ti −1 for ∆ti). The solution of prefilling buffers has also been sug-
gested in [AHS90]. CS is also obligated to obey the traffic characteristics specified for the
conversation and for the current stream.

At the beginning of a logical stream, CS may redefine some traffic and performance
parameters for the duration of the stream. These must be no more strict than the parame-
ters of the actual connection (e.g. a decrease in the data rate is allowed). Such informa-
tion may be used to assist cooperation between CS and CR because the characterization
of a stream can more accurately represent current traffic and performance needs than the
long-lasting connection parameters, which must cover all possible streams to be sent on
the connection. The stream characterization may also allow system and network
resources to be conserved. In addition, CS may indicate a value for dSstartup , the time
between the time of the request, tstart , and the start of the stream, t 0 , at the sender. This
time is used by CS to pre-load the buffer. An upper bound on the duration of the stream
may also be specified, to be used in allocating resources at the receiver.

After being informed of the start of a new logical stream, CMS is obligated to coop-
erate with CMR to transfer all STDUs for each period to CR before the beginning of the
corresponding period on the receiver, provided that CS met its contractual obligations.

The CMTS entity at the receiving end-system (CMR) and CR also interact via a
shared circular buffer, stream parameters, and shared synchronization variables. CMR
must inform CR of the beginning of a new logical stream. After that, CMR is obligated to
put data in the shared buffer before the beginning of the period in which it will be needed
(i.e. before time τ=τi −1 for period ∆τi), and CR is obligated to remove from the shared
buffer all the STDUs corresponding to a period before the end of that period (i.e. before
time τ=τi for period ∆τi). Since a receiver may have difficulty removing data exactly dur-
ing its corresponding period, the value NRslack is defined at the receiver to indicate how
far CR can fall behind without data being lost. More precisely, CR can leave up to NRslack
bytes in the buffer after the end of their corresponding period. As at the sender, the first
period is defined to begin after a delay of length dRstartup , where dRstartup includes
dSstartup , as well as the delays introduced for smoothing and for tolerating delay-jitter in
the network. In addition, CMR must inform CR of data loss (which includes late data)
and corrupted data. In the implementation, STDU descriptors are used to maintain
STDU boundaries and to indicate errors in the data.

In order to meet guarantees regarding buffer overflow and starvation avoidance at
the receiving client, all four entities must be involved in a handshake at the beginning of
the conversation so that each may approve traffic and performance parameters. At this

time some of the entities may reserve system and network resources to ensure that they
will be able to fulfill their contractual obligations. This handshake is accomplished as
follows: CS presents a proposed set of parameters to CMS . If CMS accepts these, it
passes them on to CMR , with some possible modifications and additions. If CMR accepts
the (revised) parameters, it passes a (possibly) revised version of the original set to CR .
If CR accepts the conversation request, it informs CMR , who informs CMS , who informs
CS . The parameters of the handshake before a conversation are described below for the
CS /CMS interface. Parameters for the handshake between other entities are analogous to
those described here.

The parameters of the CS /CMS interface were chosen to capture those traffic
characteristics of continuous media traffic that have the greatest impact upon resource
requirements and to specify performance requirements applicable to CM applications.
The most significant of these parameters are described below. (A full description can be
found in [MoW91].)
Traffic characterization parameters

The first three traffic parameters allow for flexible definition of a CM connection.
They cannot be changed for individual streams. STDU max specifies the maximum size of
an STDU (in bytes), i.e. maximum size of a logical unit for which boundaries must be
maintained. (STDU max = 1 is allowed as a special case, leading to a transparent byte
stream data transfer). CONST_SIZE and CONST_NUM are booleans used to further
describe the type of service requested (i.e. byte stream, constant-size STDUs or
variable-size STDUs).

The next group of parameters characterize the traffic pattern. All traffic and perfor-
mance parameters are defined in terms of T, the basic period of the stream. S max is the
maximum amount of data (in bytes) which CS may put in the shared buffer during any
period. Savg specifies an upper limit on the mean number of bytes presented by CS for
transport within a single period, calculated over any averaging interval consisting of Iavg
consecutive periods. S min provides a limit on the burstiness of the stream missing from
other traffic specifications we have seen. Our model of CM streams is that even
variable-rate streams will have something to transmit each period. S min allows a user to
specify the minimum amount of data which is expected to be transmitted each period.
One common example of such a stream is a compressed video stream which transmits an
image compressed with only intra-frame encoding followed by several frames that
achieve higher compression using inter-frame encoding ([e.g. Leg91]). Without this
parameter, we would have to make the worst-case assumption that all the data allowed in
an averaging interval could be sent in a minimal number of periods with no data being
transmitted during the rest of the averaging interval. (Note: CS is not required to
transmit S min bytes each period, but if it does not, it cannot be sure of sending its entire
allotment for the averaging interval without possible loss of data due to buffer overflow.)

We would like to briefly discuss some of the advantages of the traffic characteriza-
tion described above for CM clients. As far as the authors are aware, present transport
services allow clients to describe their burstiness by specifying a variability in the inter-
arrival times of fixed-size messages (e.g. [AHS90], [FeV90]). While this is the proper
characterization for network packets and for message-oriented clients, it is not a con-
venient manner for describing the burstiness of CM traffic (e.g. compressed video),
which is better described as a variable-size message sent at fixed intervals. The charac-
terization we have presented allows for variable-size "messages" (corresponding to the
data produced in a period) at a fixed interval T. This characterization, along with the
inclusion of S min will allow for a better characterization of CM traffic and, therefore,
more efficient utilization of network and end-system resources.

NSslack is the maximum workahead allowed to CS as previously mentioned. It
specifies the maximum number of bytes which CS is allowed to put in the shared buffer
early, i.e. before the beginning of the period to which the data corresponds.

Quality of service parameters
The parameters for indicating the quality of service (QOS) desired were chosen to

sufficiently communicate the needs of most CM clients. As stated previously, the basic
model of the CMTS service is that the stream on the sending end-system will be
recreated on the receiving end-system at the granularity of a period. The service handles
delay-jitter for the client (where delay-jitter is defined as the variability in delay) by
ensuring the shared buffer at the receiving end-system is large enough to tolerate max-
imum possible jitter without overflow. Because there are no explicit interactions
between the client and the service, the implications of delay-jitter on timing of the stream
do not apply.

Dstream is the maximum acceptable delay of the stream, where the delay of a stream
is defined as the time between the start of a stream at the CS /CMS interface and the start
of the stream at the CR /CMR interface. Since Dstream must also be maintained for each
period of the stream, it implies a deadline for data arrival at the receiver. (All data asso-
ciated with the ith interval on the sender, ∆ti , must arrive at the receiver before the begin-
ning of the same period at the receiver, i.e. before τi −1 .) Serr allows the client to specify
the maximum granularity (in bytes) of a data loss caused by data corruption or buffer
overflow. This parameter is interpreted as an upper bound on the packet size used for
this stream. Werr specifies a lower bound on the probability that a unit of data transfer
(of size ≤ Serr) is correctly delivered to the receiving interface. REPLACE is a boolean
that indicates whether corrupted data should be replaced with dummy data (supplied by
the user in a dummy data unit of size Serr) instead of being delivered as it is received or
discarded. This service is useful for in-band signalling of data loss and for filling in holes
in the data stream.

5. Basic Underlying Services and a Transport Protocol to Support CMTS
We presently implement, within the XUNET II project, the service described above

as part of a real-time protocol suite. Connection establishment and teardown (including
resource allocation) are provided by a connection administration service (RCAP, cf.
[BaM91]), which will also handle the connection establishment and teardown functions
for CM connections. A network service (RTIP, cf.[VeZ91]) which implements the
schemes described in [FeV90] will provide network connections with real-time guaran-
tees for delay, delay-jitter, throughput, and loss. RTIP will allow the transmission of
packets via connections established within (possibly a hierarchy of) interconnected sub-
networks with FDDI- and ATM-components.

In addition to these underlying services, the CMTS service requires relatively large
buffers on the receiving end-system, as one of the main concepts underlying this service
is to use buffers to smooth fluctuations in the arrival process of data during a stream as
well as delay jitter introduced by the network and/or the end-systems. (Calculations with
respect to buffer requirements will be given in section 6). A real-time clock with a high
precision timer, and real-time scheduling of the CPU and network driver are also
required.

To realize the CMTS, we defined the Continuous Media Transport Protocol
(CMTP) which supports communication between CMTS peers at the sender and the
receiver. The first version of the CMTP protocol could be kept relatively simple. This
results primarily from the fact that several of the communication functions needed in
conventional data communication (in particular, retransmissions for error correction,
flow control, etc.) are not required in order to provide the CMTS service. Regarding
retransmissions, we take the position (stated in [FeV90]) that most real-time applications
will not be able to wait for retransmissions, and even if they could, the amount of data
which would need to be stored to perform retransmissions on a high bandwidth-delay
product network could not be justified for CM clients, which do not require perfectly reli-
able service. Similarly, resetting a data stream to an earlier status (period) is not possible

as the resource requirements needed to set check-points in general are prohibitive for
storing an intermediate status of a stream. Therefore in the case of a serious error, tear-
down of a connection with successive re-establishment of a connection and initialization
of a new stream seem to be the most appropriate measures. The simplex nature of the
real-time connections used also represents an obstacle to a dialog between sender and
receiver directly within such a connection. So, our assumption in the design of the CMTP
protocol has been that a data stream between CS and CR is transmitted via exactly one
(uni-directional) connection between CS and CR . This connection thus represents a data
connection. As no multiplexing takes place in the CM transport layer, a one-to-one map-
ping of the addresses of communicating clients to the address of the network connection
(connection-id provided by RCAP in the case of XUNET II) can be used to solve the
addressing problem.

As an extension to the current design, we assume that CMS and CMR are able to
exchange (reliably) control information concerning the state of the data connections
presently established between them. In a similar way, we assume that the CMTS service
reliably transfers CS- / CR-control information between clients to support an application-
oriented protocol between them (separate communication, in addition to the exchange of
a data stream). This solution can be viewed as an "out-of-band-signaling" between the
communicating CM clients.

Until now, the CMTP protocol has only been specified for covering communication
within the data connection. Experiences of the CMTS implementation are considered to
be indispensible prior to a protocol extension and will be taken into account in the com-
pletion of the CMTP protocol.

The first version of the CMTP protocol is based on three types of protocol data units
(PDUs):
g ON_PDU: Signal start of stream; redefine parameters, facilitate synchronization
g OFF_PDU: Signal end of stream
g DATA_PDU: Transmit one STDU, one fragment of an STDU or a number of bytes

(in case of a byte stream).
The beginning of a stream must first be signaled by the sending client via an

ON_PDU. Reaction after receipt of an ON_PDU is according to the service specification
(cf. section 4). To increase reliability, two copies of an ON_PDU are transmitted at the
beginning of a stream (separated by an interval, which is considered to be large enough
in order to make errors in both ON_PDU transmissions sufficiently independent of each
other). The receipt of at least one of these copies by CMR is sufficient for the correct ini-
tialization of the stream. Loss of both ON_PDUs will be considered as a serious error
situation, requiring connection tear-down and re-establishment.

After stream initialization (if successful), DATA_PDUs can be sent to transfer data
of the stream. Data of the stream (i.e. the STDUs) is mapped onto DATA_PDUs either
1:1, by concatenation of STDUs (in particular in byte streams) or by fragmentation of
STDUs (respecting maximum packet-size of the underlying network service as well as
maximum size of acceptable loss, specified by CS). Each DATA_PDU is transported in
exactly one packet.

The current stream ends when an OFF_PDU arrives, indicating a silent period will
follow. An alternating 1-bit stream identifier is used to cleanly separate successive
streams from each other, even in the case of error situations (e.g. loss of successive OFF
and both ON_PDUs).

Additional control information exchanged between CMS and CMR (protocol exten-
sion) could refer, e.g., to
g acknowledgement (ACK/NAK) for ON_PDU;

g acknowledgement (ACK) for OFF_PDU;
g indication of buffer overflow at receiving interface to CMS ;
g PING to check whether sender is still alive, when neither data nor an OFF_PDU has

been received for a given interval; and
g some control signal, used by the sender to check whether the receiver is still alive.

6. Some Implementation Considerations
Because of the desire to eliminate most client/system interactions, data is

transferred between the service provider and clients via a shared circular buffer at both
the sending and the receiving site (CS/CMS- and CR /CMR- interfaces). This implementa-
tion also lowers the number of data copy operations. Fig. 3 depicts some essential types
of interactions between components used in the implementation.

Shared synchronization variables are used to inform the producers of data (CS at the
sender and CMR at the receiver side) as well as the consumers (CMS at sender and CR at
receiver) of the present state of the buffer (e.g. amount of data in the buffer). STDU
descriptors are used to delineate (variable-size) STDUs and to provide an indication of
data errors without explicit interactions between clients and the service provider. Fig. 4
depicts the use of descriptors for the buffer (BR) shared between CMR and CR .

In the prototype implementation, CMS will check the buffer (BS) it shares with the
sending client once per period, packetize the data found there (up to a maximum con-
trolled by the maximum burst and average rates as required by the underlying network
service), and schedule its transmission.

[MoW91] contains the derivation of the following conservative estimate for bS , the
minimum size of buffer BS guaranteed to prevent data loss due to overflow of this buffer:

bS = 2 × S max (data for current and next periods)

+ NSslack (workahead for CS)

+ bsm (for smoothing)

+ balign (for aligning STDUs in buffer)

Similarly, for the size, bR , of the buffer BR , we obtain:

bR = bs

+ NRslack (amount of data CR can be late in consuming)

+ 2 × S max× R
J(dj / T)HJ (delay jitter in ON_PDU and stream transmission)

The buffer requirements are a direct result of the fact that enough buffer space must
be provided to absorb the maximum possible delay jitter and variation in the data rate
being observed at the sending and receiving end-systems. Buffer requirements at the
receiver can be reduced if CMS uses additional information with respect to the timing of
the stream in order to delay the transfer of STDUs at the sending end-system, thereby
absorbing workahead at the sending end-system. For a connection being used to trans-
port fixed sized STDUs (in particular for a byte stream), b_align = 0, as alignment prob-
lems do not exist in these cases.

7. Summary
Most important properties of the transport service and protocol introduced in this

paper are a consequence of our effort to tailor the service and protocol design to the data
transport requirements of continuous media applications. Therefore, the service intro-
duced supports the continuous delivery of a data stream to a receiving CM client, error-
handling mechanisms that can be adapted flexibly to the typical demands of CM applica-
tions, the use of a priori knowledge with respect to the future arrival pattern to be

expected for a given stream, etc. The basic concepts introduced, such as the notion of
stream data unit, as well as the large variety of parameters offered at the service interface
can be used by communicating CM applications for a relatively flexible characterization
of (e.g. voice or video) streams. This flexibility is also provided for the mapping of
STDUs onto packets of an underlying network service (1:1, fragmentation or concatena-
tion as options), where the mapping may even be controlled by the transport service users
(e.g. by specifying the maximum granularity of a data loss). The solution chosen can
easily support the possibility of allowing a (de-) coding process to react to the state of the
communication system, as suggested e.g. in [GiG91]. The communication system’s state
might be considered to be reflected by the actual occupancy of the shared buffers (BS and
BR) on sending and receiving end-systems, which could lead to a variation of the (de-)
coding rate.

To complete the present design it will still be necessary to integrate the experiences
gained in the prototype implementation of CMTS in an extended service/protocol design.
The extensions will have to specify, in particular, additional possibilities of reacting to
protocol errors as well as the exchange of different types of control information.

Limitations of the solution primarily concern the buffer requirements in the end-
systems, which may become significant in those cases when delay jitter within the net-
work and within the end-systems will become large and additionally large traffic fluctua-
tions exist within the arrival process of the stream. However we believe that in future
computer systems (even in workstations and personal computers) we can expect provi-
sion of communication buffers in the range of (a few) MByte at least for CM applica-
tions, if this leads to significant simplifications and performance improvements. For
some dialog-oriented applications the stream delay resulting from our approach (of typi-
cally > 100 ms) may become disadvantageous as well. Realization of multi-point con-
nections (e.g. required in video-conferencing) by means of (a possibly large number of)
point-to-point connections, which would be the solution based on the CMTS service
(within XUNET II architecture), may also lead to some inefficiencies. These
inefficiencies could, of course be eliminated if the underlying network service would
support multipoint communication.

In parallel to the CMTS prototype implementation, presently a modeling study is
being carried out in order to gain some insight into the impact that configuration parame-
ters of end-systems (such as buffer sizes, run-times of communication software, etc), pro-
perties of the underlying network service (such as packet delay jitter, packet loss rate,
etc.), and the local load of the end-systems may have on the quality of the CMTS service
as observed by CM clients (e.g. expressed by the probability of a buffer overflow with
resulting loss of data and/or by the probability of late arrival of data in the BR buffer).

8. Acknowledgements
The authors would like to express their particular gratitude to Amit Gupta and Fran-

cesco Maiorana for their engagement in the implementation of the CMTS prototype, and
to Eckhardt Holz for his detailed simulation study to analyse the behaviour of the CMTS
service under various boundary conditions.

A large number of in-depth discussions with a lot of resulting stimuli have taken
place during the CMTS design within Tenet research team at International Computer Sci-
ence Institute and University of California at Berkeley. In particular, Prof. Domenico
Ferrari as head of Tenet team and the group members Riccardo Gusella, Bruce Mah,
Dinesh Verma, and Hui Zhang have provided very valuable suggestions during the
preparation of this paper. This support is sincerely acknowledged by the authors.

Special thanks also go to Prof. David Anderson and Ramesh Govindan for their
comments which helped to improve an earlier version of this paper.

9. References
[AHS90] D. Anderson, R. Herrtwich, C. Schaefer, "SRP: A Resource Reservation Protocol for
Guaranteed-Performance Communication in the Internet", Int. Comp. Sci. Inst., Technical Report No. ICSI
TR-90-006 (1990).

[BaM91] A. Banerjea, B. Mah, "The Real-Time Channel Administration Protocol", Proc. 2nd Int.
Workshop on Network and Operating System Support for Digital Audio and Video, Heidelberg
(November, 1991).

[Che88] G. Chesson, "XTP/PE Overview", 13th Conf. on Local Computer Networks, IEEE Comp. Soc.
(October, 1988), 292-296.

[ChW89] D. R. Cheriton, C. L. Williamson, "VMTP as the Transport Layer for High-Performance Distri-
buted Systems", IEEE Commun. Magazine, Vol. 27, No. 6 (1989), 37-44.

[CLZ87] D. D. Clark, M. L. Lambert, L. Zhang, "NETBLT: A High-Throughput Transport Protocol",
ACM SIGCOMM Workshop on Frontiers in Comp. Netw.(1987).

[DDK90] W.A.Doeringer, D. Dykeman, M. Kaiserswerth, B.W. Meister, H. Rudin, R. Williamson, "A Sur-
vey of Light-Weight Transport Protocols for High-Speed Networks", IEEE Trans. on Commun., Vol. 38,
No. 11 (1990), 2025-2039.

[FeV90] D. Ferrari and D. Verma, "A Scheme for Real-Time Channel Establishment in Wide-Area Net-
works", IEEE J. Sel. Areas in Comm. SAC-8 (April, 1990).

[GiG91] M. Gilge and R. Gusella, "Motion Video Coding for Packet Switching Networks: An Integrated
Approach," SPIE Conf. on Visual Commun. and Image Processing, Boston (November, 1991).

P. Haskell, K. H. Tzou and T. R. Hsing, "A Lapped-Orthogonal-Transform Based Variable Bit-Rate Video
Coder for Packet Networks," Int. Conf. on Acoustics, Speech and Signal Proc., Glasgow, Scotland, May
23-26, 1989.

[HSS90] D. Hehmann, M. Salmony, H.J. Stuettgen, "Transport Services for Multi-Media Applications on
Broadband Networks", Computer Commun., Vol. 13, No. 4 (1990), 197-203.

[ITC91] Proc. Workshop on "Continuous Time Media", Information Technology Center, Carnegie Mellon
University, Pittsburgh (June, 1991).

[Leg91] D. Le Gall, "MPEG: A Video Compression Standard for Multimedia Applications," Commun. of
the ACM, Vol. 34, No. 4, (1991).

[LiH91] M. Liebhold, E. M. Hoffert, "Toward an Open Environment for Digital Video", Commun. ACM,
Vol. 34, No. 4 (1991), 104-112.

[LPS91] T. F. La Porta, M. Schwartz, "Architectures, Features, and Implementation of High-Speed Trans-
port Protocols", IEEE Network Magazine, Vol. 5, No. 3 (1991), 14-22.

[MoW91] M. Moran, B. E. Wolfinger, "Design of a Continuous Media Data Transport Service and Proto-
col", unpublished (1991).

[NRS90] A.N. Netravali, W.D. Roome, K. Sabnani, "Design and Implementation of a High Speed Trans-
port Protocol", IEEE Trans. on Commun., Vol. 38, No.11 (1990), 2010-2024.

[VeZ91] D. Verma, H. Zhang, "Design Documents for RTIP/RMTP", unpublished (1991).

[Wat89] R. W. Watson, "The Delta-t Transport Protocol: Features and Experience", Proc. IFIP Workshop
on Protocols for High-Speed Networks, North-Holland (1989), 3-18.

[WrT90] D. J. Wright, M. To, "Telecommunication Applications of the 1990s and their Transport Require-
ments", IEEE Network Magazine, Vol. 4, No. 2 (1990), 34-40.

[Zit91] M. Zitterbart, "High-Speed Transport Components", IEEE Network Magazine, Vol. 5, No. 1
(1991), 54-63.

[Zha91] L. Zhang, "Virtual Clock: A New Traffic Control Algorithm for Packet-Switched Networks,"
ACM Trans. on Computer Systems, Vol. 9, No. 2 (1991), 101-124.

10. Figures

4321 CWCWCWCW

types a),..., d)

Process

t5t4t3t21t

Mappings of
STDUs

Code Words

T

Coding t

...

...

Function
Signal

Figure 1: Coding of a stream and its mapping onto a sequence of STDUs

... ...

... ...

Dstream

τ0 τ1 τ2 τi −1 τi

∆τi

∆ti

t 0 t 1 t 2 ti −1 ti

(τ)
Receiver time

(t)
Sender time

RECEIVER

SENDER
(CS /CMS)

(CMR /CR)

Figure 2: Basic timing during the transfer of the data corresponding to a stream

.....
Data connection

primitives

Control connection

read CMRCMS

primitives
write read

write

CRCS

Service Service

BRBS

Notation:
Shared BufferProcess

Figure 3: Basic components of CMTS implementation and illustration of their interactions

00
01
10
11

BR

Not delivered (lost)
Corrupted
Empty (not yet expected)
Full (and correct)Code:

length1

length2

length1

"error" "nothing in buffer"

length2

Figure 4: Shared buffer at the CMR/CR-interface and associated descriptors

