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1 IntroductionThe behavior of the Renormalization Group (RG) in the vicinity of �rst order phase transitions has beena very controversial matter for the last 20 years. In 1975 Nienhuis and Nauenberg [1] proposed that theRG transformations behave near �rst{order transition points in a similar fashion as near standard criticalpoints. Each RG step is smooth (i.e. the renormalized couplings are analytic functions of the original ones,even at the transition points). Singular behavior is recoved as we in�nitely iterate this transformationnear a �xed point. Moreover, �rst{order transition points are governed by a so{called \discontinuity �xedpoint" (DFP), characterized by i) A domain of attraction which includes the transition surface. ii) Zerocorrelation length (In most systems, �rst{order transition points possess a �nite correlation length. See[2] for a counterexample). iii) A relevant operator whose critical exponent is given by the dimensionalityof the system y = d. As a matter of fact, there are as many exponents y = d as phases coexist at thetransition line 1 [3]. In the Ising model it is believed that the DFP is located at zero temperature [4].This picture was criticized by some authors [5, 6, 7, 8, 9] who claimed that the RG 
ow is itselfdiscontinuous at the transition line. That is, they claimed that the renormalized Hamiltonian has di�erentlimiting values depending on how the original Hamiltonian approaches the transition line. As a result,they doubted whether the DFP would exist at all. Most of these claims were based on Monte CarloRenormalization Group (MCRG) computations. In ref. [9] non{rigorous analytical arguments were givento support the same conclusion. In ref. [10] it was argued that the observed discontinuities are artifactsdue to the truncation of the Hamiltonian space inherent in the MCRG approach. In fact, for the two{dimensional Ising model and majority rule with 2 � 2 blocks it was found that the discontinuity in themagnetic �eld was of the same order as the truncation error. Moreover, as the number of operatorsincluded in the computation was increased, the size of this discontinuity decreased.This puzzle was solved partially by van Enter{Fern�andez{Sokal [11], who showed that for systemswith bounded dynamical variables and interacting through a Hamiltonian belonging to the space B1 (i.e.the space of real, absolutely summable and translation{invariant interactions) the RG 
ow is alwayscontinuous and single{valued, whenever it exists at all (subject to some very mild locality conditions onthe RG transformation). For �nite systems the existence of the transformation (i.e. of the renormalizedHamiltonian) is trivial. In the thermodynamic limit, however, this is a very subtle problem. As a matterof fact, these authors proved that the renormalized Hamiltonian does not exist in the two{dimensionalIsing model when the temperature is low enough, for the Kadano� transformation, decimation, blockaverage and some particular cases of majority rule. On the other hand the majority rule with blocks ofsize b = 2 (the case most considered in the literature) is still an open problem. Notice that the pathologiesalways occur at low temperatures. In such a regime there is an alternative to MCRG computations: thelow{temperature (low{T ) expansions [12, 13, 14, 15, 16].In this paper we propose to study the behavior of several RG transformations using low{T expansions.This approach has several advantages over MCRG computations. MCRG methods have three sourcesof errors: statistical errors, �nite{size e�ects and truncation errors. Series expansions do not su�erfrom the �rst two, as the observable quantities are obtained directly in the thermodynamic limit and nostochastic process is involved 2. If we wished to obtain a renormalized Hamiltonian from the renormalizedexpectation values, then a truncation scheme would be involved. However, in this paper we will use ourresults to study the truncation procedure itself and learn why it works or does not work.If we truncate the renormalized Hamiltonian (i.e. we allow only a �nite number of renormalized in-teractions), we can obtain estimates for those couplings by solving a highly non{linear set of equations,which involve expectation values of operators computed in the renormalized measure. In this paper wedevelop a procedure to compute series expansions for these expectation values, which have not beencomputed previously (to our knowledge) in the literature. For real{space RG transformations the expec-tation value of an operator O with respect the renormalized measure can be written as an expectationvalue in the original measure of a certain composite operator ~O. This composite operator ~O is equalto the original operator O acted upon by a probability kernel (which is the mathematical object repre-senting the RG transformation). Thus, if we know how to obtain the low{T expansions in the original1Here we take into account the (trivial) critical exponent associated with the renormalization of the identity operator inthe Hamiltonian.2Note that unlike many applications of series expansions, here we are really interested in the behavior at low temperatureand not in the critical region T � Tc. Therefore, no extrapolation procedure is involved.1



(or unrenormalized) measure, then we can compute any expectation value by doing the correspondingintegral.These series can be useful in two other ways: i) They provide a real check for MCRG computationsat low temperature. Expectation values coming from the Monte Carlo simulations can be compared withthe low{T predictions. ii) When performing a RG transformation the system is viewed at a larger spatialscale. For that reason we believe that the low{T series for the renormalized magnetization, susceptibilityand speci�c heat could be used to extract the critical exponents (using standard series{extrapolationtechniques). In fact, a better convergence could be expected for these \improved" series. It would beinteresting to devise a computational procedure to generate these series to an arbitrary order.On the other hand, the main goal of this paper is to analyze the truncation issue in the Ising model.Starting at the �rst order transition line and at very low temperature, we would like to know whether it ispossible to obtain estimates for the renormalized couplings in such a way that the truncated interactiondoes not contain any odd term. An a�rmative answer would imply that the approximate RG transfor-mation, restricted to some �nite{dimensional subspace of B1, is continuous at the transition line. We�nd that this situation occurs for the majority rule transformation (on 2� 2 blocks) when restricted to asubspace containing a magnetic �eld and a nearest{neighbor interaction. On the other hand, we �nd thatthis is not the case for the decimation and large{p Kadano� transformations restricted to the latter two{dimensional subspace or for the majority rule transformation when restricted to the three{dimensionalsubspace containing magnetic �eld, nearest{neighbor and next{to{nearest{neighbor interactions. In allof these cases, the renormalized magnetic �eld is non{zero implying that the approximate RG map isdiscontinuous. Thus, the typical situation seems to be that truncation induces discontinuities in the RGtransformation when restricted to some �nite{dimensional subspace of the interaction space. However,the relation between these results on truncation and the results of [11] on non{Gibbsianness is far fromclear.This paper is organized as follows. In Section 2 we describe the way the low{T expansions forrenormalized observables can be obtained. We give three examples for the two{dimensional Ising case:decimation, Kadano� transformation and majority rule, all of them with block size b = 2. In Section 3we explain how to generate the low-T series for the latter example using a computer algorithm. To showthe performance of the method, we construct the series for the magnetization and energy density up to15 terms. In Section 4 the study of those RG transformations near the Ising �rst{order phase transitionline is considered. Finally in Section 5 we present our conclusions.2 Series Expansions for Renormalized Operators2.1 Review of Low-T ExpansionsLet us consider for simplicity a ferromagnetic Ising model on a two{dimensional square lattice. The spinstake the values �1 and interact through the HamiltonianH = �KXhi;ji(�i�j � 1)�HXi (�i � 1) (1)where the �rst sum is over all the nearest{neighbor pairs of spins, and the second one over every pointi = (ix; iy) of the lattice. The partition function for a system ofN spins with periodic boundary conditionsis then ZN = Xf�=�1g eKPhi;ji(�i�j�1)+HPi(�i�1) (2)We have absorbed the term � = 1=kT in the de�nition of the coupling constants K � 0 and H . We aremainly interested in the zero{�eld case (H = 0), but for future convenience we keep the second term ofthe Hamiltonian (1). This term will be necessary to obtain the zero{�eld susceptibility (see below).The �rst step to compute low{T expansions is to �nd out the ground states of the system at T = 0.In our case it is easy to realize that when H = 0 there are only two translation{invariant ground states.Both of them are completely ordered con�gurations with magnetization +1 and �1 respectively. WhenH 6= 0 then there is only one ground state whose magnetization is parallel to the magnetic �eld H . We2



will choose hereafter the (+1){state as our ground state. This implies that the magnetic �eld should bealways non{negative (H � 0). Furthermore, we have normalized the Hamiltonian (1) in such a way thatH(+1) = 0.Looking at eq. (2) it is easy to realize that each 
ipped spin is penalized by a factor � = exp(�2H)in the partition function. And each unsatis�ed bond (i.e. a bond with both spins in opposite states) issuppressed by a factor � = exp(�2K). All the spin con�gurations with n 
ipped spins and m unsatis�edbonds give the same contribution to the partition function (2) and equal to �m�n. So we can group thesecon�gurations together and express the partition function asZN(�; �) =Xm;nZ(N)m;n�m�n (3)where Z(N)m;n is the number of con�gurations with m unsatis�ed bonds and n 
ipped spins that occurin the system. These numbers depend explicitly on the size of the system, as well as on the boundaryconditions. The �rst term of the expansion corresponds to the ground state, the second to one 
ippedspin (n = 1, m = 4), the third to two nearest{neighbor 
ipped spins (n = 2, m = 6), and so on. Withthis choice of boundary conditions, Z(N)m;n = 0 for odd values of m. This expansion is exact for �nite N ifall the 2N possible con�gurations are taken into account.The low-T expansion of the partition function (3) contains the most relevant terms when the tem-perature goes to zero. It can also be viewed as an enumeration of the low{energy excitations of thesystem. Here we are interested in developing an expansion valid as K ! 1 with H bounded (i.e. anexpansion in powers of � (� 1) whose coe�cients are functions of �) 3. Thus, the dominant termsare those with the smallest values of m. For a given value of m the possible values of n are �nite.For excitations which do not see the boundary of the system the allowed values of n are given byn 2 [m=4;m2=16][[N�m2=16; N�m=4] (resp. [(m+2)=4; (m2�4)=16][[N�(m2�4)=16; N�(m+2)=4])when m=2 is even (resp. odd). All the terms with the same m, irrespective of n, are considered to con-tribute at the same order (i.e. � is considered to be of order 1). This feature implies that we can computederivatives of the series expansions with respect to the magnetic �eld H . When the temperature is veryclose to zero only a few terms are needed to provide an accurate description of the system. However, asthe temperature increases we have to include more and more terms in the expansion to attain a similaraccuracy.Actually, the partition function expansion is a technical tool to compute the expectation values ofsome local operators: the energy density E = h�(0;0)�(1;0)i and the magnetization M = h�(0;0)i. Therelations for a �nite system are the followingEN (�; �) = 1 + 12N 1ZN @ZN@K = 1� 1N �ZN @ZN@� =Xm;nE(N)m;n�m�n (4a)MN(�; �) = 1 + 1N 1ZN @ZN@H = 1� 1N 2�ZN @ZN@� =Xm;nM (N)m;n�m�n (4b)As before, the coe�cients fE(N)m;n;M (N)m;ng do depend on the lattice size and, in general, on the boundaryconditions.Let us discuss now the thermodynamic limit (N ! 1) of these expansions. In this limit, thecontribution of all the terms with the same m is not in general of the same order. In particular, forH > 0 the con�gurations with n near N (for instance, n 2 [N � m2=16; N � m=4] for m=2 even) areexponentially suppressed, and can therefore be dropped. Moreover, for H = 0 the � ! �� symmetryimplies that the contribution of the terms with n near zero is equal to the one of those with n near N .However, at H = 0+ only the �rst set is selected. Therefore, for H > 0 or H = 0+ the correct expansionis obtained by taking all the terms with n near zero.On the other hand, the series corresponding to the partition function (3) are meaningless whenN !1, as all the coe�cients Z(N)m;n (except for Z(N)0;0 = 1) diverge in that limit. This is not true for the3Di�erent expansions are obtained when H !1 and K remains bounded or when both K and H diverge with K=H !constant. 3



series (4a,4b) whose coe�cients have a well-de�ned limitE(�; �) = Xm;nEm;n�m�n ; Em;n = limN!1E(N)m;n (5a)M(�; �) = Xm;nMm;n�m�n ; Mm;n = limN!1M (N)m;n (5b)Here it is assumed that the limit N !1 commutes (for both quantities) with the expansion in � and �.This fact is necessary to identify the limiting series with the thermodynamic limits of the energy densityand magnetization. The coe�cients fEm;n;Mm;ng do not depend on the boundary conditions of the�nite systems.Finally, the speci�c heat Cv and the susceptibility � are de�ned as followsCv(�; �) = Xhx;yi �h�x�y�(0;0)�(1;0)i �E2� = @E@K = �2�@E@� (6a)�(�; �) = Xx �h�x�(0;0)i �M2� = @M@H = �2�@M@� (6b)where the sum Phx;yi is over all nearest{neighbor pairs of spins.The series expansions for the zero{�eld case (H = 0+ or � = 1�) can be easily obtained from theprevious ones by summing over the index n. For example, M(�) =PmMm�m where Mm =PnMm;n.For the two{dimensional Ising model we can easily compute the corresponding zero{�eld expansions forthe energy density, speci�c heat and magnetizations from the known exact solutions [17, 18, 19] andthe aid of an algebraic manipulator such as Mathematica. However, the zero{�eld susceptibility is notexactly known. Series are available up to order O(�56) [16].In this paper we are mainly concerned about the computation of expectation values of more com-plicated local observables O. By local operator we mean an operator which only depends on a �nitenumber of spins. Our de�nitions of the energy density and the magnetization do satisfy this property.The previous procedure can be generalized to include also this case by adding to the Hamiltonian (1) anew term proportional to a translation{invariant version of the operator O.However, this method is not feasible for very complicated operators, such as the ones considered inthe next Section. In this paper we propose to use the following identityhOi = limN!1 1ZN Xf��1gO(�)e�H(�) (7)to overcome this problem. The term exp(�H) can be expanded in terms of con�gurations with munsatis�ed bonds and n 
ipped spins as we did in (3). In this case not all the con�gurations with thesame values of m and n give the same contribution to the numerator of (7). This contribution is equal to�m�n times the value of the operator O(�) at the con�guration. Let us consider a simple example. Tocompute the magnetization series one has to consider, for instance, the operator O = �(0;0) (translationinvariance assures that the mean value of this operator will coincide with the magnetization (5b)). Forinstance, the contribution of the one{
ip con�gurations is di�erent depending on whether the 
ippedspin coincides or not with �(0;0). In the �rst case it is equal to ��4� and in the second one to +�4�.The same occurs for more complicated con�gurations (and operators). For a �nite volume we obtainin this way an expansion similar to (4a, 4b). The �nal result hOi = Pm;nOm;n�m�n is obtained afterperforming the thermodynamic limit.The main advantage of this method is that it allows the computation of low{T series for arbitraryoperators. Its main drawback is that we need to compute two series for each observable, not one as inthe former method. Furthermore, in Section 3 it is shown that its implementation on a computer is muchless e�cient than the corresponding to the �rst procedure. Its interest relies on the fact that this methodcould be used to compute the expectation values of any renormalized operator.2.2 Renormalization Group TransformationsRG transformations are usually viewed as a map in a certain space of Hamiltonians (i.e. B1). Thisapproach has a main drawback: for some commonly used RG transformations the image Hamiltonian4



does not belong to the space B1 when the original interaction is located in the vicinity of the Ising �rstorder phase transition at low enough temperature. On the other hand, strictly local RG transformationsdo always exist as a map in the space of translation{invariant measures [11].Let us consider the RG transformations from this alternative point of view. The original Ising systemcan be completely described by means of a probability distribution � over its con�guration space. Lateron, the relationship between this measure and the Hamiltonian (1) will be discussed.The next step is to de�ne the renormalized spins. First we divide the whole lattice into blocks.(for simplicity we will assume here that these are 2 � 2 blocks). To each block Bi we associate a new(renormalized) spin �0i 4. The RG transformation is the rule which gives the f�0g con�guration from theoriginal one f�g. This rule could be either stochastic or deterministic, but in any case the renormalizedspin should only depend on the spins belonging to the corresponding block (strict locality condition).Mathematically speaking we give a probability kernel T (�; d�0). For each con�guration of the originalspins f�g, T (�; �) is a probability distribution for the f�0g spins and furthermore, it satis�es the propertyR T (�; d�0) = 1. On the other hand, it is usually assumed that T is strictly local in position space andthat it maps translation{invariant measures into translation{invariant ones.The probability distribution �0 of the image system is given by�0 = �T = Z d�(�)T (�; �) (8)and the expectation value of any local observable in this renormalized measure can be written ashOi�0 = Z d�(�) �Z T (�; d�0)O(�0)� = h ~O(�)i� (9)The probability kernel T (�; �) when acting on the measure d�(�) gives a probability distribution onthe new spins f�0g (i.e. a renormalized measure �0). On the other hand, we can consider its action onthe operator O(�0). In this case the results is a composite operator ~O(�) = (T � O)(�) which dependsonly on the original spins. Thus, the expectation value of any local renormalized operator is equal to themean value of a certain composite operator in the original measure.This discussion is general: the conclusions hold whether the systems can be described or not by aHamiltonian H 2 B1. Now we take into account the role of the Hamiltonians. Given an interactionH 2 B1 we can construct a measure over the spin con�guration space using the Gibbs prescriptiond�(�) = d�0(�) 1Z e�H(�) (10)For �nite systems this formula gives the correct answer, but for in�nite systems one has to be more carefuland consider the limit of the measures for �nite systems and given boundary conditions as the size of thesystems goes to in�nite in a given sense. In (10) d�0(�) is the a{priori measure we assign to the spaceof con�gurations of a single spin (in our case it is just the counting measure which gives to each statea probability 1/2). For �nite systems the relation between Hamiltonians and measures is one{to{one.However, in the thermodynamic limit that is not the case: one Hamiltonian can be associated to severalmeasures (i.e. at �rst order phase transitions) or there are perfectly sound measures which cannot beconstructed via the Gibbs prescription from any sensible Hamiltonian [11].The Hamiltonian (1) does belong obviously to the set B1, so we can construct the measure � using(10). Then the expectation value (9) of any local renormalized operator can be written ashOi�0 = h ~Oi� = limN!1 1ZN Xf�=�1g ~O(�)e�H(�) (11)where the de�nition of d�0 has been taken into account.In Section 2.1 we showed how to obtain low{T expansions for a general mean value hOi� . Thus, thesame procedure can be applied to (11), and series of the type hOi�0 = Pm;nO0m;n�m�n are obtained.The practical applicability of this method relies heavily on the actual form of the kernel T as it is shownbelow. This procedure can also be easily generalized to several RG steps.4We will denote renormalized quantities with a prime 5



It is important to remark that this method does not su�er from any of the pathologies which areexhibited by the RG when we try to de�ne it as a map from a Hamiltonian space into a Hamiltonianspace. Here we have not tried to de�ne any renormalized interaction H0 related with the renormalizedmeasure �0 via the Gibbs prescription (10). Our results are independent of the Gibbsian or non{Gibbsiannature of the renormalized measure.Let us illustrate this method with three examples:Example 1: DecimationThis case is really simple because this transformation �xes one spin of the block to be the renormalizedone. In particular, the (deterministic) kernel T takes the formT (�; �0) =Yi �(�0i; �2i) (12)where the product is over all sites i of the renormalized system.We are only interested in computing observables that are monomials of the spins (O = f�(0;0); �(0;0)�(1;0)g).So it is enough to compute for each RG transformation the composite operator ~�i. In this case this isequal to ~�i = Z T (�; d�0)�0i = �2i (13)This implies that the zero{�eld quantities are given byM 0(�; 1�) = h~�(0;0)i =M(�; 1�) (14a)E0(�; 1) = h~�(0;0)~�(1;0)i = h�(0;0)�(2;0)i(�; 1) (14b)where the r.h.s. of the second equation is just the unrenormalized third neighbor correlation function.This case is trivial: the renormalized correlation functions are equal to the unrenormalized ones at twicethe distance. And these functions can be obtained in the two{dimensional Ising model from the exactsolution [17, 18, 19].On the other hand, this method also allows to obtain the renormalized susceptibility and speci�c heat.However, they cannot be computed by using derivatives as in the usual Ising model (that is because wedo not know the renormalized coupling constants H 0 and K 0, if they exist). One is forced to use theirde�nitions (6a,6b) in terms of correlation functions. It would be very interesting to devise an algorithmto build the low-T series for such quantities to an arbitrary order.Example 2: Kadano� TransformationThis is given by the following (stochastic) probability kernelT (�; �0) =Yi ep�0iPj2Bi �j2 cosh(pPj2Bi �j) (15)where p is a free real parameter. Then, ~�i = tanh p Xk2Bi �k! (16)The �rst terms can be computed by handM 0(�; 1�) = tanh 4p� 4(tanh 4p� tanh 2p)�4 � 4(3 tanh 4p� 2 tanh 2p)�6� (36 tanh 4p� 4 tanh 2p)�8 +O(�10) (17a)E0(�; 1) = tanh2 4p� 8(tanh2 4p� tanh 4p tanh 2p)�4� 2(11 tanh2 4p� 6 tanh 2p tanh 4p� tanh2 2p)�6� (43 tanh2 4p+ 40 tanh2p tanh 4p� 20 tanh2 2p)�8 +O(�10) (17b)6



The limit p ! 0 corresponds to the case in which the �0 are not correlated with the original spins andthus, the renormalized spins do not interact among them. For this reason both quantities are zero. Thelimit p!1 corresponds to the majority rule with equally{probable tie{breaker. This case will be treatedin the next section.Example 3: Majority RuleIn this case T (�0; �) =Yi �0@�0i � sign0@Xj2Bi �j1A1A (18)When sign(�) = 0 we choose �0 = �1 or +1 with probabilities q 2 [0; 1] and 1 � q respectively. Thecomposite operator ~� takes the form ~�i = sign Xk2Bi �k! (19)The �rst terms for general q are:M 0(�; 1�) = 1� 8q�6 � (10 + 44q)�8 +O(�10) (20a)E0(�; 1) = 1� 16q�6 � (20 + 88q � 4q2)�8 +O(�10) (20b)The result with q = 1=2 was �rst reported in ref. [11]. Notice that the O(�4) term vanishes. This is dueto the fact that one{spin excitations cannot produce any 
ipped renormalized spin �0 = �1.3 Series for the Majority Rule and q = 1=2The low{T series for this particular transformation can be improved systematically with the aid ofa computer algorithm. The one used here is inspired on the Recursive Counting Method (RCM) ofrefs. [13, 14] where details can be found. This one consists essentially on a recursive enumeration of themost relevant con�gurations of the system and can be easily implemented on a computer. However, thereare several di�erences which should be noticed.We place the spins on a Lx � Ly square lattice with periodic boundary conditions in the x{directionand �xed on the other one. In particular we put cold walls of +1 spins at both vertical ends of oursystem. This fact automatically selects the (+1) con�guration as our ground state.The desired series for renormalized operators cannot be related in a simple way to derivates of thepartition function. For our purposes it is rather useful to write (11) in the following equivalent form (forthe magnetization) valid only for this RG transformationM 0 = h~�(0;0)i = *sign0@ Xk2B(0;0) �k1A+ = Xfsi�1g sign0@ Xk2B(0;0) sk1A* Yj2B(0;0) ��j ;sj+ (21)The procedure is simple: i) Decide where to place the renormalized spin on the lattice. ii) For eachcon�guration fsig of the original spins belonging to the block B(0;0), compute the expectation valuehQj2B(0;0) ��j ;sj i. Notice that this expectation value should be calculated with the unrenormalized mea-sure. iii) Finally we obtain M 0 using the later formula. For the renormalized energy E0 = h~�0(0;0)~�0(1;0)ithe formula is very similar, although there are two renormalized spins involved (and two blocks).The expectation value hQj2B(0;0) ��j ;sj i can be obtained using the RCM. The only di�erence is thatwhen we arrive at any of the spins �j 2 B(0;0) we have to �x its value to sj . The sum in eq. (21)contains in general 24b terms, where b is the number of blocks involved in the computation (b = 1 forthe magnetization and b = 2 for the energy). This feature makes this method much slower than the pureRCM. However there is a trick which allows us to save a factor of 1.6 in CPU time. When q = 1=2,con�gurations with sign(�) = 0 do not have a net contribution to (21): half of the times they give somecontribution and the other half, minus this one. 7



Another disadvantage of our procedure is that it breaks the homogeneity of the lattice. There aresome special blocks (B(0;0) for the magnetization, and B(0;0) and B(1;0) for the energy density) which areclearly di�erent from the rest. This feature implies that, for a given order, our method needs a largerlattice than the RCM. Here the length of the series is mainly limited by Lx: the result is exact up toorder O(�Lx�2) whenever Ly � Lx. In our case the �rst statement is true, but the order O(�Lx�2) isachieved only if Ly � 2Lx�4 (Here we assume that the renormalized spins are placed in the middle of thelattice5 and, for E0 the bond which joins both spins is parallel to the x{axis). As in refs. [13, 14] we canimprove the performance of the algorithm by introducing di�erent couplings (Kx and Ky) for horizontaland vertical bonds. If we want to compute M 0 to order O(�2L) we need a lattice of size Ly = 2L � 3and Lx = (L+ 2)=2 (Lx = (L+ 1)=2) if L is even (odd). In this way we obtain half of the terms whichcontribute to O(�2L) and the rest can be recovered using the symmetry of the result under Kx $ Ky.This is not longer true for E0 as the bond joining the renormalized spins distinguishes one axis from theother. To overcome this di�culty we have to run the program twice: the �rst time that bond is horizontaland the second one vertical. To obtain the same precision we have to use di�erent lattice sizes. Whenthe bond is horizontal we need a lattice with Ly = 2L� 4 and Lx = (L+ 5)=2 (Lx = (L+6)=2) when Lis odd (even). And if it is vertical, Ly = 2L� 2 and Lx = (L+ 1)=2 (Lx = (L+ 2)=2).In this way we have been able to obtain the series (5a, 5b) up to order O(�30). The result is displayedin Table 1. In this algorithm we need to deal with very large numbers, much larger than the precision ofthe computer (32 bits in our case). For that reason, we used modular arithmetic in the FORTRAN codeto obtain all the coe�cients. And all the series manipulation was done using Mathematica, which allowsin�nite{precision integer arithmetic. We checked the algorithm by reproducing the known series for theunrenormalized observablesM , E and �. With the use of more sophisticated tricks to save memory theseseries could be extended a lot more.4 Study of the First{Order Phase Transition at Very Low Tem-peraturesFor the two{dimensional Ising model some rigorous results are known about the behavior of the RG atthe �rst{order phase transition. The authors of ref. [11] found that the renormalized measure is notGibbsian for some particular RG transformations at the transition line. These are the following� Decimation for blocks of size b = 2 and K > (1=2) cosh�1(1+p2). For b � 3 they only could provethis statement for large enough K.� Kadano� transformation with 0 < p <1, block size b � 1, and su�ciently large K.� Majority rule for blocks of size b = 7; 41; : : : and K large enough.� Block{averaging transformation for even b � 2 and su�ciently large K. In this case they were alsoable to prove that the same conclusion is true for arbitrary magnetic �eld H provided K is largeenough.In actual MCRG calculations one chooses by hand a linear subspace Vn 2 B1 of the space of sensibleHamiltonians. Then, given certain renormalized expectation values, one tries to obtain a renormalizedHamiltonian H0n 2 Vn in such a way that the measure constructed from H0n is similar in some sense to thetrue renormalized measure �0. Most \reconstruction" methods are based in Schwinger{Dyson equations[20, 21, 22]. The idea is simple: minimize a certain functional (which depends on the method) involvingboth renormalized expectation values (the input) and renormalized couplings (the output). It can beshown [22] that these methods provide a unique solution H0n, which coincides with the true one H0 if thislatter interaction belongs to the trial subspace Vn. The key property of these functionals is that they arestrictly convex.Here we will consider the procedure given in ref. [11]. It is based on the minimization of the relativedensity entropy with respect to the true renormalized measure �0. This functional in also strictly convex5In this way we minimize the border e�ects due to the cold walls8



and thus, the solution is unique in each Vn. They also proved that the solution H0n should satisfy thefollowing conditions hOii�0 = hOii�0n ; 8Oi 2 Vn (22)where �0n is one Gibbs measure constructed from the Hamiltonian H0n. In this case we have the samenumber of equations than unknown parameters. However, when we restrict these equations to a zero{�eldsubspace it is not always possible to �nd a solution.If the measure �0 is Gibbsian we expect that the sequence of solutions H0n will converge to the true(and existing) solution H0. However, if the measure is non{Gibbsian the situation is less clear. It couldhappen that the norm in B1 of the solutions H0n will diverge as n!1.Remark: More generally one could choose to look for a renormalized Hamiltonian in some a�ne subspaceAn = Vn +H0, where H0 is some �xed element of B1. This will be relevant for Case I below.Using low{T expansions we can study this procedure with no much di�culty and no statistical errors.In this section we will mainly treat the majority rule transformation with q = 1=2 and block size b = 2.Case I: V1 = fHgHere the subspace V1 contains only the magnetization; so we should solve the following equation:M(K;H 0) =M 0(K;H) (23)In this case, H01 = (K;H 0) is the approximate renormalized Hamiltonian chosen within the a�ne subspaceA1 and the element H0 is equal to the nearest{neighbor interaction H0 = (K; 0). Notice that any RGtransformation satisfyingM(K; 0+) 6=M 0(K; 0+) is discontinuous at H = 0 when restricted to this a�nesubspace A1.The main interest of this case relies on its connection with ref. [8], where it was claimed that eq. (23)could be used to compute numerically the leading critical exponent of the Ising DFP. They consideredthe Kadano� transformation with p = 2:5, which we now know that it does not lead to any renormalizedGibbsian measure. Actually, they used a method due to Wilson [23] which allows to linearize a RGtransformation near a �xed point without su�ering from truncation errors. However, it is required thatthis �xed point possesses only one relevant operator, and in the present case there are two relevantoperators at the DFP: the magnetic �eld and the temperature � 1=K [4, 10].We can repeat the same calculation using the low{T series obtained in Section 2 by generalizing themto H 6= 0. As a matter of fact, it is not very di�cult to notice that the leading term in 1�M(�; �) comesfrom one{spin 
ips, so it is proportional to �. On the other hand, the leading term in 1�M 0(�; �) is dueto two{spin 
ips, and thus, it is proportional to �2. The �nal result isH 0 = 2H + 2K � 12 log 2 (24)This means that there is a jump (= 2K � (1=2) log 2) at the transition line as Decker et al obtained.Notice that the size of the discontinuity decreases as K does. However, the slope is di�erent from theirs.The critical exponent would be y = 1 contrary to their result and the DFP prediction (y = 2).The same can be done for the decimation transformation with b = 2. In this case everything is muchsimpler because M(K;H 0) =M 0(K;H) =M(K;H) (25)This implies that H 0 = H and there is no jump at H = 0. The most relevant exponent is not longerrelevant, but marginal (y = 0), contrary to the previous results.In summary, we have obtained very di�erent results for the critical exponent y depending on the usedRG transformation. The critical exponents do not depend on the RG transformation, so these results area signal that this matching method cannot be applied to this particular case. On the other hand, onlydecimation is continuous at H = 0, although the relation between H and H 0 is trivial.Case II. V2 = fH;KgNow our subspace contains the original interaction (H 2 V2). We will try to match both the energydensity and the zero �eld magnetization with a di�erent zero{�eld Hamiltonian. If this matching can be9



performed, it would mean that the RG transformation is not discontinuous at the transition line (whenrestricted to this coupling subspace V2). However, this does not mean that that the renormalized measureis Gibbsian. On the other hand, if the renormalized Hamiltonian H0 exists, it is not guarantied that theapproximants H0n do not contain any odd coupling. However, as n ! 1 these odd couplings shouldvanish because the exact RG transformation is continuous (assuming its existence).First we de�ne K 0 as the nearest{neighbor coupling such thatE0(K; 0) = E(K 0; 0) (26)Using the result given in Section 2 and the well{known expansion of the Onsager solutionE(�; 1) = 1� 4�4 � 12�6 � 36�8 +O(�10) (27a)M(�; 1�) = 1� 2�4 � 8�6 � 34�8 +O(�10) (27b)we �nd that �0 = p2�3 + 638p2�5 +O(�6) (28)The magnetization M at this particular value of � = �0 is equal toM(�0; 1�) = 1� 4�6 � 634 �8 +O(�9) (29)and this expansion should be compared with the renormalized magnetizationM 0(�; �) given in Section 2.We �nd that M(�0; 1�) > M 0(�; 1�) (30)This equation means that we can give account of the observed renormalized magnetization with a systemwith zero �eld and K 0 = �(1=2) log�0 � 3K � (1=4) log 2. This system is not in a pure phase, butin a mixed phase because the renormalized magnetization M 0(�; 1�) is strictly smaller than M(�0; 1�).Thus, eq. (22) is satis�ed by a measure �02 which is a convex linear combination of the two pure phases ��characterizing the two{dimensional Ising model at low temperature andH = 0� (i.e. �02 = ��++(1��)��for some � 2 (0; 1)).The same game can be played with the other two RG transformations considered in Section 2. Theeasiest case is the decimation transformation, where conclusions can be drawn for every K > Kc. Inthe two{dimensional Ising model it is well{known that h�(0;0)�(1;0)i > h�(0;0)�(2;0)i for 0 < K < 1.This implies immediately that E(K; 0) > E0(K; 0) and K 0 < K if we take into account that E(K; 0) isa strictly increasing function of K. On the other hand, the renormalized magnetization coincides withthe unrenormalized one (i.e. the RG 
ow follows the lines of constant magnetization). And M(K; 0+) isalso a strictly increasing function of K for K > Kc. Combining both pieces we obtain that M(K 0; 0+) <M(K; 0+) for all K > Kc. This is so because the direction of the RG 
ow is reversed: it goes fromlow{temperature to high{temperature (K 0 < K). So, we have to increase the magnetic �eld to keep themagnetization constant, unless the magnetization at the starting point is zero. This condition is onlyheld above the critical temperature. In summary, we cannot match the renormalized observables using azero{�eld Hamiltonian along the whole �rst{order transition line for this RG transformation.For the Kadano� transformation and large (but �nite) p the same result holds: one cannot match theenergy densities and the magnetizations with a zero{�eld nearest{neighbor interaction. This can only beproved when p is large enough. The reason is clear: the leading term of E0 is tanh2 4p and if p is notlarge, then the solution of (26) does not satisfy �0 � 1 and the low{T series for �0 are then meaningless.For �nite p we can always choose �0 such that for � < �0 the leading term of E0(�; 1) is dominatedby a term which does not depend on �. ThenE0(�; 1) = 1� 4e�8p +O(e�16p) (31)if we choose �0 � exp(�3p). The solution of eq. (26) is then�0 = e�2p � 34e�6p +O(e�10p) (32)10



and M(�0; 1�) = 1� 2e�8p � 3e�12p +O(e�16p) (33)which should be compared with the expansion of the renormalized magnetization for p very large and� < �0 M 0(�; 1�) = 1� 2e�8p +O(e�16p) (34)We �nd that at leading term both quantities are the same, but the next{to{leading term is di�erent. Inparticular we �nd that M 0(�; 1�) > M(�0; 1�), so we cannot match both E0 and M 0 with a zero{�eldIsing interaction. This discussion is valid as long as p is large but �nite. When p diverges the leadingterm of 1�E0(�; 1) is proportional to �6 and we re{obtain the result for the majority rule transformationwith q = 1=2.Case III. V3 = fH;K;LgNow we are considering a Hamiltonian with an additional next{to{nearest neighbor term LP�i�k.First of all we have to compute the renormalized mean value of the next{to{nearest neighbor correlationfunction. The result for the majority rule with random tie{breaker isF 0(�; 1) = h~�(0;0)~�(1;1)i = 1� 4�6 � 64�8 � 336�10 � 1578�12 +O(�14) (35)The second step is to write down the expressions for hOii�n , 8Oi 2 V3. The result for zero magnetic �eldis E(�; 
; 1) = 1� 4�4
4 � 12�6
8 � 24�8�12 � 32�8�10 + 36�8�8� 40�10�16 +O(�8�6) (36a)F (�; 
; 1) = 1� 4�4
4 � 16�6
8 � 36�8�12 � 40�8�10 + 36�8�8� 64�10�16 +O(�8�6) (36b)M(�; 
; 1�) = 1� 2�4
4 � 8�6
8 � 20�8�12 � 24�8�10 + 18�8�8� 40�10�16 +O(�8�6) (36c)where 
 = exp(�2L). Now we have to �nd out a pair (�0; 
0) such thatE(�0; 
0; 1) = E0(�; 1); F (�0; 
0; 1) = F 0(�; 1) (37)The solution to leading term is�0 = 4�2 +O(�4); 
0 = � 132�0�1=4 (1 +O(�0)) (38)This implies that K 0 � 2K � log 2 > 0 and L0 � (5=8) log 2 � K 0=4 � (7=8) log 2 � K=2 < 0. So, asK !1, K 0 and �L0 also diverge. The latter relation (38) between �0 and 
0 should be taken into accountwhen computing the actual order of a given term in the expansion of the partition function ZN (�0; 
0; 1�)and its derivatives. In our case, this implies that the �rst two excitations to the ground state are of order�03 and �04 respectively. We have considered here all the excitations up to order O(�06).A straightforward computation leads to the next{to{leading terms of eq. (38).�0 = 4�2 �1� 6916�2 +p2�3 + 17027512 �4 +O(�5)� (39a)
0 = � 132�0�1=4 �1 + 327256�0 � 316p2�03=2 + 144177131072�02 +O(�05=2)� (39b)The magnetization (36c) computed at the latter solution is equal toM(�0; 
0; 1�) = 1� 4�4 � 32�8 � 268916 �10 +O(�11) < M 0(�; 1�) (40)This implies that we cannot match the renormalized expectation values with a zero{�eld interactionbelonging to V3. 11



5 ConclusionsIn this note we have shown how to compute low{temperature expansions for the expectation valuesof local operators computed in the renormalized measure. In particular we have analyzed three RGtransformations: decimation, Kadano� transformation with large but �nite parameter p and majorityrule with random tie{breaker. All of them are de�ned on 2�2 blocks. We have been able to compute the�rst terms of the series corresponding to the renormalized magnetization and nearest{neighbor two{pointcorrelation function for all these transformations. For the majority rule case, a computer algorithm hasbeen devised to provide those series to an arbitrary high order. The main limitation of this computationalmethod is the huge memory needed. With the use of more sophisticated programming tricks we expectto increase the order of both series. Here they are reported up to order O(�30).These results are useful as checks for MCRG computations. Another interesting point would be todevise a new algorithm to obtain the series for the renormalized susceptibility and speci�c heat to anarbitrary order. As explained in Section 2, these quantities are not related by simple derivatives tothe partition function, and we need to use their de�nition in terms of sum over connected correlationfunctions. This feature makes their computation a more involved matter.The main goal of this note was the analysis of the truncation issue in the Ising model. The unrenormal-ized system is located at the Ising �rst{order transition line and very low temperature (H = 0;K � Kc).For the three transformations considered we have found that we need a magnetic �eld to solve the match-ing equations (22) when we restrict our estimated Hamiltonian to belong to a certain �nite{dimensionalsubspace of B1. In particular, for the decimation and Kadano� transformations this matching cannot beperformed when restricting the equations to V2. For majority rule, in this case the equations admit azero{�eld solution but when we consider the (larger) subspace V3 we also need a magnetic �eld.So its seems that truncation in the renormalized Hamiltonian induces some spurious odd operators(we have only found non{zero magnetic �elds, but there is no reason why more complicated odd operatorsshould not appear for larger subspaces Vn). So, the RG transformations are discontinuous at the Isingtransition line when restricted to some �nite{dimensional subspace of the interaction space B1.However, these results do not clarify the interplay between truncation and non{Gibbsianness. It isknown [11] that the decimation and Kadano� transformations lead to non{Gibbsian renormalized mea-sures when we start at low enough temperature; and in these cases we have shown that the approximateRG transformation is discontinuous. For the majority rule the situation is less clear, as it is not knownthe nature of the renormalized measure. The authors of ref. [11] conjectured that in this case the renor-malized measure is also non{Gibbsian, but they were able to prove it only for certain special block sizes(7�7, 41�41, : : :). In any case, this model leads to a continuous approximate RG transformation for thesubspace V2, but a discontinuous one for V3. It is an open question what happens for larger subspacesVn. It would be very interesting to �nd a transformation which leads to a Gibbsian measure at lowtemperatures. In this case we could isolate the e�ect of truncation from non{Gibbsianness. A systematicstudy of the behavior of the estimates H0n could also be useful. When the renormalized measure isGibbsian, the odd couplings should go to zero because the transformation is in this case continuous andsingle{valued. If the renormalized measure is non{Gibbsian then it is not known what could happen.AcknowledgementsWe would like to thank A. Sokal for his encouragement and for illuminating discussions. We also ac-knowledge helpful comments by J.L.F. Barb�on, R. Fern�andez and M. Garc��a P�erez. This research hasbeen supported by a MEC(Spain)/Fulbright grant.
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m M 0m E0m0 1 16 -4 -88 -32 -6310 -168 -31212 -816 -132814 -3964 -531816 -19628 -2138918 -99120 -8980620 -508848 -39682622 -2647012 -182888424 -13917848 -869018126 -73827576 -4221247628 -394527840 -20850935430 -2121643804 -1043875370Table 1: Series expansions for the zero{�eld renormalized magnetizationM 0 =PmM 0m�m and two{pointcorrelation function E0 =PmE0m�m. Only the non{zero contributions are displayed.
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