
Computing Dimensionally Parametrized Determinant FormulasMark Ziegelmann�yAbstractWe are interested in dimensionally parametrized determinant formulas for specially structured matrices. Applicationsof this question occur in the study of arbitrary dimensional geometric predicates. We will investigate determinantformulas for two important matrix classes and discuss the implementation of Maple packages that automaticallyderive the determinant formula for speci�ed matrices of these classes.IntroductionDeterminants have a long history in mathematics andarise in numerous applications [2]. Here we are notinterested in the value of a determinant of �xed in-teger order but rather in the determinant formula ofa specially structured matrix of symbolic dimensionn. It is assumed that a certain simple structure ofa matrix yields a corresponding special structure ofits determinant formula. Applications of dimension-ally parametrized determinant formulas occur in thestudy of arbitrary dimensional geometric predicatesin determinant form: If we want to prove a generalstatement for a special con�guration then we needthe determinant formula of the predicate.In the following sections we will investigate determi-nant formulas for two important matrix classes, theFrameforms and the Alternants. Moreover, we willdiscuss the implementation of Maple packages thatallow a speci�cation of matrices of these classes andautomatically derive its determinant formula.FrameformsWe will �rst examine a matrix class where only thebordering rows and columns as well as the main di-agonal may contain nonzero entries. Matrices of thisclass will be called frameforms.

MotivationGeometric predicates such as the in-sphere test � dod+ 2 points of IRd lie on a common sphere ? � maybe written in determinant form [1].Consider the following example in [1]: We have a con-�guration of d + 2 points in IRd, two distinct pointss = (s; : : : ; s) and t = (t; : : : ; t) from the main diag-onal and one point ti = ti � ei from each axis.
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Figure 1: Con�guration in IR3This point con�guration results in the following in-sphere determinant:S = ��������������
1 t t � � � t dt21 t1 0 � � � 0 t211 0 t2 . . . ... t22... ... . . . . . . 0 ...1 0 � � � 0 td t2d1 s s � � � s ds2
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We are looking for an easy dimensionally parame-trized determinant formula such that we can showthat the determinant does not vanish for given rangesof the entries which would establish that the d+2 cho-sen points are not cospherical. The determinant S isin frameform and we will show in the sequel how toestablish its determinant formula.Determinant formulas for FrameformsWe will show that it is possible to derive the mostgeneral form of frameform matrices��������������
c1(1) r1(2) � � � � � � r1(n� 1) cn(1)c1(2) d(2) 0 � � � 0 cn(2)... 0 . . . . . . ... ...... ... . . . . . . 0 ...c1(n� 1) 0 � � � 0 d(n� 1) cn(n� 1)c1(n) rn(2) � � � � � � rn(n� 1) cn(n)

��������������from simpler forms.
arrow form R-form DB-formFigure 2: Nonzero shapes of di�erent frameformsWe will proceede as follows: First we will give adimensionally parametrized determinant formula forarrow forms which will allow us a straightforwardgeneralization to R-forms. The most general form,the DB-form, will be obtained by a combination ofR-forms.Arrow formsThe only nonzero elements of an arrow form deter-minant are located in the �rst row, the �rst col-umn or the main diagonal. It will be denoted asArrown(r1; c1; d).Expansion of the �rst row and clever restructuringestablishes the following determinant formula:Arrown(r1; c1; d) = nYl=1 d(l)� nXl=2 r1(l)c1(l) nYk=2k 6=l d(k):R-formsIn comparison to arrow forms, the last column mayalso contain nonzero elements in R-forms which will

be denoted as Rformn(r1; c1; cn; d).Expanding the last row it may be seen that an R-form determinant formula can be obtained from twoarrow forms of lower order.Rformn(r1; c1; cn; d) = cn(n)Arrown�1(r1; c1; d)� c1(n)Arrown�1(er1;ecn; ed)where er1;ecn; ed are new generating functions obtainedby swapping column 1 and n�1 in the correspondingminor Rn1 to get arrow form.DB-formsNow we turn to the most general case of frameformswhich will be denoted as DBformn(r1; rn; c1; cn).Expanding the last row, we see after some restruc-turing that it is possible to express its formula as acombination of R-forms.DBformn(r1; rn; c1; cn) = Rformn(r1; c1; c2; d)� n�1Xl=2 rn(l)Rformn�1(br1;bc1;bcn; bd)where br1;bc1;bcn; bd are new generating functions ob-tained by swapping row l down to the bottom in thecorresponding minor DBnl to get R-form.GeneralizationsIt is easy to transform similar shapes like arrows point-ing to the bottom right corner into the discussed stan-dard shapes.The assumption that the nonzero elements shouldreside in bordering rows and columns may also bedropped since it is possible to obtain this borderingform via pairwise swappings. Refer to [3] for details.A Maple package for FrameformsWe have implemented a Maple package that enablesthe user to specify a general frameform determinantand automatically computes the corresponding de-terminant formula using the preceding results. Thepackage works as follows: First, the speci�cation isparsed and tested for correctness, then a transforma-tion into standard form is performed and �nally thecorresponding formula is applied after trying out sim-pli�cations. Features are options that enable the dis-play of the speci�ed dimensionally parametrized de-terminant (using �o�s as dots for illustration) and that2



check the computed formula via substitution of inte-ger orders and comparison with the normally com-puted determinant. Details can be obtained from [3]or the online help pages.Example> with(FRAMEFORMS):> DBform(d+2,[[col[1],1],[col[d+2],[[1,d*t�2],[2..d+1,t[i-1]�2],[d+2,d*s�2]]],[diag,[2..d+1,t[i-1]]],[row[1],[2..d+1,t]],[row[d+2],[2..d+1,s]]],print,check);Matrix :26666666666666664
1 t t o o t d t21 t1 0 0 0 0 t121 0 t2 0 0 0 t22o 0 0 o 0 0 oo 0 0 0 o 0 o1 0 0 0 0 td td21 s s o o s d s2

37777777777777775Determinant :formula valid for d > 1(1� ts ) (( dYl=1 tl ) d s2 � s ( dYl=1 tl) ( dXl=1 tl ))� (d t2 � d s t)  ( dYl=1 tl)� s ( dYl=1 tl )  dXl=1 1tl!!The preceding formula which is the result of our in-sphere example, looks rather nasty. If we take a closerlook at it, we see that it may be cleaned up a littlebit: Factoring out the nonzero term (Qdl=1 tl)=(t� s)we get the much nicer formuladXl=1 tl � dt+ dst dXl=1 1tl :AlternantsLet us turn to another important determinant class,the alternants. An alternant of order n is a determi-nant where the entries of the �rst row are generatedby functions f1; : : : ; fn (we assume multivariate poly-nomials over a ring) in one variable x1, the entries of

the second row by the same functions in another vari-able x2 and so on:��������� f1(x1) f2(x1) � � � fn(x1)f1(x2) f2(x2) � � � fn(x2)... ... ...f1(xn) f2(xn) � � � fn(xn) ��������� :The most well known type of an alternant is the Van-dermonde determinant, generated by the functionsxj�1i for i; j = 1; : : : ; n.V = ��������� 1 x1 � � � xn�111 x2 � � � xn�12... ... ...1 xn � � � xn�1n ��������� :A generally known fact is that the formula of theVandermonde determinant isV = Y1�i<j�n(xj � xi)which is the di�erence product of the variables.Indeed it is straightforward to show that this di�er-ence product appears as a factor of every alternantand that its cofactor is a symmetric function in thevariables. How can we compute this cofactor ?We will present a theorem of [2] that determines thecofactor as a combination of elementary symmetricfunctions which form a basis of the symmetric poly-nomials. The elementary symmetric function �r isthe sum of all monomials that are products of r dis-tinct variables (for 0 � r � n and �0 := 1):�r = X1�i1<���<ir�nxi1 � � �xirTheoremLet fj(xi) = a0j + a1jxi + a2jx2i + � � �+ arjxri be thecolumn generating functions with r � n � 1 and letSk = (�1)k�k.The cofactor of the di�erence product of the gener-ated alternant of order n is�����������������
a01 a11 � � � an1 an+1;1 � � � ar1... ... ... ... ...a0n a1n � � � ann an+1;n � � � arnSn Sn�1 � � � S0 0 � � � 00 . . . . . . . . . . . . ...... . . . . . . . . . . . . 00 � � � 0 Sn Sn�1 � � � S0

�����������������r+1 :3



Proof. See [2] or [3].At �rst it seems that we didn't gain anything since wetraded an order n determinant for an order r + 1 de-terminant involving coe�cients and elementary sym-metric functions. However, if we assume r = n + dwith d 2 IN and only consider monomials as columngenerating functions, it becomes obvious that onlyone entry in each of the �rst n rows is nonzero. Thisallows easy expansion of the �rst n rows yielding aminor of order d+1 involving elementary symmetricfunctions. This minor is of integer order and can becomputed by standard minor expansion.ExampleConsider the following alternant:A = ����������� 1 x21 x31 � � � xn11 x22 x32 � � � xn2... ... ... ...1 x2n�1 x3n�1 � � � xnn�11 x2n x3n � � � xnn
�����������n :The theorem gives us a cofactor determinant������������ 1 0 0 � � � 00 0 1 . . . ...... ... . . . . . . 00 0 � � � 0 1Sn Sn�1 � � � S1 S0

������������ = (�1)n�1Sn�1 = �n�1and hence the determinant formulaA = �n�1 Y1�i<j�n(xj � xi):Using the multilinearity of the determinant we canalso handle the case of polynomial generating func-tions provided that there are only a �xed integer num-ber of them.A Maple package for AlternantsWe have implemented this approach such that it ispossible to obtain the dimensionally parametrized for-mula of speci�ed alternants meeting the restrictionsabove. After parsing the speci�cation, the determi-nant is broken into a combination of monomial alter-nants whose formulas are determined by computingthe cofactor determinant. Since only a �xed integer

number of columns may be piecewisely de�ned, wemay simulate the minor expansion of the dimension-ally parametrized cofactor determinant. Display andchecking facilities are provided as in the frameformspackage.Example> with(ALTERNANT):> Alternant(n,x,[ [1..n-1,x[i]�(j-1)],[n..n,2*x[i]�j-x[i]�(j+1)] ],esf,print);Matrix :26666666666664
1 x1 o o x1(n�2) 2x1n � x1(n+1)1 x2 o o x2(n�2) 2x2n � x2(n+1)o o o o o oo o o o o o1 xn�1 o o xn�1(n�2) 2xn�1n � xn�1(n+1)1 xn o o xn(n�2) 2xnn � xn(n+1)

37777777777775Determinant :formula valid for n > 1(�S(1; n; x)2 + S(0; n; x) S(2; n; x)� 2 S(1; n; x))DP(n; x; xi)Here, S(k; n; x) denotes (�1)k�k(x1; : : : ; xn) andDP (n; x; xi) the di�erence product Q1�i<j�n(xj �xi).ConclusionWe derived dimensionally parametrized determinantformulas for two determinant classes, the frameformsand the alternants. We described Maple packagesthat enabled computing the formula of speci�ed de-terminants of these classes.This work is an excerpt of the author's M.Sc thesis.The Maple packages including online documentationand the thesis o�ering a more detailed treatise of thetopic can be downloaded from the WWW page:http://www-tcs.cs.uni-sb.de/mark/det.htmlReferences[1] J. Erickson and R. Seidel. Better lower bounds ondetecting a�ne and spherical degeneracies. Dis-crete Computational Geometry, 13:41�57, 1995.4
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