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Abstract

We are interested in dimensionally parametrized determinant formulas for specially structured matrices. Applications

of this question occur in the study of arbitrary dimensional geometric predicates. We will investigate determinant

formulas for two important matrix classes and discuss the implementation of Maple packages that automatically

derive the determinant formula for specified matrices of these classes.

Introduction

Determinants have a long history in mathematics and
arise in numerous applications [2]. Here we are not
interested in the value of a determinant of fixed in-
teger order but rather in the determinant formula of
a specially structured matrix of symbolic dimension
n. It is assumed that a certain simple structure of
a matrix yields a corresponding special structure of
its determinant formula. Applications of dimension-
ally parametrized determinant formulas occur in the
study of arbitrary dimensional geometric predicates
in determinant form: If we want to prove a general
statement for a special configuration then we need
the determinant formula of the predicate.

In the following sections we will investigate determi-
nant formulas for two important matrix classes, the
Frameforms and the Alternants. Moreover, we will
discuss the implementation of Maple packages that
allow a specification of matrices of these classes and
automatically derive its determinant formula.

Frameforms

We will first examine a matrix class where only the
bordering rows and columns as well as the main di-
agonal may contain nonzero entries. Matrices of this
class will be called frameforms.

Motivation

Geometric predicates such as the in-sphere test — do
d + 2 points of IR? lie on a common sphere ?  may
be written in determinant form [1].

Consider the following example in [1]: We have a con-
figuration of d + 2 points in R, two distinct points
5= (s,...,s)and t = (t,...,t) from the main diag-
onal and one point #; = t; - e; from each axis.

x3

Figure 1: Configuration in R?

This point configuration results in the following in-
sphere determinant:

1ttt -t di?
1t 0 - 0 #
g_|1 0 B t2
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1 s s -+ s ds? 4o
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We are looking for an easy dimensionally parame-
trized determinant formula such that we can show
that the determinant does not vanish for given ranges
of the entries which would establish that the d+2 cho-
sen points are not cospherical. The determinant S is
in frameform and we will show in the sequel how to
establish its determinant formula.

Determinant formulas for Frameforms

We will show that it is possible to derive the most
general form of frameform matrices

c1(1) r1(2) ri(n—1) cn(1)
c1(2) d(2) 0o - 0 cn(2)

. 0 .

: : . . 0 :

c1(n—1) 0 - 0 dn—1) cp(n—1)
c1(n) rn(2) - rn(n—1) cn(n)
from simpler forms.
arrow form R-form DB-form

Figure 2: Nonzero shapes of different frameforms

We will proceede as follows: First we will give a
dimensionally parametrized determinant formula for
arrow forms which will allow us a straightforward
generalization to R-forms. The most general form,
the DB-form, will be obtained by a combination of
R-forms.

Arrow forms

The only nonzero elements of an arrow form deter-
minant are located in the first row, the first col-
umn or the main diagonal. It will be denoted as
ARROW,(r1,¢1,d).

Expansion of the first row and clever restructuring
establishes the following determinant formula:

n n

ARROW, (r1, e, d) = [[ 1) = > ri(@)er () T d(k).
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R-forms

In comparison to arrow forms, the last column may
also contain nonzero elements in R-forms which will

be denoted as RFORM,, (11, ¢1, ¢p, d).

Expanding the last row it may be seen that an R-
form determinant formula can be obtained from two
arrow forms of lower order.

RFORM,, (11, ¢1,¢n,d) =  ¢n(n)ARROW,_1(r1,¢1,d)

- (’IT,)AR.ROWn,1 (’I/:‘/l s En, d)

where 71, ¢, d are new generating functions obtained
by swapping column 1 and n —1 in the corresponding
minor R, to get arrow form.

DB-forms

Now we turn to the most general case of frameforms
which will be denoted as DBFORM,,(r1, 7y, ¢1, Cp).
Expanding the last row, we see after some restruc-
turing that it is possible to express its formula as a
combination of R-forms.

DBFORM,, (71,74, 1, ¢n) = RFORMy, (11, €1, Co, d)

n—1
=" ru()RFORM,, 1 (71, C1, 8y, d)
=2

where 1’"\1,51,57,,,3 are new generating functions ob-
tained by swapping row I down to the bottom in the
corresponding minor DB, to get R-form.

Generalizations

It is easy to transform similar shapes like arrows point-
ing to the bottom right corner into the discussed stan-
dard shapes.

The assumption that the nonzero elements should
reside in bordering rows and columns may also be
dropped since it is possible to obtain this bordering
form via pairwise swappings. Refer to [3] for details.

A Maple package for Frameforms

We have implemented a Maple package that enables
the user to specify a general frameform determinant
and automatically computes the corresponding de-
terminant formula using the preceding results. The
package works as follows: First, the specification is
parsed and tested for correctness, then a transforma-
tion into standard form is performed and finally the
corresponding formula is applied after trying out sim-
plifications. Features are options that enable the dis-
play of the specified dimensionally parametrized de-
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terminant (using “o”s as dots for illustration) and that



check the computed formula via substitution of inte-
ger orders and comparison with the normally com-
puted determinant. Details can be obtained from [3]
or the online help pages.

Example
> with (FRAMEFORMS) :
> DBform(d+2,[[col[1],1],[col[d+2],[[1,
d*t~2],[2..d+1,t[i-11"2],[d+2,d*s"2]1],
[diag,[2..d+1,t[i-1]11], [row([1],[2..d+1,t]],
[row[d+2],[2..d+1,s]]],print,check);

Matrix
( 1 ¢t t oo t di |
1 & 0 0 0 0 ¢#?2
1 0 ¢t 0 0 0 ¢t
o 0 0 o 0 O 0
o 0 0 0 o O 0
1 0 0 0 0 tg t4°
Ll s s o o s ds

Determinant :

formula valid for d > 1

t a 2 ! -
(1= E) (Tt ds* = st O_t))
1=1 =1

‘ dl:1 d d 1
_ (dt2 7dst) ((Hfl) — S (Htl) (Z E))
=1 =1 =1

The preceding formula which is the result of our in-
sphere example, looks rather nasty. If we take a closer
look at it, we see that it may be cleaned up a little
bit: Factoring out the nonzero term (1_[;1:1 t)/(t—s)
we get the much nicer formula

d d 1
lz:;tl fdt+dstl§:;a

Alternants

Let us turn to another important determinant class,
the alternants. An alternant of order n is a determi-
nant where the entries of the first row are generated
by functions fi,. .., fn (we assume multivariate poly-
nomials over a ring) in one variable 1, the entries of

the second row by the same functions in another vari-
able x5 and so on:

fi(z)  fa(z1) - falm)
fi(m2)  folwa) -+ fala2)
filen) Folwn) o falon)

The most well known type of an alternant is the Van-
dermonde determinant, generated by the functions

G-l oo
x; fori,j=1,...,n.
n—1
TR ml]
e
1 9 :L'2
V =
n—1

A generally known fact is that the formula of the
Vandermonde determinant is

v=J] (zj-=)

1<i<j<n

which is the difference product of the variables.

Indeed it is straightforward to show that this differ-
ence product appears as a factor of every alternant
and that its cofactor is a symmetric function in the
variables. How can we compute this cofactor ?

We will present a theorem of [2] that determines the
cofactor as a combination of elementary symmetric
functions which form a basis of the symmetric poly-
nomials. The elementary symmetric function o, is
the sum of all monomials that are products of r dis-
tinct variables (for 0 < r < n and gg := 1):

>

1<i1 << <n

o, = Ti X

r

Theorem

Let fj(’l‘1) = Qoj + 15T + (le.’I,‘l2 + -+ (lrj.??: be the
column generating functions with r > n — 1 and let
Sk = (71)k0'k.

The cofactor of the difference product of the gener-
ated alternant of order n is

ao1 a1 Gp1 Gp41,1 Q1
aon  Qin Gpn  Qpyip " OArp
S, Sp.1 - Sy 0 . 0
0
0
0 - 0 Sp Sua So 1,14




Proof.  See |2] or [3].

At first it seems that we didn’t gain anything since we
traded an order n determinant for an order r + 1 de-
terminant involving coefficients and elementary sym-
metric functions. However, if we assume r = n + d
with d € IN and only consider monomials as column
generating functions, it becomes obvious that only
one entry in each of the first n rows is nonzero. This
allows easy expansion of the first n rows yielding a
minor of order d + 1 involving elementary symmetric
functions. This minor is of integer order and can be
computed by standard minor expansion.

Example

Consider the following alternant:

2 3 n

1 :Ui azé ]

p n

1 5 5 S Ty

A= : : :
2 3 n

1 xn;l xngl o Ty
p n
1 z,, T, T,

The theorem gives us a cofactor determinant

1 0 0 0
0 0 1
: 0 = (71)11715”71 = 0Opn—1
0 0 0 1
Sn Sn,1 S] SO

and hence the determinant formula

I @

1<i<j<n

A = On—1

Using the multilinearity of the determinant we can
also handle the case of polynomial generating func-
tions provided that there are only a fixed integer num-
ber of them.

A Maple package for Alternants

We have implemented this approach such that it is
possible to obtain the dimensionally parametrized for-
mula of specified alternants meeting the restrictions
above. After parsing the specification, the determi-
nant is broken into a combination of monomial alter-
nants whose formulas are determined by computing
the cofactor determinant. Since only a fixed integer

number of columns may be piecewisely defined, we
may simulate the minor expansion of the dimension-
ally parametrized cofactor determinant. Display and
checking facilities are provided as in the frameforms
package.

Example
>  with (ALTERNANT) :

> Alternant(n,x,[ [1..n-1,x[i]1"(j-1)],
[n..n,2*x[i]1"j-x[i]~(j+1)] 1,esf,print);

Matriz -

( 1 = o o z;m? 22" — g, (ntD)

1 23 o o a2, 225" — gy(ntl)

o o o0 o 0 0

o o o0 o 0 0

1 2,0 0 0 x, ™% 22, " —g, ;)
L 1 z, o o wn(nﬁ) 2x," — ﬂfn("H)

Determinant :

formula valid for n > 1

(—S(1, n, 2)* +S(0, n, ) S(2, n, =) — 2S(1, n, z))
DP(n, z, x;)

Here, S(k,n, ) denotes (—1)ko(x1,... ,z,) and
DP(n,z,2;) the difference product [],.; <, (z; —

Conclusion

We derived dimensionally parametrized determinant
formulas for two determinant classes, the frameforms
and the alternants. We described Maple packages
that enabled computing the formula of specified de-
terminants of these classes.

This work is an excerpt of the author’s M.Sc thesis.
The Maple packages including online documentation
and the thesis offering a more detailed treatise of the
topic can be downloaded from the WWW page:
http://www-tcs.cs.uni-sb.de/mark/det.html
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