
A Generalized Sequential Sign Detector for BinaryHypothesis TestingR. Chandramouli and N. RanganathanAbstract|It is known that for �xed error probabilities se-quential signal detection based on the sequential probabilityratio test (SPRT) is optimum in terms of the average num-ber of signal samples for detection. But, often sub-optimaldetectors like the sequential sign detector are preferred overthe optimal SPRT. When the additive noise statistic is inde-pendent and identically distributed (iid), the sign detectoris preferred for its simplicity and nonparametric properties.However, in many practical applications such as the usage ofhigh speed sampling devices the noise is correlated. In thispaper, a generalized sequential sign detector for detectingbinary signals in stationary, �rst order Markov dependentnoise is studied. Under iid assumptions, this reduces to theusual sequential sign detector. The optimal decision thresh-olds and the average sample number for the test to termi-nate are derived. Numerical results are given to show thatthe proposed detector exploits the correlation in the noiseand hence results in quicker detection. The method can alsobe extended to M-th order Markov dependence by convert-ing it to a �rst order dependence in an extended state space.Keywords|Keywords: SPRT, Markov noise, quantization,sign detector I. IntroductionIt is well known that the average test length of a sequen-tial signal detector is the minimum among all the tests thatachieve the same probability of decision errors [1]. Often,sub-optimal detectors like the sign detector are preferredover the optimal sequential probability ratio test (SPRT)based optimal detector [2]. When the noise statistics areindependent and identically distributed (iid) the sign de-tector possesses good nonparametric properties. But, thereceived signal samples, in many practical situations, arecorrelated due to the channel conditions and high speedsampling devices. Therefore, it helps to exploit this cor-relation when designing detectors. Sequential detection ofsignals in autoregressive noise has been studied in [3]. In[4] a class of nonparametric detectors based on groupingfor data with dependency is introduced. A method usinga one-step memory nonlinearity for detection in correlatednoise is proposed in [5]. A non-parametric SPRT for ad-ditive Markov noise is analyzed in [6]. However, the deci-sion thresholds and the test length are computed using theWald's approximations.In this paper, we propose a generalized sequential signdetector for binary signals in stationary, �rst order Markovdependent noise. Under iid conditions, this reduces to theusual sequential sign detector [7],[8]. The optimum decisionR. Chandramouli is with the Center for Microelectronics Research,Department of Computer Science and Engineering, University ofSouth Florida, Tampa, FL 33620.N. Ranganathan is with the Dept. of ECE, The University of Texasat El Paso, Texas, TX 79968.

thresholds and the average sample number (ASN) for ter-minal decision are derived. Numerical results are presentedto illustrate the performance loss in the independent noiseassumption. The proposed method generalizes the resultsin [7] and [9]. It can be extended to M-th order Markovdependence by converting it to �rst order dependence inan extended state space.Let the transmitted signal set be f�S; Sg where S > 0,and the channel noise fnig, a zero mean, stationary, �rstorder Markov process. The problem is de�ned as a testbetween the two hypotheses H : ri = �S + ni andK : ri = S + ni, i = 1; 2; � � �. The received signal sam-ples frig are quantized to two levels, namely Zi = sgn(ri).We assume that p(Zi = 0) = 0. Clearly, fZig forms astationary, �rst order Markov chain. Further, it is alsoassumed the this Markov chain is positive regular. Thetransition probabilities of fZig for i � 2 are denoted bypjk = p(Zi = qkjZi�1 = qj), 1 � j; k � 2, where q1 = �1and q2 = 1. Therefore, the problem can be described asthe test between the hypothesesH : � pH11 pH12pH21 pH21 � vs K : � pK11 pK12pK21 pK21 � (1)Then, the generalized sequential sign test can be expressedas SN = S0 + NXi=1 Zi8<: � A decide K� �B decide Helse N = N + 1 (2)where S0 is the initial value of the sum which is in generalequal to zero. If N̂ = inffN : SN = �B or SN = Ag thenN̂ is a stopping time. As usual, N̂ = 1 if the test doesnot terminate. That, the proposed sequential test is closedwith probability one is not shown here due to space con-straints. In particular, it can be shown the p(N̂ > N)! 0geometrically as N ! 1. Therefore, from Stein's lemma[10] E(N̂) < 1. Also, all the higher order moments of N̂are �nite. Since the test terminates w.p. 1 and E(N̂) <1the thresholds B, A and the conditional average samplenumbers E(N̂ jH) and E(N̂ jK) for the test to terminatecan be derived.II. Optimal Decision Boundaries and AverageSample NumberIn this section, we derive the optimal decision bound-aries and the average sample number of the test for a �xedfalse alarm (�) and miss probability (�). If am;hk;N denotesP (SN = �BjZ1 = qk; h), h = H;K, and S0 = m, where



E(N̂ jh) = qh1 nh (ph21+ph12)(m+B)�2ph12ph21�ph12 i+ ph12 h (A+B�2)(ph12+ph21)+2ph21�ph12 i hph21�m+B�1h �ph21ph12�ph21�A+B�1h io+ph1 nh (ph21+ph12)(m+B)+2ph11ph21�ph12 i+ h (A+B�2)(ph12+ph21)+2ph21�ph12 i h ph21�m+Bh �ph12ph12�ph21�A+B�1h io (3)�B+1 � m � A�1 then, for k=1,2 we have the followinghomogeneous system of linear di�erence equationsam;hk;N+1 = 2Xj=1 a(m+qk);hj;N phkj (4)with initial conditions, a�B+1;h1;1 = 1 and aA�1;h2;1 = 0. Solv-ing this using the method of generating functions and sum-ming the solution from N = 0 to 1 we get the probabilityof deciding H ,am;h1 = ph21�A+B�1h � ph12�m+B�1hph21�A+B�1h � ph12 (5)am;h2 = ph21�A+B�1h � ph21�m+Bhph21�A+B�1h � ph12when �h = ph11ph22 6= 1. Similar results can be derived if �h = 1.If ph1 = P (Z1 = �1jh) and ph2 = P (Z1 = 1jh) then theunconditional probability of SN reaching�B is P (�Bjh) =ph1am;h1 + ph2am;h2 . Since reaching �B and A are mutuallyexclusive and exhaustive we have P (Ajh) = 1� P (�Bjh).From Eq. (5) we get p(�BjK) = pK1 am;K1 + pK2 am;K2 andp(AjH) = 1 � pH1 am;H1 � pH2 am;H2 . Therefore, for �xed �and �, the optimum values of the thresholds B and A canbe computed from P (�BjK)�� and P (AjH)��. That is,these two inequalities can be used to solve for B and A.The average sample number denotes the expected num-ber of samples required by the sequential detector to reachone of the decision boundaries. Let Cm;h denote theaverage sample number when �B is reached given thatZ1 = �1 and Dm;h when Z1 = 1. Then,Cm;h = ph12Dm�1;h + ph11Cm�1;h + am;h1 (6)Dm;h = ph22Dm+1;h + ph21Cm+1;h + am;h2where C�B+1;h = 1 and DA�1;h = 0. A similar set ofequations hold for the boundary A. The solution to theseequations is given in Eq. (3).III. Performance AnalysisThe correlation coe�cient of fZig inuences the choice ofthe decision thresholds and hence the average sample num-ber. Let the correlation coe�cient of fZig conditioned onhypothesis h = H;K be denoted by �h(Zi+1; Zi). We ana-lyze the performance of the sequential sign detector whenS0 = 0 and � = �H = �K . For � = 0, the transition proba-bilities were chosen to be pH11 = 0:55, pH22 = 0:45, pK11 = 0:4,pK22 = 0:6, pH = 0:45 and pK = 0:6, and, when � = 0:1the values were pH11 = 0:7, pH22 = 0:4, pK11 = 0:4, pK22 = 0:7,

� = 0 � = 0:1� = � B A B A10�5 19 60 14 1910�4 17 50 10 1610�3 17 34 9 1210�2 15 22 8 7TABLE IOptimum decision thresholdpH = 0:33 and pK = 0:67. The optimal decision thresh-olds are shown in Table I. It is observed that the values ofthe thresholds decrease when the false alarm (respectively,miss probability) increases. This is due to the relaxationof the constraints on the detector. When the correlationcoe�cient increases, the bias towards the true hypothesisincreases thus decreasing the values of the thresholds.
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Fig. 1. Expected number of samples for � = 0Fig. 1 and Fig. 2 show the ASN for various values of �,when � = � and � = 0 and 0.1 respectively. The false alarmranges from 10�5 to 10�1. Clearly, the ASN is at least �vetimes higher when � = 0 as compared to � = 0:1. Thisindicates that as � " ASN #. Therefore, assuming that theadditive noise is iid, when actually it is correlated, leads toconsiderable loss in the performance of the sequential signdetection in terms of the ASN.
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