
Mrs. Pushpawati Changlekar, Mrs. Sujatha.S, Mrs. P. Anita / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1912-1915

1912 | P a g e

Id:31381Implementation of Binary Canonic Signed Digit

Multiplier using Application Specific IC

Mrs. Pushpawati Changlekar, Mrs. Sujatha.S, Mrs. P. Anita
Assistant Professor, TCE Department, C.M.R. Institute of Technology, Bangalore-37

Abstract
This paper presents a novel high-speed

Binary CSD (BCSD) multiplier which takes

advantage of the benefits coming from the

Canonic Signed Digit (CSD) number system,

while overcoming the inherent overhead due to

the CSD ternary representation. BCSD is a

binary number system which allows representing

any CSD number using the same word-length

used by the two’s complement representation.

Thus, multipliers which make use of the BCSD

technique exhibit a considerable advantage

especially when the multiplicand belongs to a set

of coefficients stored in a memory in its BCSD

notation.

Key words: Canonic signed digit, Ternary number

system, Optimally convertible block, T2I

transformation,ASIC.

I. Introduction
Recent advances in digital signal processing

require high speed multipliers for real-time

applications. CSD (Canonic Signed Digit) ternary

representation has been largely exploited thanks to

its capability to perform multiplications using a

minimum number of adders. Nevertheless, CSD

multiplication requires that the multiplicand is first

CSD encoded, thus causing an overhead that acts on

both the speed and the complexity. For this reason,

the use of CSD multiplication has been limited to

applications where the CSD multiplicand is hard-

wired into the multiplier, as typically happens when

performing fixed coefficients multiplications. The

growing need for both scalable architectures and

adaptive signal processing pushes into the direction

of having high-speed multipliers where the

multiplicand can be chosen from a set of coefficients

stored in a memory. In this scenario, signed digit

multiplications can be still performed assuming that

the signed representation of the multiplicand is

already available into the memory, which in turn

causes a large overhead due to the redundancy that

the ternary representation inherently introduces.

BCSD (Binary CSD) encoding allows taking

advantage of the CSD representation while

requiring no memory overhead. Synthesis results

show that BCSD multiplier embedding the BCSD

decoding, needed to map the BCSD multiplicand

back into its CSD notation, exhibits reduced

complexity and higher working frequency when

compared with its signed digit equivalent, thus fully

justifying its adoption in a considerable number of

applications, ranging from adaptive filtering to

scalable or serial FFT processing only to mention a

few.

II. Canonic Signed Digit Representation
Canonic Signed Digit is based on the

ternary number system (-1, 0, and 1). It is a unique

representation of a binary number with minimum

number of 1 and -1 digits. One of the main

applications of CSD numbers, therefore, is in

multiplication operation where it allows a minimum

number of combined additions and subtractions to

produce the product. It can be shown that for a n-bit

multiplication the number of major operations

(add/subtract and shift) never exceeds n/2, and on

average this number is reduced to n/3, as the word

size grows. The price we have to pay, however, is to

convert the multiplier coefficient from 2’s

complement to its CSD equivalent. In case of fixed

point filter coefficients this conversion has to be

done once for each coefficient, but for variable filter

coefficients, such as in adaptive filters, the

conversion has to be repeated for each change, and

hence it may not pay off because of the conversion

delay. The other problem with CSD format is the

need for extra spaces. Due to the ternary nature,

each non-zero digit in a CSD representation

requires two bits, one for the magnitude and one for

the sign.

In general, there are three main issues involved in

using CSD number system. First is the need to

convert numbers from 2’s complement to CSD

format, and vice versa. This is important because

much of the arithmetic and logic operations, done in

an ALU, are typically in binary and 2’s complement

format, and to perform a multiplication using CSD

number system one needs to do at least one

conversion. The second issue deals with the space

requirement. In binary logic a single memory space

is all needed for a digit (bit), while in ternary logic

the sign of the digit requires another extra space.

Mrs. Pushpawati Changlekar, Mrs. Sujatha.S, Mrs. P. Anita / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1912-1915

1913 | P a g e

This is very critical, not only because it demands

more hardware resources, but because it also

reallocation of space which effects the over all

speed. The third issue dealing with CSD numbers is

the need for both addition and subtraction

operations instead of only addition in case of 2’s

complement multiplication. This presentation

addresses the first two issues. An efficient

conversion from 2’s complement to CSD number

system is developed. In addition a new technique is

presented to accommodate the signs of the non-zero

digits into the data-word with no extra space added.

A simple algorithm is proposed to generate a CSD

number from its 2’s complement equivalent, and

with some minor modifications the algorithm can

switch to a reverse process, that is, to convert a CSD

number to its 2’s complement equivalent. As

pointed out earlier, the algorithm efficiently

generates the

converted code and allocates it into the original 2’s

complement number without any extra space needed

for the digit signs.

Canonic Signed Digit (CSD) Number System: A

ternary number (with 0, 1 and -1 digits) X = xn-

1,xn-2, , ... xl, x0 is a CSD number if xi.xi-l = 0, for

all i = 1, 2, ..., n-1. For example, X = -0100-0-

000100-01 = (“-” stands for “-1”) is a CSD number.

However, the

number X = 0--0-01100010-101 has the same value

and it is a ternary but not a CSD number. Now we

introduce a new type of 2’s complement number

which is shown to be very useful and it simplifies

conversion from 2’s complement to CSD number

format.

Inverse-2’s Complement Number: The Inverse-2’s

complement (I-2’s Complement) of a binary number

A is obtained by first finding the 2’s complement of

A and then replacing all 1s by -1s except for the

MSB which remains unchanged.

An I-2’s Complement of a binary number is unique

and is equal to the number itself.

Conversion of a number to its 1-2’s complement

format is called “T2I Conversion”. Conversely,

conversion of a number from its 1-2’s complement

format to a regular 2’s complement format is called

“I2T Conversion”. For example, consider a binary

number A=010010111010 = 1210. Applying a T21

conversion results in A=10--0-000--0; where “-”

sign, in the bit structure, stands for -1. Or let

B=110100101101=-723. The converted version of B

in I-2’s complement format becomes B=00-0--0-00-

- .

Optimally Convertible Blocks: To a given 2’s

complement number we first add a sign extension

bit equal to the sign bit, and then proceed. A block

of binary digits is called Optimally Convertible

Block (OCB) if it starts with a sequence of two or

more 1s and terminates with the first 0 of two or

more consecutive 0s which appear in the block for

the first time. That is, an OCB can not contain two

or more consecutive Os. Alternatively, an OCB is

also terminated if the end bit (the MSB) is reached.

Any other block in a binary number that can not be

identified as an OCB or as part of an OCB is called

a non optimally convertible block (NCB). For

example, given B=110100101101 we first add a

sign extension and partition the number to get

111,010,01011,01. As noticed there are two OCBs

in B as follows: 01011, and 111. Also there are two

NCBs in B as: 01 and 010.

It is important to note that OCBs are the only

convertible blocks in a 2’s complement number that

are capable of reducing the number of non-zero

digits. That is, to minimize non-zero digits in a 2’s

complement number it is only necessary to find all

the OCBs and convert them using T2I conversion.

Given a binary number A in 2’s complement

format, the number of non-zero entries (1s and -1s)

in A is reduced to a minimum if every OCBs in A

are converted using the T21 conversion. If every

OCB in A is converted, using the T21 conversion

technique, then no two adjacent digits in A can be

non-zero. This is because conversion of an OCB in

A generates at least one zero next to each non-zero

digit, and also a NCB can not contain any block of

two or more adjacent non-zero digits.

III. Binary Canonic Signed Digit

Representation

Normally to fully represent a CSD number

it is required to assign a location for the sign of each

nonzero digit. This evidently increases the word-

size and raises it to almost double of that of its

equivalent binary number. However, as one of the

properties of a CSD number a non-zero digit (1 or -

1) always precedes by a zero digit, except for the

MSB, which is trivially identified by a sign-

extension bit. We can certainly take advantage of

this property and assign the position next to each

non-zero digit to its sign. In our representation we

adopt the conventional procedure and assign 0 to +1

and 1 to -1; i.e., in a CSD number digits 1 and -1

are represented by 01 and 11 respectively. This

representation of a CSD number is called Binary

Coded Canonic Sign Digit (BCSD) number. The

mentioned method allows mapping any CSD

number into its BCSD representation, which

preserves the benefits coming from the CSD

Mrs. Pushpawati Changlekar, Mrs. Sujatha.S, Mrs. P. Anita / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1912-1915

1914 | P a g e

numbers properties and at the same time overcomes

the word-length expansion due to the ternary

representation.

Algorithm to convert 2’s complement number to

BCSD number is given below,

Notice that for each OCB found by the algorithm (j

= 1) the first two bits are skipped. This is because

the first two bits in every OCB are 11 and the

conversion must generate 0 - (- stands for -1). But

converting a CSD to a BCSD number forces any

negative digit (-1) to be represented by 11. Another

interesting point note is the way the MSB is

handled. By introducing an extra sign extension

identical to the sign bit (xn= xn-1) the algorithm

can carry all the way to the final bit without any

interruption. At the end the sign extension becomes

the sign bit for the MSB, if the MSB is nonzero.

Conversion examples,

2's Complement

0010,1101,1101,0010

0111,0110,1101,0010

BCSD Equivalent

11 10,1001,0011,1101

0110,1001,0100,1101

IV. BCSD multiplier Architecture

Figure 1 . BCSD multiplier architecture

The above architecture gives a unique

method of multiplication which involves less

number of adders to perform the multiplication

procedure.

The inputs i.e multiplicand and multiplier are given

in 2’s complement format. The multiplicand is

BCSD encoded using algorithm mentioned above.

The encoded BCSD number is decoded to CSD

number and then multiplied with the multiplier in

2’s complement format using CSD multiplication.

The bits of the CSD number i.e. starting from pair

of LSB numbers the following operations are

performed on the multiplier. The procedure repeats

for every pair of bits

of the CSD multiplicand and the following

operations are performed on the multiplicand and

the result is the product of the given numbers. First

we need to initialize product register to 0 and then

For 00 only left shift of the product register. For 01

adding product register with the multiplier and left

shifting the product register. For 11 subtracting

multiplier from the product register and then

shifting the product register.

V. Implementation and results
The simulation results of the given

multiplier are shown in VCSim from SYNOPSYS.

Figure 2. Simulation results of BCSD multiplier.

The synthesis of BCSD multiplier and Booth

multiplier are done using Design Compiler and the

designs are constrained using following constraints,

1. analyze -format Verilog-library

work./codes/bcsd.v Analyzes HDL files and

stores the intermediate format for the HDL

description in the specified library.

2. elaborate -library work bcsd Builds a design

from the intermediate format of a Verilog

module, a Verilog entity and architecture, or

a VHDL configuration

3. compile Performs logic-level and gate-level

synthesis and optimization on the current

design.

4. report_area This command gives the

unconstrained area of the design.

5. report_power This command gives the

unconstrained power of the design.

6. report_timing This command gives the

unconstrained timing of the design.

7. reate_clock -period 1.5 clock -name

main_clock Creating a virtual clock for the

design which gives the timing information.

Mrs. Pushpawati Changlekar, Mrs. Sujatha.S, Mrs. P. Anita / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1912-1915

1915 | P a g e

8. set_clock_uncertainty -setup 0.255

main_clock

9. set_clock_uncertainty -hold 0.122

main_clock The above commands will set

the setup and hold times for the clock.

10. set_clock_transition 0.01 main_clock Sets

the clock transition for the clock.

set_output_delay 0.4 [all_outputs] -clock

main_clock

This command sets a output delay for the current

design. We assume that there might be a another

module which needs data from the current design.

set_max_delay 3 -from [all_inputs] -to [all_outputs]

This command sets the combinational delay present

in the design.

 compile -map effort_high Here a good amount of

effort is put by the tool in generating the netlist.

After synthesis the design is passed through

PRIMETIME tool which is the timing sign off tool

from SYNOPSYS.

To take into account the impact of the input word-

length, synthesis has been carried out for input

word-lengths ranging from 8 to 32 bits. Since CSD

and Booth multipliers

suffer the redundancies due to the ternary

representation,

they have been implemented as 2’s complement

multipliers, thus embedding also the Booth and

CSD encoding functions respectively. It is worth to

notice that the complexity gain of the BCSD

multiplier respect to the Booth and the CSD

multipliers increases with the increasing of the

input word-length. This is largely due to the

presence of the encoding functions included in the

Booth and the CSD multipliers, whose load

becomes considerable even for modest word lengths.

In terms of speed, both CSD and BCSD multipliers

have almost the same behavior, which depends on

the fact that CSD encoding has the same recursive

nature of the BCSD decoding, even if the latter

exhibits a smaller complexity which in turn results

in an overall speed improvement. The BCSD

multiplier which makes use of the extended BCSD

decoding performs better than the conventional

scheme in terms of both complexity and speed, but

as drawback it requires an extra-bit for each BCSD

encoded operand.

VI. Conclusions

Encoded BCSD multiplicand has been

proposed results for different input word-lengths

have revealed a remarkable gain in both complexity

and speed, thus justifying its adoption in a wide

context of applications.

REFERENCES
[I] A. Peled, “On the hardware implementation of digital

signal processors”, IEEE Trans. On Acoustics,

Speech, and Signal Proc, vol. 24(1), pp. 76-86,

Feb. 1976.

[2] R. Hashemian, “A New Method for Conversion of a

2’s Complement to Canonic Signed Digit Number

System and its Representation”, IEEE 3d”

Asilomar Con$ on Signals Systems and Comp., vol.

2, pp. 904-907, Nov. 1996.

[3] P.M. Kogge, H.S. Stone, “A Parallel Algorithm for

the Eficient Solution of a General Class of

Recurrence Equations”, IEEE Trans., vol. 22(8),

pp. 786-793, Aug. 1973.

[4] R.P. Brent, H.T. Kung, “A Regular Layout for

Parallel Adders” IEEE Trans. on Comp., vol. 31(3),

pp. 260-264, Mar. 1982.

[5] J. Sklansky, “Conditional sum addition logic”, IRE

Trans. On Electron. Comp., vol. 9(6), pp. 226-231,

Jun. 1960.

[6] O.L. MacSorley, “High Speed Arithmetic in Binary

Computers”, Proc. IRE, vol. 49, Jan. 1961.

[7] Advanced ASIC Chip Synthesis using Synopsys

Design Compiler, Physical Compiler, and

primetime- Himanshu Bhatnagar, Kluwer

Academic Publishers.

Figure 3 complexity comparison

Figure 4. Speed Comparison

