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Abstract  
This paper presents a novel high-speed 

Binary CSD (BCSD) multiplier which takes 

advantage of the benefits coming from the 

Canonic Signed Digit (CSD) number system, 

while overcoming the inherent overhead due to 

the CSD ternary representation. BCSD is a 

binary number system which allows representing 

any CSD number using the same word-length 

used by the two’s complement representation. 

Thus, multipliers which make use of the BCSD 

technique exhibit a considerable advantage 

especially when the multiplicand belongs to a set 

of coefficients stored in a memory in its BCSD 

notation.  

 

Key words: Canonic signed digit, Ternary number 

system, Optimally convertible block, T2I 
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I. Introduction 
Recent advances in digital signal processing 

require high speed multipliers for real-time 

applications. CSD (Canonic Signed Digit) ternary 

representation has been largely exploited thanks to 

its capability to perform multiplications using a 

minimum number of adders. Nevertheless, CSD 

multiplication requires that the multiplicand is first 

CSD encoded, thus causing an overhead that acts on 

both the speed and the complexity. For this reason, 

the use of CSD multiplication has been limited to 

applications where the CSD multiplicand is hard-

wired into the multiplier, as typically happens when 

performing fixed coefficients multiplications. The 

growing need for both scalable architectures and 

adaptive signal processing pushes into the direction 

of having high-speed multipliers where the 

multiplicand can be chosen from a set of coefficients 

stored in a memory. In this scenario, signed digit 

multiplications can be still performed assuming that 

the signed representation of the multiplicand is 

already available into the memory, which in turn 

causes a large overhead due to the redundancy that 

the ternary representation inherently introduces. 

BCSD (Binary CSD) encoding allows taking 

advantage of the CSD representation while 

requiring no memory overhead. Synthesis results  

 

 

 

show that BCSD multiplier embedding the BCSD 

decoding, needed to map the BCSD multiplicand 

back into its CSD notation, exhibits reduced 

complexity and higher working frequency when 

compared with its signed digit equivalent, thus fully 

justifying its adoption in a considerable number of 

applications, ranging from adaptive filtering to 

scalable or serial FFT processing only to mention a 

few. 

 

II. Canonic Signed Digit Representation 
Canonic Signed Digit is based on the 

ternary number system (-1, 0, and 1). It is a unique 

representation of a binary number with minimum 

number of 1 and -1 digits. One of the main 

applications of CSD numbers, therefore, is in 

multiplication operation where it allows a minimum 

number of combined additions and subtractions to 

produce the product. It can be shown that for a n-bit 

multiplication the number of major operations 

(add/subtract and shift) never exceeds n/2, and on 

average this number is reduced to n/3, as the word 

size grows. The price we have to pay, however, is to 

convert the multiplier coefficient from 2’s 

complement to its CSD equivalent. In case of fixed 

point filter coefficients this conversion has to be 

done once for each coefficient, but for variable filter 

coefficients, such as in adaptive filters, the 

conversion has to be repeated for each change, and 

hence it may not pay off because of the conversion 

delay. The other problem with CSD format is the 

need for extra spaces. Due to the ternary nature, 

each non-zero digit in a CSD representation 

requires two bits, one for the magnitude and one for 

the sign. 

In general, there are three main issues involved in 

using CSD number system. First is the need to 

convert numbers from 2’s complement to CSD 

format, and vice versa. This is important because 

much of the arithmetic and logic operations, done in 

an ALU, are typically in binary and 2’s complement 

format, and to perform a multiplication using CSD 

number system one needs to do at least one 

conversion. The second issue deals with the space 

requirement. In binary logic a single memory space 

is all needed for a digit (bit), while in ternary logic 

the sign of the digit requires another extra space. 
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This is very critical, not only because it demands 

more hardware resources, but because it also 

reallocation of space which effects the over all 

speed. The third issue dealing with CSD numbers is 

the need for both addition and subtraction 

operations instead of only addition in case of 2’s 

complement multiplication. This presentation 

addresses the first two issues. An efficient 

conversion from 2’s complement to CSD number 

system is developed. In addition a new technique is 

presented to accommodate the signs of the non-zero 

digits into the data-word with no extra space added. 

A simple algorithm is proposed to generate a CSD 

number from its 2’s complement equivalent, and 

with some minor modifications the algorithm can 

switch to a reverse process, that is, to convert a CSD 

number to its 2’s complement equivalent. As 

pointed out earlier, the algorithm efficiently 

generates the 

converted code and allocates it into the original 2’s 

complement number without any extra space needed 

for the digit signs.  

 

Canonic Signed Digit (CSD) Number System: A 

ternary number (with 0, 1 and -1 digits) X = xn-

1,xn-2, , ... xl, x0 is a CSD number if xi.xi-l = 0, for 

all i = 1, 2, ..., n-1. For example, X = -0100-0-

000100-01 = (“-” stands for “-1”) is a CSD number. 

However, the 

number X = 0--0-01100010-101 has the same value 

and it is a ternary but not a CSD number. Now we 

introduce a new type of 2’s complement number 

which is shown to be very useful and it simplifies 

conversion from 2’s complement to CSD number 

format. 

 

Inverse-2’s Complement Number: The Inverse-2’s 

complement (I-2’s Complement) of a binary number 

A is obtained by first finding the 2’s complement of 

A and then replacing all 1s by -1s except for the 

MSB which remains unchanged. 

An I-2’s Complement of a binary number is unique 

and is equal to the number itself. 

Conversion of a number to its 1-2’s complement 

format is called “T2I Conversion”. Conversely, 

conversion of a number from its 1-2’s complement 

format to a regular 2’s complement format is called 

“I2T Conversion”. For example, consider a binary 

number A=010010111010 = 1210. Applying a T21 

conversion results in A=10--0-000--0; where “-” 

sign, in the bit structure, stands for -1. Or let 

B=110100101101=-723. The converted version of B 

in I-2’s complement format becomes B=00-0--0-00-

- . 

 

Optimally Convertible Blocks: To a given 2’s 

complement number we first add a sign extension 

bit equal to the sign bit, and then proceed. A block 

of binary digits is called Optimally Convertible 

Block (OCB) if it starts with a sequence of two or 

more 1s and terminates with the first 0 of two or 

more consecutive 0s which appear in the block for 

the first time. That is, an OCB can not contain two 

or more consecutive Os. Alternatively, an OCB is 

also terminated if the end bit (the MSB) is reached. 

Any other block in a binary number that can not be 

identified as an OCB or as part of an OCB is called 

a non optimally convertible block (NCB). For 

example, given B=110100101101 we first add a 

sign extension and partition the number to get 

111,010,01011,01. As noticed there are two OCBs 

in B as follows: 01011, and 111. Also there are two 

NCBs in B as: 01 and 010. 

It is important to note that OCBs are the only 

convertible blocks in a 2’s complement number that 

are capable of reducing the number of non-zero 

digits. That is, to minimize non-zero digits in a 2’s 

complement number it is only necessary to find all 

the OCBs and convert them using T2I conversion. 

Given a binary number A in 2’s complement 

format, the number of non-zero entries (1s and -1s) 

in A is reduced to a minimum if every OCBs in A 

are converted using the T21 conversion. If every 

OCB in A is converted, using the T21 conversion 

technique, then no two adjacent digits in A can be 

non-zero. This is because conversion of an OCB in 

A generates at least one zero next to each non-zero 

digit, and also a NCB can not contain any block of 

two or more adjacent non-zero digits. 

 

III. Binary Canonic Signed Digit 

Representation 

Normally to fully represent a CSD number 

it is required to assign a location for the sign of each 

nonzero digit. This evidently increases the word-

size and raises it to almost double of that of its 

equivalent binary number. However, as one of the 

properties of a CSD number a non-zero digit (1 or -

1) always precedes by a zero digit, except for the 

MSB, which is trivially identified by a sign-

extension bit. We can certainly take advantage of 

this property and assign the position next to each 

non-zero digit to its sign. In our representation we 

adopt the conventional procedure and assign 0 to +1 

and 1 to -1; i.e., in a CSD number digits 1 and -1 

are represented by 01 and 11 respectively. This 

representation of a CSD number is called Binary 

Coded Canonic Sign Digit (BCSD) number. The 

mentioned method allows mapping any CSD 

number into its BCSD representation, which 

preserves the benefits coming from the CSD 
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numbers properties and at the same time overcomes 

the word-length expansion due to the ternary 

representation. 

Algorithm to convert 2’s complement number to 

BCSD number is given below, 

 

Notice that for each OCB found by the algorithm (j 

= 1) the first two bits are skipped. This is because 

the first two bits in every OCB are 11 and the 

conversion must generate 0 - ( - stands for -1). But 

converting a CSD to a BCSD number forces any 

negative digit (-1) to be represented by 11. Another 

interesting point note is the way the MSB is 

handled. By introducing an extra sign extension 

identical to the sign bit (xn= xn-1 ) the algorithm 

can carry all the way to the final bit without any 

interruption. At the end the sign extension becomes 

the sign bit for the MSB, if the MSB is nonzero. 

 

Conversion examples, 

2's Complement                                        

0010,1101,1101,0010                              

0111,0110,1101,0010 

BCSD Equivalent 

11 10,1001,0011,1101                            

0110,1001,0100,1101 

 

IV.  BCSD multiplier Architecture 

 
Figure 1 . BCSD multiplier architecture 

 

The above architecture gives a unique 

method of multiplication which involves less 

number of adders to perform the multiplication 

procedure. 

The inputs i.e multiplicand and multiplier are given 

in 2’s complement format. The multiplicand is 

BCSD encoded using algorithm mentioned above. 

The encoded BCSD number is decoded to CSD 

number and then multiplied with the multiplier in 

2’s complement format using CSD multiplication. 

The bits of the CSD number i.e. starting from pair 

of LSB numbers the following operations are 

performed on the multiplier. The procedure repeats 

for every pair of bits 

of the CSD multiplicand and the following 

operations are performed on the multiplicand and 

the result is the product of the given numbers. First 

we need to initialize product register to 0 and then   

For 00 only left shift of the product register. For 01 

adding product register with the multiplier and left 

shifting the product register. For 11 subtracting 

multiplier from the product register and then 

shifting the product register. 

 

V. Implementation and results 
The simulation results of the given 

multiplier are shown in VCSim from SYNOPSYS. 

 

 
Figure 2. Simulation results of BCSD multiplier. 

 

The synthesis of  BCSD multiplier and Booth 

multiplier are done using Design Compiler and the 

designs are constrained using  following constraints, 

 

1.    analyze -format Verilog-library 

work./codes/bcsd.v Analyzes  HDL  files  and 

stores the intermediate format for the HDL 

description in the specified library. 

2. elaborate -library work bcsd Builds  a  design 

from the intermediate format of a Verilog 

module, a Verilog entity and architecture, or 

a VHDL configuration  

3. compile Performs  logic-level  and gate-level 

synthesis and optimization on the current 

design. 

4. report_area This command gives the 

unconstrained area of the design. 

5. report_power This command gives the 

unconstrained power of the design. 

6. report_timing This command gives the 

unconstrained timing of the design. 

7. reate_clock -period 1.5 clock -name 

main_clock Creating a virtual clock for the 

design which gives the timing information. 
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8. set_clock_uncertainty -setup 0.255 

main_clock 

9. set_clock_uncertainty -hold 0.122 

main_clock The above commands will set 

the setup and hold times for the clock. 

10. set_clock_transition 0.01 main_clock Sets 

the clock transition for the clock.  

set_output_delay 0.4 [all_outputs] -clock 

main_clock 

 

This command sets a output delay for the current 

design. We assume that there might be a another 

module which needs data from the current design.  

set_max_delay 3 -from [all_inputs] -to [all_outputs] 

This command sets the combinational delay present 

in the design. 

 compile -map effort_high Here a good amount of 

effort is put by the tool in generating the netlist. 

 

After synthesis the design is passed through 

PRIMETIME tool which is the timing sign off tool 

from SYNOPSYS. 
 

 
 

 

To take into account the impact of the input word-

length, synthesis has been carried out for input 

word-lengths ranging from 8 to 32 bits. Since CSD 

and Booth multipliers  

 
 

 

 

suffer the redundancies due to the ternary 

representation,  

they have been implemented as 2’s complement 

multipliers, thus embedding also the Booth and 

CSD encoding functions respectively. It is worth to 

notice that the complexity gain of the BCSD 

multiplier respect to the Booth and the CSD 

multipliers increases with the increasing of the 

input word-length. This is largely due to the 

presence of the encoding functions included in the 

Booth and the CSD multipliers, whose load 

becomes considerable even for modest word lengths. 

In terms of speed, both CSD and BCSD multipliers 

have almost the same behavior, which depends on 

the fact that CSD encoding has the same recursive 

nature of the BCSD decoding, even if the latter 

exhibits a smaller complexity which in turn results 

in an overall speed improvement.  The BCSD 

multiplier which makes use of the extended BCSD 

decoding performs better than the conventional 

scheme in terms of both complexity and speed, but 

as drawback it requires an extra-bit for each BCSD 

encoded operand.  

 

VI. Conclusions 

Encoded BCSD multiplicand has been 

proposed  results for different input word-lengths 

have revealed a remarkable gain in both complexity 

and speed, thus justifying its adoption in a wide 

context of applications. 
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