
Database Mining: A Performance PerspectiveRakesh Agrawal Tomasz Imielinski� Arun SwamiIBM Almaden Research Center650 Harry RoadSan Jose, CA 95120-6099AbstractWe present our perspective of database mining as the con
uence of machine learningtechniques and the performance emphasis of database technology. We describe three classesof database mining problems involving classi�cation, associations, and sequences, and arguethat these problems can be uniformly viewed as requiring discovery of rules embedded inmassive data. We describe a model and some basic operations for the process of rulediscovery. We show how the database mining problems we consider map to this model andhow they can be solved by using the basic operations we propose. We give an example ofan algorithm for classi�cation obtained by combining the basic rule discovery operations.This algorithm not only is e�cient in discovering classi�cation rules but also has accuracycomparable to ID3, one of the current best classi�ers.Index Terms. database mining, knowledge discovery, classi�cation, associations, se-quences, decision trees
�Current address: Computer Science Department, Rutgers University, New Brunswick, NJ 089031

1 IntroductionDatabase technology has been used with great success in traditional business data processing.There is an increasing desire to use this technology in new application domains. One suchapplication domain that is likely to acquire considerable signi�cance in the near future is databasemining [12] [3] [5] [8] [9] [11] [15] [16] [18] [19]. An increasing number of organizations arecreating ultra large data bases (measured in gigabytes and even terabytes) of business data,such as consumer data, transaction histories, sales records, etc. Such data forms a potentialgold mine of valuable business information.Unfortunately, the database systems of today o�er little functionality to support such \min-ing" applications. At the same time, statistical and machine learning techniques usually performpoorly when applied to very large data sets. This situation is probably the main reason whymassive amounts of data are still largely unexplored and are either stored primarily in an o�inestore or are on the verge of being thrown away.We present in this paper our perspective of database mining as the con
uence of machinelearning techniques and the performance emphasis of database technology. We argue that anumber of database mining problems can be uniformly viewed as requiring discovery of rulesembedded in massive data. We describe a model and some basic operations for the process ofrule discovery. We also show how these database mining problems map to this model and howthey can be solved by using the basic operations we propose.Our view of database mining complements the perspective presented in [9, 19]. Both ofthese papers argue for an iterative process for mining with a human in the loop. The userbegins with a hypothesis and uses data to refute or con�rm the hypothesis. The hypothesis isre�ned, depending on the response and this process continues until a satisfactory theory hasbeen obtained. The emphasis in [19] is on having a declarative language that makes it easier toformulate and revise hypotheses. The emphasis in [9] is on providing a large bandwidth betweenthe machine and human so that user-interest is maintained between successive iterations. Al-though we do not discuss this aspect in detail in this paper, we admit the possibility of humanintervention in the mining process. This intervention can be in the form of domain knowledgeto guide the mining process, or additional knowledge as the rules are mined. There has beenwork on quantifying the \usefulness" or \interestingness" of a rule [17]. These ideas may bebuilt as �lters on top of the kernel of the rule discovery techniques.The rest of the paper is organized as follows. In Section 2, we present three classes ofdatabase mining problems involving classi�cation, associations, and sequences. In Section 3, wepresent a unifying framework and show how these three classes of problems can be uniformlyviewed as requiring discovery of rules. In Section 4, we introduce operations that may form thecomputational kernel for the process of rule discovery. We show how the database mining prob-lems under consideration can be solved by combining these operations. To make the discussionconcrete, we consider the classi�cation problem in detail in Section 5, and present a concretealgorithm for classi�cation problems obtained by combining these operations. We show thatthe classi�er so obtained is not only e�cient but has a classi�cation accuracy comparable tothe well-known classi�er ID3 [14]. We present our conclusions and directions for future work inSection 6. 2

2 Database Mining ProblemsWe present three classes of database mining problems that we have identi�ed by examining someof the often cited applications of database mining. These classes certainly do not exhaust alldatabase mining applications, but do capture an interesting subset of them. In Section 3, wewill present a unifying framework for studying and solving these problems.2.1 Classi�cationThe classi�cation problem [6] [10] [11] [18] involves �nding rules that partition the given data intodisjoint groups. As an example of a classi�cation problem, consider the store location problem.It is assumed that the success of the store is determined by the neighborhood characteristics, andthe company is interested in identifying neighborhoods that should be the primary candidatesfor further investigation for the location of a proposed new store. The company has access toa neighborhood database. It �rst categorizes its current stores into successful, average, andunsuccessful stores. Based on the neighborhood data for these stores, it then develops a pro�lefor each category of stores, and uses the pro�le for the successful stores to retrieve candidateneighborhoods. Other applications involving classi�cation include credit approval, treatment-appropriateness determination, etc.A variation of the classi�cation problem is the BestN problem [1]. A company may beinterested in �nding the best N candidates to whom a ski package should be mailed. Firsta small number of ski packages are mailed to a selected sample of the population and then apro�le of likely positive respondents is obtained. Such a pro�le is usually built as a disjunction ofconjunctions of attribute value ranges characterizing individuals in the population. For instance,the pro�le of likely respondents to the ski package may be the union of all individuals with agebetween 30 and 40 and income above 40K a year with all individuals who drive a sports car.Notice that both conditions generate rules that have the given condition as the antecedent ofthe rule and \positive response" as the consequent. The con�dence factor associated with eachterm of the disjunction can be used to develop an order in which the terms in the disjunctionare applied to the data for obtaining the best N candidates.2.2 AssociationsConsider a supermarket setting where the database records items purchased by a customer ata single time as a transaction. The planning department may be interested in �nding \asso-ciations" between sets of items with some minimum speci�ed con�dence. An example of suchan association is the statement that 90% of transactions that purchase bread and butter alsopurchase milk. The antecedent of this rule consists of bread and butter and the consequent con-sists of milk alone. The number 90% is the con�dence factor of the rule. Usually, the plannerwill be interested not in a single rule but rather in sets of rules satisfying some initial speci�-cations. Here are some other examples of the problem of �nding associations (we have omittedthe con�dence factor speci�cation):� Find all rules that have \Diet Coke" as consequent. These rules may help plan what the storeshould do to boost the sale of Diet Coke. 3

� Find all rules that have \bagels" in the antecedent. These rules may help determine whatproducts may be impacted if the store discontinues selling bagels.� Find all rules that have \sausage" in the antecedent and \mustard" in the consequent. Thisquery can be phrased alternatively as a request for the additional items that have to be soldtogether with sausage in order to make it highly likely that mustard will also be sold.� Find all the rules relating items located on shelves A and B in the store. These rules mayhelp shelf planning by determining if the sale of items on shelf A is related to the sale of itemson shelf B.� Find the \best" k rules that have \bagels" in the consequent. Here, \best" can be formulatedin terms of the con�dence factors of the rules, or in terms of their support, i.e., the fractionof transactions satisfying the rule.Note that a transaction need not necessarily consist of items bought together at the samepoint of time. It may consist of items bought by a customer over a period of time. Examplesinclude monthly purchases by members of a book or music club.2.3 SequencesAnother major source of database mining problems is ordered data, such as temporal datarelated to stock market and point of sales data. Here is an example of a rule over stock marketdata:When AT&T stock goes up on 2 consecutive days and DEC stock does not fall during thisperiod, IBM stock goes up the next day 75% of the time.Another example of such a query in the retailing situation is: \What items are sold in sequence?",to which the response could be \dress followed by matching shoes."We now present a unifying framework and show that the above three classes of problems canbe studied in this framework of rule discovery.3 A Unifying FrameworkLet O be a set of objects. Denote by D(m) and R(m) the domain and range respectively of amethod m. Let M be a set of methods whose domain is either O or R(m) for some m in M .We denote by o:m the result of the application of method m on object o.A formula is of the form p(o:l), where l is a composition of methods from M and p isa predicate de�ned on R(m) for some m in M . An example of a predicate is senior wheresenior(t:age) is true when the age of the object t is above 65. Here age is a method in M . Asanother example, consider a method year-of-birth and a method decade that maps a year to thecorresponding decade. Then, given a predicate bohemian that is true if the decade is the sixtiesand denoting method composition by \�", we have that bohemian(t:decade � year-of-birth) is aformula.By a rule, we mean a statement of the form F (o) =) G(o) where F is a conjunction offormulas and G is a formula. The rule r : F (o) =) G(o) is satis�ed in the set of objects O withthe con�dence factor 0 � c � 1 i� at least c% of objects in O that satisfy F also satisfy G.4

Note that all formulas in our rules are unary, with a single variable ranging through theset of objects O. The reason for this restriction is that the business applications that we haveconsidered so far lead to unary rules.Given the set of objects O, we will be interested in generating all the rules that satisfy certainadditional constraints of two di�erent forms:� Syntactic Constraints: These constraints involve restrictions on predicates and methods thatcan appear in the rule. For example, we may be interested only in rules that have methodx appearing in the consequent, or rules that have a method y appearing in the antecedent.Combinations of the above constraints are also possible | we may request all rules that havemethods from some prede�ned set X to appear in the consequent, and methods from someother set Y to appear in the antecedent.� Support Constraints: These constraints concern the number of objects in O that support arule. The support for a rule is de�ned to be the fraction of objects in O that satisfy theconjunction of the consequent and antecedent of the rule.Support should not be confused with con�dence. While con�dence is a measure of the rule'sstrength, support corresponds to statistical signi�cance.Besides statistical signi�cance, another motivation for support constraints comes from thefact that we are usually interested only in rules with support above some minimum thresholdfor business reasons. If the support is not large enough, it means that the rule is not worthconsideration or that it is simply less preferred (and may be considered later).3.1 Mapping Database Mining ProblemsWe now illustrate how the database mining problems under consideration can be mapped intothe framework just described.� Classi�cation:The set of objects O consists of labeled data tuples comprising the training set for the classi�er.The label identi�es the group to which the object belongs. Other tuple attributes specify theproperties of the object. Corresponding to each attribute in a tuple, there is an accessormethod that returns the value of that attribute of the object. There is also a method thatreturns the tuple label.The goal of the classi�cation problem is to discover rules for characterizing each of the groupsin the training set, that is, to discover all rules with the consequent taking the form \o :label method = k", where k ranges over the di�erent label values. For example, the clas-si�cation problem for target marketing involves rules with the method positive response inthe consequent, i.e. the consequent will have the form (o : positive response = yes). Forinstance, one of the rules previously described in the context of the ski package example hasthe following form:(30 � u:Age � 40) and (u:Salary � 40K) =) u:positive response = yesThe restriction on the form of the consequent is an example of a syntactic constraint on theclassi�er rules. Another syntactic constraint is that the label method cannot appear in theantecedent of a rule. We can also have support constraints in the form of a requirement thata minimum number of tuples should satisfy the antecedent before a rule is acceptable.5

� Associations:Here the set of objects O consists of customer transactions. Corresponding to each item in thetransaction set, there is a binary-valued method that returns true/false depending whetherthe item is present or not present in the transaction. Association rules are subject to bothsyntactic and support constraints. Syntactic constraints cover the cases when the user isspecifying additional restrictions which the rules should satisfy (all associations that have\milk" in the consequent, all associations that have \milk" in the consequent and \bread" inthe antecedent, etc.). Support constraints are of primary importance, since the antecedentsof rules should have some minimal support. This is critical both from the statistical as well asthe business point of view (the larger the number of transactions supporting the antecedentof a rule, the more widely applicable the rule.)� Sequences:Here the set of objects O consists of timestamps (possibly with di�erent granularity such asdays, minutes, hours etc). For example, the rule that IBM stock goes up the next day ifAT&T stock goes up two consecutive days and DEC stock does not fall during this time canbe described as follows: Let Stock(s, t1, t2) be a method, which when applied to a timestampt returns whether the stock s has gone UP or DOWN between time t + t1 and t + t2. Ourrule can then be formulated as:t:Stock(AT&T,0,1) = UP ^ t:Stock(AT&T,1,2) = UP ^t:Stock(DEC,0,1) 6= DOWN ^ t:Stock(DEC,1,2) 6= DOWN ^ =)t:Stock(IBM,2,3) = UPSequence rules can be viewed as a special case of association rules. In these rules, antecedentsand consequents contain literals that are related through the temporal component. In mostcases, antecedents and consequents come in sequence in time. This can be viewed as a specialcase of a syntactic constraint. Support constraints will play a major role here as well. Thusif the number of timestamps for which the antecedent of a rule is satis�ed is too small, thestatistical value of such a rule is insigni�cant.4 Basic OperationsOur objective is to provide e�cient computational support for rule discovery problems. Ourthesis is that all the problems that can be cast in the framework presented above require asmall set of basic operations. By implementing these operations e�ciently, we can solve a largenumber of database mining problems.These operations use the concept of a string, which is an ordered sequence of (method, value)pairs. A value can be atomic, or it can be an interval in case of methods returning values thatcan be ordered. A method-value pair (m; v) for object t is a notational simpli�cation of thepredicate t:m = v if v is atomic and t:m 2 v if v is an interval. A string is a conjunction of suchpredicates.The computational process of discovering rules can be described using the following basicoperations:� newstrings Generate(seed, database)6

Takes the set of strings represented as the �rst parameter (seed) and builds from it a set ofstrings that are to be measured in a pass through the database. Sets of strings are formedfrom the strings in the seed set by extending them by (method, value) pairs according tothe database schema. The actual number of new strings constructed in one pass through thedatabase depends on a number of parameters, including the size of available memory, etc.� Measure(newstrings)Measuring may involve simple counting of the number of objects supporting each of thenew strings generated by Generate procedure. In these cases, Measure may be combinedwith Generate for e�ciency reasons. Measuring may also involve more elaborate aggregationoperations. For example, if the customer's id is stored together with the transaction number wemay want to discover associations between items that were not bought in the same transaction,but perhaps within a certain period of time. In such a case, instead of the support set beingde�ned as a number of all transactions with a particular item in them, we may de�ne thesupport set to be the number of customers who bought a particular item. We could also beinterested in calculating the total quantity or total price of a particular item bought by somecustomer. In such cases, further aggregation is necessary during the measurement phase.� combstrings Combine(newstrings)Combines some of the new strings. This combination could be done by creating intervals andpartitions of the domain of contiguous attributes or using taxonomic information. In this way,multiple strings may be replaced by a single \combined string". For example, a number ofstrings describing individuals of the ages 20, 22, 24, 27, 28, 30 may be replaced by one stringthat describes individuals of ages between 20 and 30.� seed Filter(combstrings)Filters out strings from the set of combined strings to form a new seed set. The new seed setconsists of strings that are good \prospects" to produce new strings for the Target set.� target + Select(seed)Selects the strings that are to be stored in the Target set along with their measured values.The selected strings may or may not be retained in the seed set.The initial seed set contains only the empty string. These four operations are evaluatedrepetitively in successive passes through the database until the seed set becomes empty. Theyconstruct as the output the �nal Target set of strings together with their measured values.Figure 1 shows the sequence in which the basic operations are applied.4.1 Combining OperationsWe now brie
y illustrate how these operations can be combined to solve database mining prob-lems. Later we consider the classi�cation problem in more detail and describe the realization ofan e�cient algorithm for discovering classi�cation rules using these operations. In the followingwe often use the term \attribute" for the accessor method associated with the attribute.� Classi�cation:We consider classi�ers based on decision trees (see [7] [6] [11] for an overview.) We refer thereader to [1] for a discussion on why these classi�ers (as opposed to, for example, neural nets[10]) are more appropriate for database mining applications.7

seed = { NIL }
target = {}

seed = Combine (new)

seed empty?

new = Generate (seed, db)

Measure (new)

target += Select (seed)

seed = Filter (seed)

Yes

No

return targetFigure 1: Basic OperationsThe target set of strings includes all strings corresponding to the paths from the root to theleaves of the classi�cation tree. Given a string s in the seed, we Generate all extensions ofthis string by adding all possible (attribute, value) pairs to it. Combination is performed onnew strings generated through an extension by a continuous-valued attribute. ID3 [14] andCART [2] use binary splitting [13] for this purpose, whereas IC [1] partitions the domain of acontinuous attribute into intervals. In the Filter operation, entropy [13] is computed for eachattribute added, and only the strings containing the attribute that has the highest value ofinformation gain [13] are retained and included in the next seed set. IC also computes foreach expanded string an expansion merit, and a string is �ltered out if its expansion merit isbelow an acceptable level. In the Select operation, ID3 picks those strings that have attainedan information gain of 1 whereas IC picks those strings whose information gain exceeds adynamic threshold function. The selected strings are not retained for further extension.� Associations:To determine whether the rule F (o) =) G(o) is satis�ed with a con�dence of at least c%,we �rst need to count the total number n of objects o in O that support F (o) and the totalnumber m of objects that support both F (o) and G(o), and then divide m by n. If the ratiois greater than c, then the rule is satis�ed with the con�dence factor c; otherwise it is not.The target set of strings contains all strings that have support above a certain threshold(minimum support) and this is the criterion used in the Select operation. Such strings forma basis for the potential rules (in other words they can form potential antecedents of rules).In the Generate operation, new strings are generated by extending a seed string by items8

not present in the seed. The Measure operation usually involves simply counting the totalnumber of occurrences of a string in the database. Combination is a null operation. In theFilter operation, a string not meeting the minimum support requirement is discarded. Notethat the strings picked in the Select operation are retained in the seed set for further extension.� Sequences:Sequence rules are handled in a similar way to the association rules. The temporal nature ofrelationships between antecedents and consequents can be explored in the implementation ina number of ways that includes compressed storage and special purpose indexes. The globalnature of the process is however analogous to discovery of associations.4.2 ExampleWe give a simple example based on the classi�cation application to illustrate how the algorithmshown in Figure 1 works. Section 5.2 gives a more elaborate example. The table below describesthe XOR function. The algorithm is trying to determine what characterizes group 0 (G = 0)and group 1 (G = 1). The two attributes a and b are categorical attributes.a b G0 0 00 1 11 0 11 1 0A string is put in the target set if the information gain [13] computed for the string is 1. Inthe Filter operation a single attribute is selected for extension and strings obtained by extendingother attributes are eliminated.We start with the empty string. In the �rst pass through the data, the following strings aregenerated by extending using all possible (attribute, value) pairs:(a; 0); (a; 1); (b; 0); (b; 1)Since no continuous-valued attributes are present, no combination is done. The two attributeseach have an information gain of 0. The algorithm breaks the tie by retaining strings with the�rst attribute. Thus the following strings are removed in the Filter operation:(b; 0); (b; 1)No strings are put in Target in the Select operation since no string has an information gain of1. The seed set at the beginning of the second pass contains the following strings:(a; 0) and (a; 1)In the second pass, the following strings are generated:(a; 0) ^ (b; 0); (a; 0) ^ (b; 1),(a; 1) ^ (b; 0); (a; 1) ^ (b; 1)Here each string can only be extended by the attribute b. Hence no attribute selection is neededand no string is eliminated in the Filter operation. All the strings have an information gain of1 and are hence selected for the target set. They are removed from seed which becomes empty.This terminates the algorithm. The strings in the target set can now be processed to generatethe following rules: 9

(a; 0) ^ (b; 0) =) (G = 0)(a; 0) ^ (b; 1) =) (G = 1)(a; 1) ^ (b; 0) =) (G = 1)(a; 1) ^ (b; 1) =) (G = 0)4.3 Performance ConsiderationsGiven that the data sets are expected to be massive, it is of paramount importance that therule discovery algorithm be e�cient. The following two factors should be kept in mind whencombining basic operations:� Waste Ratio:Consider the ratio of the number of strings in the target set to the total number of stringsthat were measured by the algorithm. Denote it by �. Then the waste ratio is de�ned tobe 1 � �. A large value for the waste ratio indicates generally poor performance due topossibly unnecessary additional work. For instance, we may build a classi�cation tree eitherby building �rst a complete tree and then pruning it (as it is the case for instance for ID3[14]) or take a dynamic approach and expand the tree only until estimated errors are reducedby a certain amount. The latter method will have a much better waste ratio since it will notgenerate and measure many strings that would be pruned later. Hence, if the classi�cationaccuracy is similar, the second method is a winner from the computational perspective.� Balancing I/O costs with CPU costs:One way to minimize the waste ratio is to be conservative in the Generate part of the algorithm,and generate and measure only the most promising strings in one pass over the data. For largedatabases, however, this approach is unacceptable. Depending on the cost ratio between CPUand I/0 costs, di�erent solutions may be appropriate for a given amount of memory. Wehave a choice of either making a small number of passes with signi�cant processing per pass,or minimizing the computation per pass and make many passes instead. Similarly, we mayprecompute the whole set of rules and query it directly, or for each query we may make passesthrough the original data. An algorithm must determine which approach must be applied ineach case.5 CDP: A Classi�er Obtained Using Basic OperationsWe now consider the classi�cation problem in more detail and describe the realization of aspeci�c classi�er using the basic operations introduced in Section 4. We also describe theimplementation of each of the basic operations. We refer to this classi�er as CDP , for classi�erwith dynamic pruning. CDP uses the binary partitioning of continuous attributes, proposed inID3 [14] and CART [2], in the Combine operation. It uses the dynamic pruning scheme of IC[1] in the Filter operation. CDP belongs to the class of tree-classi�ers [7] [6] [11], and hence canbe used to generate rules that can easily be translated into SQL queries for e�cient interfacingwith relational databases [20]. 10

5.1 Basic Operations in CDPWe present the implementation of the basic rule discovery operations in CDP . Starting withan empty string in the seed set, these operations are performed in sequence until the seed setbecome empty. The Target set then contains the desired classi�cation rules.5.1.1 Generate and MeasureGiven a string s, new strings are generated by extending s with all possible (attribute, value)pairs for di�erent groups. For e�ciency reasons, Generate and Measure are combined into oneoperation. The initial seed for the Generate operation is the empty string.The generation of new strings from a string s proceeds as follows. We read a tuple t fromthe training database. If s is present in t, new strings ~s = s+ (a; v) are generated, where (a; v)is an (attribute, value) pair present in t but not in s. If ~s so generated is already in the newstrings set, its count is incremented by one; otherwise, it is added to the new strings set with acount of 1. This operation is repeated for all tuples.5.1.2 CombineLet f ~sag be the set of new strings generated by extending a seed s with (a, value) pairs of acontinuous attribute a. We use binary partitioning, as proposed in ID3 [14] and CART [2], todetermine a value u that partitions the range of atomic values of a into two intervals i1 and i2such that the information gain is maximized. The interval i1 is given by a < u and the intervali2 is given by a � u. Then the strings in f ~sag are combined and replaced by two strings s+(a; i1)and s+ (a; i2).We do not combine strings generated by extending a seed with a categorical attribute.However, if taxonomical information is available for categorical attributes, this informationcan be used for combination of strings.Thus, at the end of the Combine operation, corresponding to a seed string s, we have a setof new strings f~sg that are extensions of s. For a continuous attribute, there will be two stringsin f~sg. For a categorical attribute, there can be as many strings as the the number of distinctvalues that this attribute can have. The number of strings actually present depends on thenumber of distinct values present in the database.5.1.3 FilterWe retain strings corresponding to the attribute that maximizes the information gain ratio [13]and eliminate all other strings. Let the database D of n objects contain nk objects of group Gk.Then the entropy E of D is given byE = �Xk nkn log2nknIf attribute Ai with values fa1i ; a2i ; . . . ; awi g is used as the extension attribute, it will partitionD into fD1i ;D2i ; . . . ;Dwi g with Dji containing nji objects of D that have value aji of Ai. If the11

expected entropy for the substring of Dji is Eji , then the expected entropy for the string with Aias the seed is the weighted averageEi =Xj njin EjiThe information gain by extending by Ai is thereforegain(Ai) = E � EiNow, the information content of the value of the attribute Ai can be expressed asI(Ai) = �Xj njin log2njinThe information gain ratio for attribute Ai is then de�ned to be the ratiogain(Ai)=I(Ai)5.1.4 SelectWe have eliminated all new strings that are not obtained due to extension by the selectedattribute. We now compare the frequencies of di�erent groups for the remaining strings. Fora given string, the winner is the group with the largest frequency. The strength of the winnergroup is determined as follows. The winning group for a string is said to be strong if the ratioof the frequency of the winner group to the total frequency for the string across all groups inthe database is above a certain precision threshold ; the group is said to be weak otherwise.The precision threshold is an adaptive function of the length of the string. The adaptiveprecision threshold we use is given by1� ((string length - 1)=max length)2where max length is an algorithm parameter. This function is conservative in the beginning indeclaring a winner strong, but loosens the criteria as the string length increases. The parametermax length enables the user to bound the computational expense in the classi�cation processsince �ltering takes place sooner for a smaller value of max length. Some experiments withvarious smooth decay functions led us to use the quadratic function as having the best e�ect onclassi�cation accuracy.If a string is found to have a strong winner, it is moved to the Target set. The stringbecomes the antecedent and the winner group becomes the consequent of the rule. This stringis removed from the seed and hence not further extended. A string of max length is also movedto the Target set. The winner-group (irrespective of its strength) becomes the consequent ofthe rule corresponding to this string. A �nal case is the string whose total frequency is foundto be zero. Such a string is also moved to the Target set. However, the winner of its seedstring becomes the consequent in this case. If the seed string is empty, the consequent is labeledunknown. 12

5.2 ExampleWe illustrate the basic operations in CDP with a simple example. Consider a people databasein which every tuple has only three attributes:� age (age) { non-categorical attribute { uniformly distributed from 20 to 80� the zip code of the town the person lives in (zipcode) { categorical attribute { uniformlydistributed between 9 available zipcodes� level of education (elevel) { categorical attribute { uniformly distributed from 0 to 4Group membership depends only on age and elevel, and is independent of zipcode. There areonly two groups in the population:Group A (= ((age < 40) ^ (elevel 2 [0::1])) _((40 � age < 60) ^ (elevel 2 [0::3])) _((60 � age) ^ ((elevel= 0)))Group B (= otherwisewhere (elevel 2 [1::k]) is equivalent to ((elevel= 1) _ (elevel= 2) _ . . . _ (elevel = k)). Wehave a database of 10000 tuples that satisfy the above predicates. The parameter max length isset to 10.CDP starts with the seed of an empty string. In the Generate and Measure step, newstrings are generated by extending strings in the seed set with the tuples in the database. Themeasurement involves counting the number of occurrences of each string for di�erent groups.Thus, if the �rst tuple were< (age = 25); (zipcode = 95120); (elevel = 1); (group = A) >then 3 new strings are generated: (age=25), (zipcode=95120), and (elevel=1). The count forGroup A is set to 1 and the count for Group B is set to 0 for all the three strings. Now if thenext tuple were< (age = 25); (zipcode = 95120); (elevel = 2); (group = B) >then one new string is generated: (elevel=2). The count for Group B is set to 1 and thecount for Group A is set to 0 for this string. Counts for Group B for strings (age=25) and(zipcode=95120) are incremented by 1. This process continues till all the tuples in the databasehave been exhausted.CDP now combines the new strings for the continuous attributes using binary partitioning,as proposed in ID3 [14] and CART [2]. In this example, age is the only continuous attribute.We omit the details of partitioning and present only the results. We �nd that the partitioningreplaces all the age strings with two strings: (20 � age < 59.5) and (59.5 � age < 80). Thus,at the end of Combine operation, we have 16 strings: 2 corresponding to age, 9 correspondingto zipcode, and 5 corresponding to elevel.CDP now performs Filter operation, and eliminates all strings corresponding to attributesother than the one that maximizes the information gain ratio [13]. The following table showsthe values obtained for the information gain ratio for the three attributes:13

Attribute Information Gain Ratioage .19682zipcode .00018elevel .13675Therefore, all strings except (20 � age < 59.5) and (59.5 � age < 80) are eliminated, and thenew seed set consists of these two strings.CDP now examines if any of the strings in the seed set should be moved to the Target seton the basis of the strength of the winning group for the string. The following table shows thewinner for the two strings in the seed set and the relative frequency of the winning group:String Winner Relative Frequency Strength(20.0 � age < 59.5) Group A 0.62 Weak(59.5 � age < 80.0) Group B 0.87 WeakThe precision threshold is 1 for these strings, and therefore the strength of both strings is weak.None of the strings is moved to the Target set.CDP now makes another pass over the database. For brevity, we will only discuss theextensions of the string (20.0 � age < 59.5). As before, new strings are generated by extendingthe seed string with (attribute:value) pairs found in tuples in which the seed string is present.Note that (20.0 � age < 59.5) is also extended with a (age:v) string such that (20.0 � v <59.5). Counts are also developed for each of the new strings.New strings corresponding to age attribute are again combined, which results in two strings:(20 � age < 59.5)(20 � age < 39.5) and (20 � age < 59.5)(39.5 � age < 59.5). We also have9 extensions of the seed string with strings corresponding to zipcode values and 5 extensionscorresponding to elevel values.The following table shows the information gain ratios for the attributes, using the countavailable with the new strings developed by extending (20 � age < 59.5):Seed string: (20.0 � age < 59.5)Attribute Information Gain Ratioage .19177zipcode .00028elevel .20476Therefore, the �lter operation eliminates all strings, except those generated by extending theseed string with an elevel value.Since max length is 10, the adaptive precision algorithm reduces the precision threshold to0.99, and winner strength �nds the winning group to be strong for three strings:String Winner Relative Frequency Strength(20 � age < 59.5)(elevel = 0) Group A 1.00 Strong(20 � age < 59.5)(elevel = 1) Group A 1.00 Strong(20 � age < 59.5)(elevel = 2) Group A 0.51 Weak(20 � age < 59.5)(elevel = 3) Group A 0.50 Weak(20 � age < 59.5)(elevel = 4) Group B 1.00 Strong14

The three strong strings are removed from the seed set and moved to the target set. The twoweak strings remain in the seed set and are extended in the next pass over the data.We omit the rest of the processing and show the �nal rules generated by the CDP in Figure 2as a decision tree. It is a coincidence that the next attribute selected for the initial two age
age

[20, 59.5) [59.5, 80)

0 1 2 3 4

A A B

0 1 2 3 4

A B B B B

[20, 39.5) [39.5, 59.5)

B A

[20, 39.5) [39.5, 59.5)

B A

age

age

elevel elevel

Figure 2: Example Decision Tree Generated by CDPstrings turned out to be elevel. In general, the siblings may not be the same attribute anddi�erent attributes may be selected.Thus, CDP infers the following set of classi�cation rulesGroup A (= ((20 � age < 59:5) ^ (elevel 2 [0::1])) _((39:5 � age < 59:5) ^ (elevel 2 [2::3])) _((59:5 � age < 80) ^ ((elevel= 0)))Group B (= ((20 � age < 39:5) ^ (elevel 2 [2::3])) _((20 � age < 59:5) ^ (elevel= 4)) _((59:5 � age < 80) ^ (elevel 2 [1::4]))which is equivalent to the original set of rules. Note that the actual age range in the data setwas from 20 to 80.5.3 Performance ConsiderationsDuring the Generate-and-Measure operation, as we make a pass over the database, we wouldlike to extend all the strings in the seed set and measure them to minimize I/O. However, all the15

strings in the seed set and their extensions may not �t in main memory. CDP takes a dynamicapproach and starts by loading all the seed strings in memory. As the strings are expanded,memory may �ll up. In that case, a victim seed string is selected (one with the maximumnumber of extensions) and this seed string and all its extensions are discarded. The discardedseed string is reconsidered in the next pass over the data.CDP further seeks to improve the performance of the generation process by not expandinga string further if the winner strength of the string is above a certain precision threshold. Analternative would have been to expand all the strings fully and then prune them as is the case,for instance, in ID3 [14]. However, this approach will exhibit a bad waste ratio. Hence, if theclassi�cation accuracy is similar, using dynamic pruning is a winner from the computationalperspective.Classi�cation Accuracy and Generation E�ciency The classi�cation error , that is, thefraction of instances in the test data that are incorrectly classi�ed, is the classical measure ofthe classi�cation accuracy. To assess the accuracy of the rules discovered by CDP , we comparedit with ID3. We used the IND tree package [4] from the NASA Ames Research Center for thisempirical evaluation. IND implements C4, which is a more recent, improved version of ID3. Theexperimental methodology, data sets, and the classi�cation functions used for the experimentsare described in the Appendix.Figure 3 shows the average error rates for CDP and ID3. A maximum depth of 10 was usedfor the CDP algorithm. The 95% con�dence intervals for the results indicate that di�erencesin classi�cation errors of less than 0.7% are not very signi�cant. This means that the twoalgorithms are comparable in accuracy for functions 1, 3, and 10. ID3 does better than CDPfor functions 6 and 7, but CDP obtains better accuracy than ID3 for functions 2, 4, 5, 8 and 9.We now compare the rule generation e�ciencies of CDP and ID3. We note that the twoalgorithms use identical attribute selection and partitioning procedures. Hence, any di�erence ingeneration e�ciency is directly proportional to the di�erence in the number of strings generated.Figure 4 shows the number of strings generated by the two algorithms for each of the functions.These numbers were obtained by averaging the number of strings generated over several runs.We see that CDP generates only a third to a tenth as many strings as ID3. Thus we see thatCDP can be 3 to 10 times faster than ID3 in discovering rules with comparable accuracy.6 SummaryWe presented our perspective of database mining as the con
uence of machine learning tech-niques and the performance emphasis of database technology. We described three classes ofdatabase mining problems involving classi�cation, associations, and sequences, and argued thatthese problems can be viewed within a common framework of rule discovery. We describe amodel and four basic operations for the process of rule discovery. We also showed how thesedatabase mining problems map to this model and how they can be solved by using the basicoperations we propose. Finally, we gave a concrete example of an algorithm suitable for discov-ering classi�cation rules, and described the e�cient implementation of the basic operations forthis algorithm. This algorithm not only is e�cient in discovering classi�cation rules but alsohas accuracy comparable to the well known classi�cation algorithm ID3 [13].16

1 2 3 4 5 6 7 8 9 10
0

4

8

12

Function Number

C
la

ss
ifi

ca
tio

n
E

rr
or

 (
%

)

CDP
ID3

Figure 3: Classi�er Accuracy: CDP and ID3
1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

1200

Function Number

N
um

be
r

of
 G

en
er

at
ed

 S
tri

ng
s CDP

ID3

Figure 4: Strings Generated: CDP and ID317

The work reported in this paper has been done in the context of the Quest project at theIBM Almaden Research Center. In Quest, we are exploring the various aspects of the databasemining problem. Our future plans include developing e�cient implementations of the basicrule discovery operations described in this paper for the database mining problems involvingassociations and sequences. The eventual goal is to build an experimental system that can beused for mining rules embedded in massive databases. We believe that database mining is animportant new application area for databases, combining commercial interest with intriguingresearch questions.7 Appendix: Experimental MethodologyWe used the evaluation methodology and the synthetic database proposed in [1] to assess theaccuracy characteristics of CDP . Every tuple in this database has the nine attributes given inTable 1. Attributes elevel, car, and zipcode are categorical attributes, all others are non-categorical attributes. Attribute values were randomly generated.Attribute Description Valuesalary salary uniformly distributed from 20000 to 150000commission commission salary >= 75000 =) commission= 0 elseuniformly distributed from 10000 to 75000age age uniformly distributed from 20 to 80elevel education level uniformly chosen from 0 to 4car make of the car uniformly chosen from 1 to 20zipcode zip code of the town uniformly chosen from 9 available zipcodeshvalue value of the house uniformly distributed from 0:5k100000 to 1:5k100000where k 2 f0 � � � 9g depends on zipcodehyears years house owned uniformly distributed from 1 to 30loan total loan amount uniformly distributed from 0 to 500000Table 1: Description of AttributesUsing the above attributes, we developed 10 classi�cation functions of di�erent complexities.These functions are labeled 1 through 10 and involve 2 groups. Function 1 involves a predicatewith ranges on a single attribute value. Functions 2 and 3 involve predicates with ranges ontwo attribute values. Function 2 uses two non-categorical attributes whereas function 3 usesa categorical and a non-categorical attribute. Similarly functions 4, 5 and 6 have predicateswith ranges on three attribute values. Function 4 involves one categorical attribute. Function 5involves only non-categorical attributes. Function 6 involves ranges on a linear function of twonon-categorical attributes. Functions 7 through 9 are linear functions and function 10 is a non-linear function of attribute values. These functions are listed in Section 7. Note that thesefunctions are a superset of the functions used in [1].18

For every experiment, we generated a training set and a test data set. Tuples in the trainingset were assigned the group label by �rst generating the tuple and then applying the classi�cationfunction on the tuple to determine the group to which the tuple belongs. Labels were alsogenerated for tuples in the test data set as per the classi�cation function to determine whetherthe classi�er correctly identi�ed the group for the tuple or not.To model fuzzy boundaries between the groups, the data generation program takes a pertur-bation factor p as an additional argument. After determining the values of di�erent attributesof a tuple and assigning it a group label, the values for non-categorical attributes are perturbed.If the value of an attribute Ai for a tuple t is v and the range of values of Ai is a, then thevalue of Ai for t after perturbation becomes v+ r� p� a, where r is a uniform random variablebetween -0.5 and +0.5. In our experiments we used a perturbation factor of 5%.For each experimental run, the errors for all the groups are summed to obtain the classi-�cation error. For each classi�cation function, 200 replications were done with new trainingsets being generated. The replications were then used to calculate the mean error with 95%con�dence intervals. Errors are reported as percentages of the total test data set. The intrinsicerror in the test data due to perturbation was subtracted from the total error to arrive at theerror due to misclassi�cation.We used training sets of 2500 tuples and test data sets of 10000 tuples. Before settlingon these sizes, we studied the sensitivity of CDP to these sizes. The training set was reducedfrom 2500 tuples to 1000 tuples in steps of 500. As expected, the classi�cation error increasedwith decreasing training set size, but the increase in mean error was small. In database miningapplications involving databases in gigabytes, the training sets are likely to be fairly large, andtraining sets of 2500 tuples are not unreasonable. We increased the test data sizes from 10000to 25000, 50000, and 100000 tuples. The results indicated that 10000 tuples provided almostidentical error estimates as larger test data sets. Hence we decided to stay with test data setsof 10000 tuples to save on computing time.Classi�cation FunctionsIn the following, (X 2 [1::k]) is equivalent to ((X = 1) _ (X = 2) _ . . . _ (X = k)). Also,P ?Q : R is equivalent to the sequential conditional function, i.e., the expression is equivalentto (P ^ Q) _ (:P ^ R). There are two groups: Group A and Group B. We only specifythe predicate function for Group A. All tuples not selected by this predicate function belong toGroup B.Function 1Grp A: ((age < 40) _ ((60 � age)Function 2Grp A: ((age < 40) ^ (50K � salary � 100K)) _((40 � age < 60) ^ (75K � salary � 125K)) _((age � 60) ^ (25K � salary � 75K))19

Function 3Grp A: ((age < 40) ^ (elevel 2 [0::1])) _((40 � age < 60) ^ (elevel 2 [1::3])) _((age � 60) ^ (elevel 2 [2::4]))Function 4Grp A: ((age < 40) ^(((elevel 2 [0::1]) ? (25K � salary � 75K)) : (50K � salary � 100K)))) _((40 � age < 60) ^(((elevel 2 [1::3]) ? (50K � salary � 100K)) : (75K � salary � 125K)))) _((age � 60) ^(((elevel 2 [2::4]) ? (50K � salary � 100K)) : (25K � salary � 75K))))Function 5Grp A: ((age < 40) ^(((50K � salary � 100K) ? (100K � loan � 300K) : (200K � loan � 400K)))) _((40 � age < 60) ^(((75K � salary � 125K) ? (200K � loan � 400K) : (300K � loan � 500K)))) _((age � 60) ^(((25K � salary � 75K) ? (300K � loan � 500K) : (100K � loan � 300K))))Function 6Grp A: ((age < 40) ^ (50K � (salary + commission) � 100K)) _((40 � age < 60) ^ (75K � (salary+ commission) � 125K)) _((age � 60) ^ (25K � (salary + commission) � 75K))Function 7disposable = (0:67 � (salary+ commission) � 0:2� loan � 20K)Grp A: disposable > 0Function 8disposable = (0:67 � (salary+ commission) � 5000 � elevel � 20K)Grp A: disposable > 0Function 9disposable = (0:67 � (salary+ commission) � 5000 � elevel � 0:2� loan � 10K)Grp A: disposable > 0Function 10hyears < 20 =) equity = 0hyears � 20 =) equity = 0:1 � hvalue� (hyears� 20)disposable = (0:67 � (salary+ commission) � 5000 � elevel + 0:2� equity � 10K)Grp A: disposable > 0 20

8 AcknowledgmentsWe wish to thank Ashar Mahboob for his help in implementing CDP and running performanceexperiments. We are thankful to Wray Buntine for the IND tree package that allowed us tocompare CDP with ID3. Thanks are also due to Guy Lohman for his comments on an earlierversion of this paper.References[1] Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski, Bala Iyer, and Arun Swami, \An IntervalClassi�er for Database Mining Applications", VLDB 92 , Vancouver, British Columbia,Canada, 1992, 560{573.[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classi�cation and RegressionTrees, Wadsworth, Belmont, 1984.[3] R. Brice and W. Alexander, \Finding Interesting Things in Lots of Data", 23rd HawaiiInternational Conference on System Sciences, Kona, Hawaii, January 1990.[4] Wray Buntine, About the IND Tree Package, NASA Ames Research Center, Mo�ett Field,California, September 1991.[5] Wray Buntine and Matha Del Alto (Editors), Collected Notes on the Workshop for PatternDiscovery in Large Databases, Technical Report FIA-91-07, NASA Ames Research Center,Mo�ett Field, California, April 1991.[6] Philip Andrew Chou, \Application of Information Theory to Pattern Recognition and theDesign of Decision Trees and Trellises", Ph.D. Thesis, Stanford University, California, June1988.[7] G. R. Dattatreya and L. N. Kanal, \Decision Trees in Pattern Recognition", In Progress inPattern Recognition 2 , L. N. Kanal and A. Rosenfeld (Editors), Elsevier Science PublishersB.V. (North-Holland), 1985.[8] J. Han, Y. Cai, and N. Cercone, \Knowledge Discovery in Databases: An Attribute-Oriented Approach", VLDB-92 , Vancouver, British Columbia, Canada, 1992, 547{559.[9] Ravi Krishnamurthy and Tomasz Imielinski, \Practitioner Problems in Need of DatabaseResearch: Research Directions in Knowledge Discovery", SIGMOD Record , Vol. 20, No. 3,Sept. 1991, 76{78.[10] Richard P. Lippmann, \An Introduction to Computing with Neural Nets", IEEE ASSPMagazine, April 1987, 4{22.[11] David J. Lubinsky, \Discovery fromDatabases: A Review of AI and Statistical Techniques",IJCAI-89 Workshop on Knowledge Discovery in Databases, Detroit, August 1989, 204{218.21

[12] Tarek M. Anwar, Howard W. Beck, and Shamkant B. Navathe, \Knowledge Mining byImprecise Querying: A Classi�cation-Based Approach", IEEE 8th Int'l Conf. on DataEngineering, Phoenix, Arizona, Feb. 1992.[13] J. Ross Quinlan, \Induction of Decision Trees", Machine Learning, 1, 1986, 81{106.[14] J. Ross Quinlan, \Simplifying Decision Trees", Int. J. Man-Machine Studies, 27, 1987,221{234.[15] G. Piatetsky-Shapiro and W. Frawley (Editors), Proceedings of IJCAI-89 Workshop onKnowledge Discovery in Databases, Detroit, Michigan, August 1989.[16] G. Piatetsky-Shapiro (Editor), Proceedings of AAAI-91 Workshop on Knowledge Discoveryin Databases, Anaheim, California, July 1991.[17] G. Piatetsky-Shapiro, Discovery, Analysis, and Presentation of Strong Rules, In [18], 229{248.[18] G. Piatetsky-Shapiro (Editor), Knowledge Discovery in Databases, AAAI/MIT Press, 1991.[19] Shalom Tsur, \Data Dredging", IEEE Data Engineering Bulletin, 13, 4, December 1990,58{63.[20] Je�rey D. Ullman, Principles of Database and Knowledge-Base Systems, Volume I, Com-puter Science Press, 1988.

22

