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Abstract: We consider two approaches to giving semantics to �rst-order log-ics of probability. The �rst approach puts a probability on the domain, and isappropriate for giving semantics to formulas involving statistical informationsuch as \The probability that a randomly chosen bird ies is greater than.9." The second approach puts a probability on possible worlds, and is ap-propriate for giving semantics to formulas describing degrees of belief, such as\The probability that Tweety (a particular bird) ies is greater than .9." Weshow that the two approaches can be easily combined, allowing us to reasonin a straightforward way about statistical information and degrees of belief.We then consider axiomatizing these logics. In general, it can be shown thatno complete axiomatization is possible. We provide axiom systems that aresound and complete in cases where a complete axiomatization is possible,showing that they do allow us to capture a great deal of interesting reasoningabout probability.�This is a revised and expanded version of a paper that received the Publisher's Prize in in IJCAI89. This version is essentially the same as one that appears in Arti�cial Intelligence 46, pp. 311{350.



1 IntroductionConsider the two statements \The probability that a randomly chosen bird will y isgreater than :9" and \The probability that Tweety (a particular bird) ies is greaterthan .9." It is quite straightforward to capture the second statement by using a possible-world semantics along the lines of that used in [FH94, FHM90, Nil86]. Namely, wecan imagine a number of possible worlds such that the predicate Flies has a di�erentextension in each one. Thus, Flies(Tweety) would hold in some possible worlds, and notin others. We then put a probability distribution on this set of possible worlds, and checkif the set of possible worlds where Flies(Tweety) holds has probability greater than :9.However, as pointed out by Bacchus [Bac90, Bac88], this particular possible worldsapproach runs into di�culties when trying to represent the �rst statement, which we maybelieve as a result of statistical information of the form \More than 90% of all birds y."What is the formula that should hold at a set of worlds whose probability is greater than:9? The most obvious candidate is perhaps 8x(Bird(x ) ) Flies(x )). However, it mightvery well be the case that in each of the worlds we consider possible, there is at leastone bird that doesn't y. Hence, the statement 8x(Bird(x ) ) Flies(x )) holds in none ofthe worlds (and so has probability 0). Thus it cannot be used to represent the statisticalinformation. As Bacchus shows, other straightforward approaches do not work either.There seems to be a fundamental di�erence between these two statements. The �rstcan be viewed as a statement about what Hacking calls a chance setup [Hac65], thatis, about what one might expect as the result of performing some experiment or trialin a given situation. It can also be viewed as capturing statistical information aboutthe world, since given some statistical information (say, that 90% of the individuals in apopulation have property P ), then we can imagine a chance setup in which a randomlychosen individual has probability :9 of having property P . On the other hand, the secondstatement captures what has been called a degree of belief [Bac90, Kyb88]. The �rststatement seems to assume only one possible world (the \real" world), and in this world,some probability distribution over the set of birds. It is saying that if we consider a birdchosen at random, then with probability greater than :9 it will y. The second statementimplicitly assumes the existence of a number of possibilities (in some of which Tweetyies, while in others Tweety doesn't), with some probability over these possibilities.Bacchus [Bac90] provides a syntax and semantics for a �rst-order logic for reasoningabout chance setups, where the probability is placed on the domain. This approachhas di�culties dealing with degrees of belief. For example, if there is only one �xedworld, in this world either Tweety ies or he doesn't, so Flies(Tweety) holds with eitherprobability 1 or probability 0. In particular, a statement such as \The probability thatTweety ies is between :9 and :95" is guaranteed to be false! Recognizing this di�culty,Bacchus moves beyond the syntax of his logic to de�ne the notion of a belief function,which lets us talk about the degree of belief in the formula � given a knowledge base�. However, it would clearly be useful to be able to capture reasoning about degrees ofbelief within a logic, rather than moving outside the logic to do so.1



In this paper, we describe two �rst-order logics, one for capturing reasoning aboutchance setups (and hence statistical information) and another for reasoning about degreesof belief. We then show how the two can be easily combined in one framework, allowingus to simultaneously reason about statistical information and degrees of belief.We go on to consider issues of axiomatizability. Bacchus is able to provide a completeaxiomatization for his language because he allows probabilities to take on nonstandardvalues in arbitrary ordered �elds. Results of a companion paper [AH94] show that if werequire probabilities to be real-valued (as we do here), we cannot in general hope to havea complete axiomatization for our language. We give sound axiom systems here which weshow are complete for certain restricted settings. This suggests that our axiom systemsare su�ciently rich to capture a great deal of interesting reasoning about probability.Although work relating �rst-order logic and probability goes back to Carnap [Car50],there has been relatively little work on providing formal �rst-order logics for reasoningabout probability. Besides the work of Bacchus mentioned above, the approaches closestin spirit to that of the current paper are perhaps those of [Fel84, FH84, Fen67, Gai64,Kei85,  Lo�s63, SK66]. Gaifman [Gai64] and Scott and Krauss [SK66] considered the prob-lem of associating probabilities with classical �rst-order statements (which, as pointedout in [Bac88], essentially corresponds to putting probabilities on possible worlds).  Lo�sand Fenstad studied this problem as well, but allowed values for free variables to bechosen according to a probability on the domain [ Lo�s63, Fen67]. Keisler [Kei85] inves-tigated an in�nitary logic with a measure on the domain, and obtained completenessand compactness results. Feldman and Harel [FH84, Fel84] considered a probabilisticdynamic logic, which extends �rst-order dynamic logic by adding probability. There arecommonalities between the program-free fragment of Feldman and Harel's logic and ourlogics, but since their interest is in reasoning about probabilistic programs, their formal-ism is signi�cantly more complex than ours, and they focus on proving that their logicis complete relative to its program-free fragment.The rest of this paper is organized as follows. In the next section, we present a logicfor reasoning about situations where we have probabilities on the domain. Our syntaxhere is essentially identical to that of Bacchus [Bac90]; our semantics follows similar lines,with some subtle, yet important, technical di�erences. In Section 3 we present a logic forreasoning about situations where there are probabilities on possible worlds. In Section 4we show that these approaches can be combined in a straightforward way. In Section 5we consider the question of �nding complete axiomatizations.2 Probabilities on the domainWe assume that we have a �rst-order language for reasoning about some domain. Wetake this language to consist of a collection � of predicate symbols and function symbolsof various arities (as usual, we can identify constant symbols with functions symbols ofarity 0). Given a formula ' in the logic, we also allow formulas of the form wx(') � 1=2,2



which can be interpreted as \the probability that a randomly chosen x in the domainsatis�es ' is greater than or equal to 1/2". We actually extend this to allow arbitrarysequences of distinct variables in the subscript. To understand the intuition behind this,suppose the formula Son(x; y) says that x is the son of y. Now consider the three termswx(Son(x; y)), wy(Son(x; y)), and whx;yi(Son(x; y)). The �rst describes the probabilitythat a randomly chosen x is the son of y; the second describes the probability that xis the son of a randomly chosen y; the third describes the probability that a randomlychosen pair (x; y) will have the property that x is the son of y.We formalize these ideas by using a two-sorted language. The �rst sort consists of thefunction symbols and predicate symbols in �, together with a countable family of objectvariables xo; yo; : : :. Terms of the �rst sort describe elements of the domain we want toreason about. Terms of the second sort represent real numbers, typically probabilities,which we want to be able to add and multiply. In order to accommodate this, the secondsort consists of the binary function symbols + and �, which represent addition andmultiplication, constant symbols 0 and 1, representing the real numbers 0 and 1, binaryrelation symbols > and =, and a countable family of �eld variables xf ; yf ; : : :, which areintended to range over the real numbers. (We drop the superscripts on the variableswhen it is clear from context what sort they are.)We now de�ne object terms, �eld terms, and formulas simultaneously by induction.We form object terms, which range over the domain of the �rst-order language, by startingwith object variables and closing o� under function application, so that if f is an n-aryfunction symbol in � and t1; : : : ; tn are object terms, then f(t1; : : : ; tn) is an object term.We form �eld terms, which range over the reals, by starting with 0, 1, and probabilityterms of the form w~x('), where ' is an arbitrary formula and ~x is a sequence hx1; : : : ; xniof distinct object variables, and then closing o� under + and �, so that t1+ t2 and t1� t2are �eld terms if t1 and t2 are. We form formulas in the standard way. We start withatomic formulas: if P is an n-ary predicate symbol in �, and t1; : : : ; tn are object terms,then P (t1; : : : ; tn) is an atomic formula, while if t1 and t2 are �eld terms, then t1 = t2and t1 > t2 are atomic formulas. We sometimes also consider the situation where thereis an equality symbol for object terms; in this case, if t1 and t2 are object terms, thent1 = t2 is also an atomic formula. We then close o� under conjunction, negation, anduniversal quanti�cation, so that if '1 and '2 are formulas and x is a (�eld or object)variable, then '1 ^ '2, :'1, and 8x'1 are all formulas. We call the resulting languageL1(�); if it includes equality between object terms, we call it L=1 (�).We de�ne _, ), and 9, in terms of ^, :, and 8 as usual. In addition, if t1 and t2 aretwo �eld terms, we use other standard abbreviations such as t1 < t2 for t2 > t1, t1 � t2for t1 > t2 _ t1 = t2, t1 � 1=2 for (1+ 1)� t1 � 1, and so on.The only di�erences between our syntax and that of Bacchus is that we write w~x(')rather than [']~x, we do not consider what Bacchus calls measuring functions (functionswhich map object terms into �eld terms), and the only �eld functions we allow are + and�. The language is still quite rich, allowing us to express conditional probabilities, notionsof independence, and statistical notions; we refer the reader to [Bac90] for examples.3



We de�ne a type 1 probability structure to be a tuple (D;�; �), where D is a domain,� assigns to the predicate and function symbols in � predicates and functions of the rightarity over D (so that (D;�) is just a standard �rst-order structure), and � is a discreteprobability function on D. That is, we take � to be a mapping from D to the real interval[0; 1] such that Pd2D �(d) = 1. For any A � D, we de�ne �(A) = Pd2A �(d).1 Givena probability function �, we can then de�ne a discrete probability function �n on theproduct domain Dn consisting of all n-tuples of elements of D by taking �n(d1; : : : ; dn) =�(d1) � : : : � �(dn). De�ne a valuation to be a function mapping each object variableinto an element of D and each �eld variable into an element of IR (the reals). Given atype 1 probability structure M and valuation v, we proceed by induction to associatewith every object (resp. �eld) term t an element [t](M;v) of D (resp. IR), and with everyformula ' a truth value, writing (M;v) j= ' if the value true is associated with ' by(M;v). The de�nitions follow the lines of �rst-order logic, so we just give a few clausesof the de�nition here, leaving the remainder to the reader:� (M;v) j= t1 = t2 i� [t1](M;v) = [t2](M;v)� (M;v) j= 8xo' i� (M;v[xo=d]) j= ' for all d 2 D, where v[xo=d] is the valuationwhich is identical to v except that it maps xo to d� [whx1;:::;xni(')](M;v) = �n(f(d1; : : : ; dn) : (M;v[x1=d1; : : : ; xn=dn]) j= 'g).The major di�erence between our semantics and that of Bacchus is that Bacchusallows nonstandard probability functions, which take values in arbitrary ordered �elds,and are only �nitely additive, not necessarily countably additive. Our probability func-tions are standard: they are real-valued and countably additive. (Bacchus allows suchnonstandard probability functions in order to obtain a complete axiomatization for hislanguage. We return to this point later.)We write M j= ' if (M;v) j= ' for all valuations v, and write j=1 ', and say that 'is valid with respect to type 1 structures, if M j= ' for all type 1 probability structuresM . As an example, suppose the language has only one predicate, the binary predicateSon, and we have a structure M = (fa; b; cg; �; �) such that �(Son) consists of only1The restriction to discrete probability functions is made here for ease of exposition only. We discussbelow how we can allow arbitrary probability functions on the domain. It might seem that for practicalapplications we should further restrict to uniform probability functions, i.e., ones that assign equalprobability to all domain elements. Although we allow uniform probability functions, and the languageis expressive enough to allow us to say that the probability on the domain is uniform (using the formula8x8y(wz(x = z) = wz(y = z))) we do not require them. There are a number of reasons for this. For onething, there are no uniform probability functions in countable domains. (Such a probability functionwould have to assign probability 0 to each individual element in the domain, which means by countableadditivity it would have to assign probability 0 to the whole domain.) And even if we restrict attentionto �nite domains, we can construct two-stage processes (where, for example, one of three urns is chosenat random, and then some ball in the chosen urn is chosen at random) where the most natural way toassign probabilities would not assign equal probability to every ball [Car55].4



the pair (a; b), �(a) = 1=3, �(b) = 1=2, and �(c) = 1=6. Thus, the structure M canbe viewed as describing a chance setup|a particular experimental situation|where theprobability of picking a is 1=3, the probability of picking b is 1=2, and the probabilityof picking c is 1=6. Let v be a valuation such that v(x) = a and v(y) = c. Thenit is easy to check that we have [wx(Son(x; y))](M;v) = 0, [wy(Son(x; y))](M;v) = 1=2,and [whx;yi(Son(x; y))](M;v) = 1=6. Thus, if we pick an x at random from the domain(according to the chance setup described by M) and �x y to be c, the probability that xis a son of y is 0: no member of the domain is a son of c. If we �x x to be a and pick a yat random from the domain, the probability that x is a son of y is 1=2, which is exactlythe probability that y = b. Finally, if we pick pairs at random (by choosing the �rstelement of the pair, replacing it, and then choosing the second element) the probabilityof picking a pair (x; y) such that x is a son of y is 1=6.This example shows that the syntax and semantics of this logic are well suited forreasoning about chance setups. We can construct similar examples to show that it is ap-propriate for reasoning about statistical information in large domains. But, as discussedin the introduction, the logic is not well suited for making statements about degrees ofbelief about properties of particular individuals. For example, although in this logic itis consistent that the probability that a randomly chosen bird ies is between :9 and:95, it is inconsistent that the probability that Tweety ies is between :9 and :95. Tomake this more formal, note that in a formula such as wx(') � :9, the wx binds the freeoccurrences of x in ' just as the 8x binds all free occurences of x in ' in the formula8x'. We de�ne a formula to be closed if no variables in the formula are free. Just asfor �rst-order logic, we can show that the truth of a formula depends only on the valuesassigned by the valuation to the free variables. In particular, it follows that the truth ofa closed formula is independent of the valuation.Proposition 2.1: Suppose ' is a formula in L1(�) all of whose free variables are con-tained in the set X. Let M be a type 1 probability structure and let v1 and v2 be twovaluations that agree on X (so that v1(y) = v2(y) for all y 2 X). Then (M;v1) j= ' i�(M;v2) j= '.Proof: By a straightforward induction on the structure of ', much as in the case of thecorresponding result for �rst-order logic. We leave details to the reader.If ' is a closed formula, then by de�nition it has no free variables. In this case, noticethat if we take X in the preceding proposition to be the empty set, then all valuationsagree on X. It follows that the truth of a closed formula is independent of the valuation.Corollary 2.2: If ' is a closed formula, then for all valuations v1 and v2, we have(M;v1) j= ' i� (M;v2) j= '.It follows from Corollary 2.2 that if ' is a closed formula, then either M j= ' orM j= :' for each type 1 probability structure M . This means that in a type 1 probability5



structure M , a closed formula is true for all choices of random variable x or for none ofthem. Thus we getLemma 2.3: [Bac90, Lemma 5.1] If ' is a closed formula, then for any vector ~x ofdistinct object variables, j=1 (w~x(') = 0 _ w~x(') = 1).As we mentioned above, our restriction to discrete probability functions on the domainis not essential. We can allow arbitrary probability functions by associating with the prob-ability function its domain, that is the �-algebra of subsets of D to which the probabilityfunction assigns a probability. (A �-algebra is a set of subsets that contains the emptyset and is closed under complementation and countable union.) Thus, a type 1 probabil-ity structure would become a tuple of the form (D;�;X ; �), where X is a �-algebra ofsubsets of D and � is a probability function on X . We can de�ne a �-algebra X n on Dnand a product measure �n on Dn in a straightforward way [Hal50]. The only problemthat arises is that we might need to take the probability of a nonmeasurable set, i.e., onenot in the �-algebra. For example, suppose we consider the structure M = (D;�;X ; �).We earlier de�ned [wx('(x))](M;v) as �(D'), where D' = fd 2 D : (M;v[x=d]) j= 'g.However, there is now no reason to believe that D' 2 X , so that �(D') may not bewell de�ned. We can get around this problem by requiring that all de�nable sets bemeasurable; this is the solution taken in [Bac90]. Alternatively, we can interpret wx asan inner measure rather than a probability; see [FH91, FHM90] for further details.3 Probabilities on possible worldsLemma 2.3 shows that in a precise sense type 1 probability structures are inappropri-ate for reasoning about degrees of belief. In practice, it might well be the case thatthe way we derive our degrees of belief is from the statistical information at our dis-posal. Suppose we know that the probability that a randomly chosen bird ies isgreater than :9. We can express this in L1(fFlies;Birdg) by the conditional prob-ability statement wx(Flies(x) jBird(x)) > :9, which we view as an abbreviation forwx(Flies(x) ^ Bird(x)) > :9wx(Bird(x)).2 If we know that Tweety is a bird, thenwe might conclude that the probability that Tweety ies at least :9. Thus, if we take2This is a more appropriate way of formalizing the fact that most birds y than wx(Bird(x) )F lies(x)) > :9. The formulaBird(x)) F lies(x) is equivalent to :Bird(x)_F lies(x), so the implicationwould hold with high probability even if no bird in the domain ew, as long as less than 10% of thedomain consisted of birds. (I'd like to thank Fahiem Bacchus for pointing this out to me.) Also notethat the representation of conditional probability used here is somewhat nonstandard. The conditionalprobability of A given B is typically taken to be the probability of A\B divided by the probability of B.We have cleared the denominator here to avoid having to deal with the di�culty of dividing by 0 shouldthe probability of B be 0. This results in some anamolous interpretations of formulas. For example,w(�j�) = r is taken as an abbreviation for w(� ^ �) = rw(�). If w(�) = 0, then w(� ^ �) = 0, sow(�j�) = r is true for all values of r. On the other hand, for similar reasons, w(�j�) < r and w(�j�) > rare both false for all values of r if w(�) = 0. 6



w(Tweety) to represent the probability that Tweety ies, we might take as a defaultassumption a statement likeBird(Tweety)^ wx(Flies(x) jBird(x)) > :9 ) w(Flies(Tweety))> :9:As pointed out by Bacchus and others, this type of reasoning is fraught with di�culties.It is quite clear that this default assumption is not sound in general. In particular, if wehave more speci�c information about Tweety, such as the fact that Tweety is a penguin,then we no longer want to draw the conclusion that the probability that Tweety ies isat least :9. Bacchus provides some heuristics for deriving such degrees of belief [Bac90]While this is a very interesting topic to pursue, it seems useful to have a formal model thatallows us to directly capture degrees of belief. Such a formal model can be constructedin a straightforward way using possible worlds, as we now show.The syntax for a logic for reasoning about possible worlds is essentially the same asthe syntax used in the previous section. Starting with a set � of function and predicatesymbols, we form more complicated formulas and terms as before except that insteadof allowing probability terms of the form w~x('), where ~x is some vector of distinctobject variables, we only allow probability terms of the form w('), interpreted as \theprobability of '". Since we are no longer going to put a probability distribution on thedomain, it does not make sense to talk about the probability that a random choice for~x will satisfy '. For example, in the term w(Flies(Tweety)) considered above, it wouldnot really make sense to consider the probability that a randomly chosen x satis�es theproperty that Tweety ies. It does make sense to talk about the probability of ' though:this will be the probability of the set of possible worlds where ' is true. We call theresulting language L2(�); if it includes equality between object terms, we call it L=2 (�).More formally, a type 2 probability structure is a tuple (D;S; �; �), where D is adomain, S is a set of states or possible worlds, for each state s 2 S, �(s) assigns to thepredicate and function symbols in � predicates and functions of the right arity over D,and � is a discrete probability function on S. Note the key di�erence between type 1 andtype 2 probability structures: in type 1 probability structures, the probability is takenover the domain D, while in type 2 probability structures, the probability is taken overS, the set of states. Given a type 2 probability structure M , a state s, and valuation v,we can associate with every object (resp. �eld) term t an element [t](M;s;v) of D (resp.IR), and with every formula ' a truth value, writing (M;s; v) j= ' if the value true isassociated with ' by (M;s; v). Note that we now need the state to provide meanings forthe predicate and function symbols; they might have di�erent meanings in each state.Again, we just give a few clauses of the de�nition here, which should su�ce to indicatethe similarities and di�erences between type 1 and type 2 probability structures:� (M;s; v) j= P (x) i� v(x) 2 �(s)(P )� (M;s; v) j= t1 = t2 i� [t1](M;s;v) = [t2](M;s;v)� (M;s; v) j= 8xo' i� (M;s; v[xo=d]) j= ' for all d 2 D7



� [w(')](M;s;v) = �(fs0 2 S : (M;s0; v) j= 'g).We say M j= ' if (M;s; v) j= ' for all states s in M and all valuations v, and say' is valid with respect to type 2 structures, and write j=2 ', if M j= ' for all type 2probability structures M .As expected, in type 2 probability structures, it is completely consistent for the prob-ability that Tweety ies to be between :9 and :95. Lemma 2.3 does not hold for type2 probability structures. A sentence such as :9 � w(Flies(Tweety)) � :95 is true in astructureM (independent of the state s) precisely if the set of states where Flies(Tweety)is true has probability between :9 and :95. However, there is no straightforward way tocapture statistical information using L2.3Possible extensions: We have made a number of simplifying assumptions in our pre-sentation of type 2 probability structures. We now briey discuss how they might bedropped.1. As in the case of type 1 probability structures, we can allow arbitrary probabilityfunctions, not just discrete ones, by associating with the probability function the�-algebra of subsets of S which forms its domain.2. We have assumed that all functions and predicates are exible, i.e., they may takeon di�erent meanings at each state. We can easily designate some functions andpredicates to be rigid, so that they take on the same meaning at all states.3. We have assumed that there is only one domain. There are a number of ways toextend the model to allow each state to have associated with it a di�erent domain.The situation is analogous to the problem of extending standard �rst-order modallogic to allowing di�erent domains. In particular we have to explain the semanticsof formulas such as 9x(w('(x) = 1=2) (this is known as the problem of quantifyingin). If we take this formula to be true at a state s if, roughly speaking, there issome d in the domain of s such that w('(d) = 1=2), we may have a problem if dis not in the domain of all other states. The interested reader can consult [Gar77]3We remark that there is a sense in which we can translate back and forth between domain-basedprobability and possible-world-based probability. For example, there is an e�ective translation that mapsa formula ' in L=1 to a formula '0 in language L=2 , and a translation that maps a type 1 structure Mto a type 2 structure M 0 such that M j= ' i� M 0 j= '0. Similar mappings exist in the other direction.The key step in the translation from ' to '0 is to replace a probability term such as wx( (x)) in ' bywx( (a)), where a is a fresh constant symbol. Given a type 1 structure M = (D;�; �) over a domainD,we construct a corresponding type 2 structure M 0 = (D;S; �0; �0) over the same domainD, such that foreach d 2 D, there is a nonempty set of states Sd = fs0 : �0(s)(a) = dg such that �0(Sd) = �(d). For thetranslation in the other direction, we replace a predicate P (x1; : : : ; xn) in a L2 formula by a predicateP (x1; : : : ; xn; s), where intuitively, s ranges over states. Thus, the dependence of the predicate P on thestate is explicitly encoded in P �. Further details can be found in [AH94]. Despite the existence of thesetranslations, we would still argue that L1 is not the right language for reasoning about probability overpossible worlds, while L2 is not the right language for reasoning about probability over the domain.8



for a number of approaches to dealing with this problem; all these approaches canbe modi�ed to apply to our situation.4. We have assumed that there is only one probability measure � on the set of states.We may want to allow uncertainty about the probability functions. We can achievethis by associating with each state a (possibly di�erent) probability function onthe set of states (cf. [FH94, Hal91]). Thus a structure would now consist of a tuple(D;S; �; f�s : s 2 Sg); in order to evaluate the value of the (�eld) term w(') in astate s, we use the probability function �s.4 Probabilities on the domain and on possible worldsIn the previous sections we have presented structures to capture two di�erent modesof probabilistic reasoning. We do not want to say that one mode is more \right" thananother; they both have their place. Clearly there might be situations where we want todo both modes of reasoning simultaneously. We consider three examples here.Example 4.1: Consider the statement \the probability that Tweety �les is greaterthan the probability that a randomly chosen bird ies." This can be captured by theformula w(Flies(Tweety))> wx(Flies(x)):Example 4.2: For a more complicated example, consider two statements like \Theprobability that a randomly chosen bird ies is greater than .99" and \The probabilitythat a randomly chosen bird ies is greater than .9." An agent might consider the �rststatement rather unlikely to be true, and so take it to hold with probability less than.2, while he might consider the second statement exceedingly likely to be true, and sotake it to hold with probability greater than .95. We can capture this by combining thesyntax of the previous two sections to get:w(wx(Flies(x) jBird(x))> :99) < :2) ^ w(wx(Flies(x) jBird(x)) > :90) > :95):Example 4.3: The connection between probabilities on the domain and degrees ofbelief is an important one, that needs further investigation. Perhaps the most obviousconnection we can expect to hold between an agent's degree of belief in '(a), for a par-ticular constant a, and the probability that '(x) holds for a randomly chosen individualx is equality, as characterized by the following equation:w('(a)) = wx('(x)): (�)Another connection is provided by what has been called Miller's principle (see [Mil66,Sky80b]), can be viewed as saying that for any real number r0, the conditional probability9



of '(a), given that the probability that a randomly chosen x satis�es ' is r0, is itself r0.Assuming that the real variable r does not appear free in ', we can express (this instanceof) Miller's principle in our notation as8r[w('(a) j (wx('(x)) = r)) = r]:We examine the connection between Miller's principle and (�) after we de�ne our formalsemantics.Given a set � of function and predicate symbols let L3(�) be the language that resultsby allowing probability terms both of the formw~x('), where ~x is a vector of distinct objectvariables, and of the form w('); we take L=3 (�) to be the extension of L3(�) that includesequality between object terms. To give semantics to formulas in L3(�) (resp. L=3 (�)), wewill clearly need probability functions over both the set of states and over the domain.Let a type 3 probability structure be a tuple of the form (D;S; �; �D; �S), where D, S,and � are as for type 2 probability structures, �D is a discrete probability function on Dand �S is a discrete probability function on S. Intuitively, type 3 structures are obtainedby combining type 1 and type 2 structures.Given a type 3 probability structure M , a state s, and valuation v, we can givesemantics to terms and formulas along much the same lines as in type 1 and type 2structures. For example, we have:� [whx1;:::;xni(')](M;s;v) = �nD(f(d1; : : : ; dn) : (M;s; v[x1=d1; : : : ; xn=dn]) j= 'g).� [w(')](M;s;v) = �S(fs0 2 S : (M;s0; v) j= 'g).It is now easy to construct a structureM where the formula in Example 4.2 is satis�ed.We can take Bird to be a rigid designator in M , so that the same domain elements arebirds in all the states of M . On the other hand, Flies will not be rigid. In most of thestates in M (i.e., in a set of states of probability greater than :95), the extension of Flieswill be such that more than 90% of the domain elements that satisfy Bird also satisfyFlies. However, there will only be a few states (i.e., a set of states of probability lessthan :2) where it will be the case that more than 99% of birds y.The assumption that Flies is not rigid is crucial here. Since we have assumed thatin a given type 3 probability structure we have one �xed probability function on thedomain, it is easy to see that if all the predicate and function symbols that appear in 'are rigid, then the truth of a formula such as wx('(x)) = r is independent of the state;it is either true in all states or false in all states.Lemma 4.4: If M is a type 3 structure such that all the predicate and function symbolsappearing in ' are rigid, then(a) for all r with 0 � r � 1, if (M;s; v) j= wx('(x)) = r for some state s in M , then(M;s0; v) j= wx('(x)) = r for all states s0 in M .10



(b) for all r with 0 � r � 1, if (M;s; v) 6j= wx('(x)) = r for some state s in M , then(M;s0; v) 6j= wx('(x)) = r for all states s0 in M .(c) M j= 8r[(w(wx('(x)) = r) = 1) _ (w(wx('(x)) = r) = 0)].Note the analogy between this result and Lemma 2.3.Of course, we can easily extend type 3 structures to allow the probability function onthe domain to be a function on the state. Thus at each state s we would have a (possiblydi�erent) probability function �sD on the domain. When computing the value of a �eldterm such as wx('(x)) at state s, we use the function �sD. Other extensions of type 3structures, along the lines discussed for type 1 and type 2 structures, are possible as well.As we discussed above, it is not clear how to go from statistical information to degreesof belief. One connection is suggested by Miller's Principle, and another is suggested by(�). As the following theorem shows, in type 3 structures as we have de�ned them, thereis a close connection between Miller's principle and (�).Theorem 4.5: IfM is a type 3 structure such that all the predicate and function symbolsin ' are rigid except for the constant symbol a, thenM j= [w('(a)) = wx('(x))] � 8r[w('(a) j (wx('(x)) = r)) = r]:Proof: Suppose that M = (D;S; �; �D; �D) and all predicate and functions symbols in' are rigid in M except for a. For the ) direction, suppose that (M;s; v) j= w('(a)) =wx('(x)) for some state s 2 S and valuation v. We want to show that (M;s; v) j=8r[w('(a) j (wx('(x)) = r)) = r]. Choose a real number r0. There are now two casesto consider. If (M;s; v[r=r0]) j= wx('(x)) = r, then by assumption (M;s; v[r=r0]) j=w('(a)) = r. By Lemma 4.4, we have (M;s0; v[r=r0]) j= wx('(x)) = r for all s0 2 S. Thishas two consequences: (1) (M;s0; v[r=r0]) j= '(a) ^ (wx('(x)) = r) i� (M;s0; v[r=r0]) j='(a) and (2) (M;s0; v[r=r0]) j= w(wx('(x)) = r) = 1. From (1) and the fact that(M;s; v[r=r0]) j= w('(a)) = r, we get (M;s; v[r=r0]) j= w('(a) ^ (wx('(x)) = r)) = r.Unwinding the de�nition of conditional probability, it easily follows that (M;s; v[r=r0]) j=w('(a) j (wx('(x)) = r)) = r. For the second case, suppose that (M;s; v[r=r0]) 6j=wx('(x)) = r. By Lemma 4.4, we have (M;s0; v[r=r0]) 6j= wx('(x)) = r for all s0 2 S.Thus �S(fs0 2 S : (M;s0; v[r=r0]) j= (wx('(x)) = r) ^ '(a))g) = 0. It again easilyfollows that (M;s; v[r=r0]) j= w('(a) j (wx('(x)) = r)) = r. Thus we get (M;s; v) j=8r[w('(a) j (wx('(x)) = r)) = r].For the converse, suppose (M;s; v) j= 8r[w('(a) j (wx('(x)) = r)) = r]. Choose r0such that (M;s; v[r=r0]) j= wx('(x)) = r. By Miller's Principle we have (M;s; v[r=r0]) j=w['(a)^wx('(x)) = r] = r�w[wx('(x)) = r]. By Lemma 4.4, we have (M;s; v[r=r0]) j=w[wx('(x)) = r] = 1. Thus, (M;s; v[r=r0]) j= w('(a)) = r. It follows that (M;s; v[r=r0]) j=w('(a)) = wx('(x)). Since r does not appear free in ' (by assumption), we get(M;s; v) j= w('(a)) = wx('(x)). 11



We have just shown that(M;s; v) j= [w('(a)) = wx('(x))] � 8r[w('(a) j (wx('(x)) = r)) = r]:Since we chose s and v arbitrarily, the theorem follows.While this result does not begin to settle the issue of how to connect statisticalinformation with degrees of belief, it does show that type 3 structures provide a usefulframework in which to discuss the issue.We remark that the idea of there being two types of probability has arisen in theliterature before. The most prominent example is perhaps the work of Carnap [Car50],who talks about probability1 and probability2. Probability2 corresponds to relative fre-quence or statistical information; probability1 corresponds to what Carnap calls degree ofcon�rmation. This is not quite the same as our type 2; degree of con�rmation considersto what extent a body of evidence supports or con�rms a belief. However, there is somecommonality in spirit. Skyrms [Sky80a] talks about �rst- and second-order probabilities,where �rst-order probabilities represent propensities or frequency|essentially statisti-cal information|while second-order probabilities represent degrees of belief. These arecalled �rst- and second-order probabilities since typically one has a degree of belief aboutstatistical information (this is the case in our second example above). Although L3(�)allows arbitrary alternation of the two types of probability, the semantics does supportthe intuition that these really are two fundamentally di�erent types of probability.5 On obtaining complete axiomatizationsIn order to guide (and perhaps help us automate) our reasoning about probabilities, itwould be nice to have a complete deductive system. Unfortunately, results of [AH94]show that in general we will not be able to obtain such a system. We briey review therelevant results here, and then show that we can obtain complete axiomatizations forimportant special cases.5.1 Decidability and undecidability resultsAll the results in this subsection are taken from [AH94]. The �rst result is positive:Theorem 5.1: If � consists only of unary predicates, then the validity problem for L1(�)with respect to type 1 probability structures is decidable.The restrictions made in the previous result (to a language with only unary predicates,without equality between object terms) are both necessary. Once we allow equality inthe language, the validity problem is no longer decidable, even if � is empty. In fact, theset of valid formulas is not even recursively enumerable (r.e.). And a binary predicate in12



� is enough to guarantee that the set of valid formulas is not r.e., even without equalitybetween object terms.Theorem 5.2:1. For all �, the set of L=1 (�) formulas valid with respect to type 1 structures is notr.e.2. If � contains at least one predicate of arity greater than or equal to two, then theset of L1(�) formulas valid with respect to type 1 probability structures is not r.e.Once we move to L2, the situation is even worse. Even with only one unary predicatesin �, the set of valid L2(�) formulas is not r.e. If we have equality, then the set ofvalid formulas is not r.e. as long as � has at least one constant symbol. (Note that') (w(') = 1) is valid if ' contains no nonlogical symbols|that is, ' does not containany function or predicate symbols, other than equality|so we cannot make any nontrivialprobability statements if � is empty.)Theorem 5.3:1. If � contains at least one predicate of arity greater than or equal to one, then theset of L2(�) formulas valid with respect to type 2 probability structures is not r.e.2. If � is nonempty, then the set of L=2 (�) formulas valid with respect to type 2probability structures is not r.e.These results paint a rather discouraging picture as far as complete axiomatizationsgo. If a logic is to have a complete recursive axiomatization, then the set of valid formulasmust be r.e. (we can enumerate them by just carrying out all possible proofs). Thus, forall the cases cited in the previous theorems for which the set of valid formulas is not r.e.,there can be no complete axiomatization.4There is some good news in this bleak picture. In many applications it su�ces torestrict attention to structures of size at most N (i.e., structures whose domain has atmost N elements), some �xed N . In this case, we get decidability.4We remark that in [AH94], the exact degree of undecidability of the di�culty of the validity problemfor all these logics is completely characterized. It turns out to be wildly undecidable, much harder thanthe validity problem for the �rst-order theory of arithmetic. In fact, with just one binary predicate inthe language, the validity problem is harder than that for the �rst-order theory of real analysis, wherewe allow quanti�cation of real numbers as well as over natural numbers! As a consequence, our logics ofprobability are not even decidable relative to the full theory of real analysis. In retrospect, this is perhapsnot surprising. A probability function is a higher-order function on sets, so reasoning about probabilitycauses extra complications over and above reasoning about real numbers and natural numbers. We referthe reader to [AH94] for details. 13



Theorem 5.4: If we restrict to structures of size at most N then, for all �, the validityproblem for L=1 (�) (resp., L=2 (�), L=3 (�)) with respect to type 1 (resp., type 2, type 3)probability structures is decidable.A fortiori, the same result holds if equality is not in the language. We also get decidabilityif we restrict to structures of size exactly N .The restriction to bounded structures is necessary though.Theorem 5.5: For all � (resp., for all nonempty �, for all �) then the set of L=1 (�)(resp., L=2 (�), L=3 (�)) formulas valid with respect to type 1 (resp., type 2, type 3) prob-ability structures of �nite size is not r.e.5.2 An axiom system for probability on the domainAlthough the previous results tell us that we cannot in general get a complete axioma-tization for reasoning about probability, it is still useful to obtain a collection of soundaxioms that lets us carry out a great deal of probabilistic reasoning.In order to carry out our reasoning, we will clearly need axioms for doing �rst-orderreasoning. In order to reason about probabilities, which we take to be real numbers, weneed the theory of real closed �elds. An ordered �eld is a �eld with a linear ordering <.A real closed �eld is an ordered �eld where every positive element has a square root andevery polynomial of odd degree has a root. Tarski showed [Tar51, Sho67] that the theoryof real closed �elds coincides with the theory of the reals (for the �rst-order language withequality and nonlogical symbols +;�;�;0;1). That is, a �rst-order formula involvingthese symbols is true of the reals if and only if it is true in every real closed �eld. Healso showed that the theory of real closed �elds is decidable and has an elegant completeaxiomatization. We incorporate this into our axiomatization too, since the language ofreal closed �elds is a sublanguage of L1(�).Consider the following collection of axioms, which we call AX1.First-order reasoning:PC All instances of a standard complete axiomatization for �rst-order predicate calcu-lus, including axioms for equality if equality is in the language (see, for example,[End72])MP From ' and ')  infer  (modus ponens)Gen From ' infer 8x' (universal generalization)Reasoning about real closed �elds: 14



RCF All instances of a standard complete axiomatization for real closed �elds (see,for example, [Sho67]). The axioms of RCF consist of the standard axioms for�elds (saying that addition and multiplication are commutative and associative,multiplication distributes over addition, 1 is the identity element for multiplication,and so on), axioms that say � is a total linear order, an axiom that says that everypositive number has a square root, and an axiom schema that says that every odddegree polynomial has a root.Reasoning about probabilities over the domain:PD1 8x1 : : :8xn') whx1;:::;xni(') = 1, where hx1; : : : ; xni is a sequence of distinct objectvariablesPD2 w~x(') � 0PD3 w~x(' ^  ) + w~x(' ^ : ) = w~x(')PD4 w~x(') = w~x[xi=z]('[xi=z]), where z is an object variable which does not appear in~x or 'PD5 w~x;~y(' ^  ) = w~x(')� w~y( ), if none of the free variables of ' is contained in ~y,none of the free variables of  is contained in ~x, and ~x and ~y are disjointRPD1 From ' �  infer w~x(') = w~x( )Note that PD4 allows us to rename bound variables, while PD5 lets us do reasoningbased on the independence of the random variables. AX1 is a straightforward extensionof the axiom system used in [FHM90] for reasoning about the propositional case. Notsurprisingly, it is also quite similar to the collection of axioms given in [Bac90]. Bacchusdoes not use the axioms for real closed �elds; instead he uses the axioms for ordered�elds, since he allows his probability functions to take values in arbitrary ordered �elds.His axioms for reasoning about probabilities are essentially the same as ours (indeed,axioms PD1, PD2, and PD4 are also used by Bacchus, while PD5 is a weaker version ofone of his axioms).It is easy to check that these axioms are sound with respect to type 1 probabilitystructures: if AX1 ` ' then M j= ' for every axiom '.Theorem 5.6: AX1 is sound with respect to type 1 probability structures.Proof: It su�ces to show that every instance of each axiom is valid and that the inferencerules preserve validity. The only nontrivial case is axiom PD5.Suppose that none of the free variables in ' is contained in ~y and none of the freevariables in  is contained in ~x, and ~x, ~y are disjoint sequences of variables. Wecan assume without loss of generality that ~x = hx1; : : : ; xki and ~y = hxk+1; : : : ; xni.15



Let A = f(d1; : : : ; dn) : (M;v[x1=d1; : : : ; xn=dn]) j= ' ^  g, let B = f(d1; : : : ; dk) :(M;v[x1=d1; : : : ; xk=dk]) j= 'g, and letC = f(dk+1; : : : ; dn) : (M;v[xk+1=dk+1; : : : ; xn=dn]) j= g. By de�nition we have [whx1;:::;xni(' ^  )](M;v) = �n(A);[whx1;:::;xki(')](M;v) = �k(B);[whxk+1;:::;xni( )](M;v) = �n�k(C):From Proposition 2.1, it follows that (M;v[x1=d1; : : : ; xn=dn]) j= '^ i� (M;v[x1=d1; : : : ; xk=dk]) j=' and (M;v[xk+1=dk+1; : : : ; xn=dn]) j=  . Thus, A = B � C. By the de�nition of prod-uct measure, it follows that �n(A) = �k(B) � �n�k(C), and hence that w~x;~y(' ^  ) =w~x(')� w~y( ), as desired. Thus every instance of PD5 is valid.By the results of Subsection 5.1, we cannot hope that AX1 (or any other axiomsystem!) will be complete for L1(�) once � has a predicate of arity at least two, nor canit be complete for L=1 . However, if we restrict � to consist only of unary predicates anddo not have equality between object terms in the language, then it is complete.Theorem 5.7: If � consists only of unary predicates, then AX1 is a sound and completeaxiomatization for the language L1(�) with respect to type 1 probability structures.Proof: Soundness follows from Theorem 5.6. For completeness, suppose ' is valid. Weshow that in the appendix that it must be the case that there is a formula '1 ^ '2such that (1) AX1 ` ('1 ^ '2) ) ' (2) '1 is a pure �rst-order formula over � (andso is formed from the function and predicate symbols in � and object variables, using�rst-order quanti�cation), '2 is a formula in the language of real closed �elds (and sois formed from 0;1;+;�; >;=, and �eld variables, using �rst-order quanti�cation over�eld variables), and (3) both '1 and '2 are valid. Since '1 is a valid pure �rst-orderformula, we have fPC;MPg ` '1; since '2 is a valid formula in the language of realclosed �elds, fRCF;MPg ` '2. From (1), it follows that AX1 ` '. The details of theproof can be found in the appendix. We remark that this proof gives us an immediateproof of Theorem 5.1, since, as we mentioned above, the theory of real closed �elds isknown to be decidable, as is �rst-order logic with only unary predicates [DG79].Although the restriction to only unary predicates is clearly a severe one, a great dealof interesting probabilistic reasoning can be done in this language. In particular, ourexamples with ying birds can can be carried out in this language. This result suggeststhat, although it is not complete, AX1 is rich enough to let us carry out a great deal ofprobabilistic reasoning. The next result reinforces this impression.Let AXN1 be AX1 together with the following axiom, which says that the domain hassize at most N :FINN 9x1 : : : xN8y(y = x1 _ : : : _ y = xN )16



Theorem 5.8: AXN1 is a sound and complete axiomatization for L=1 (�) with respect totype 1 probability structures of size at most N .Proof: See the appendix.We can of course modify axiom FINN to say that the domain has exactly N elements,and get a complete axiomatization with respect to structures of size exactly N .5.3 An axiom system for probability on possible worldsIn order to reason about type 2 structures, we must replace the axioms for reasoningabout probabilities over the domain with axioms for reasoning about probabilities overpossible worlds. Consider the following axioms:Reasoning about probabilities over possible worlds:PW1 ') (w(') = 1), if no function and predicate symbols in � appear in ' except inthe argument  of a probability term of the form w( )PW2 w(') � 0PW3 w(' ^  ) + w(' ^ : ) = w(')RPW1 From ' �  infer w(') = w( )PW2, PW3, and RPW1 are the result of replacing w~x in PD2, PD3, and RPD1,respectively, by w. PW1 is the analogue of PD1. Note that we cannot get a sound axiomsimply by replacing the w~x in PD1 by w. For example, it might very well be the casethat 8xP (x) holds at some possible worlds and not at others, so that, for example, wemay have 8xP (x)^ w(P (x)) = 1=2 holding at some possible world. On the other hand,since we use the same probability function to evaluate probability terms at all possibleworlds, it is clear that if ' is a formula all of whose function and predicate symbolsappear only in the arguments of probability terms (for example, ' might be a formulasuch as x = y ) (w(P (x) ^ Q(y)) = 1=2)), then the truth of ' is independent of thepossible world. Thus, if ' is true at some possible world, then it must be true at all ofthem. The validity of all instances of PW1 in type 2 structures follows.Let AX2 be the system that results by combining these axioms for reasoning aboutprobabilities in possible worlds together with the axioms and rules of inference for �rst-order reasoning and for reasoning about real closed �elds, with one small caveat. Thestandard axiomatization for �rst-order logic (see, for example [End72] has the substitu-tion axiom 8x') '[x=t], where t is a term that is substitutable for x. We do not givea careful de�nition for substitutable here (one can be found in [End72]); intuitively, wedo not want to substitute t if t contains a variable y which will end up in the scopeof a quanti�er. Here we have to extend the de�nition of substitutable even further17



so as not to allow the substitution of terms which contain non-rigid function and con-stant symbols into the scope of the w. To understand why, suppose we have a type 2structure M consisting of two states, say s1 and s2, each of which has probability 1=2,and exactly two domain elements, say d1 and d2. Suppose M;s1 j= P (d1) ^ :P (d2)while M;s2 j= P (d2) ^ :P (d1). Finally, let a be a constant symbol such that in s1,the interpretation of a is d2 (i.e., �(s1)(a) = d2) and in s1, the interpretation of a isd1. Now it is easy to see that M;s1 j= 8x(w(P (x)) = 1=2) (informally, this is becauseboth P (d1) and P (d2) hold at 1=2 of the states), while M;s1 j= w(P (a)) = 0. Thus,8x(w(P (x)) = 1=2) ) (w(P (a)) = 1=2) is not valid in M . The problem here is that a isnot a rigid designator. Once we restrict substitution appropriately, as described above,the problem disappears.With this restriction, it is easy to showTheorem 5.9: AX2 is sound with respect to type 2 probability structures.While AX2 is sound with respect to type 2 probability structures, the results ofSubsection 5.1 tell us that it cannot be complete with respect to L2(�) (resp. L=2 (�)) forany nontrivial �. However, we can get an analogue to Theorem 5.8. Let AXN2 be AX2together with the axiom FINN .Theorem 5.10: AXN2 is a sound and complete axiomatization for L=2 (�) with respectto type 2 probability structures of size at most N .Proof: See the appendix.5.4 A combined axiom systemOf course, we can combine AX1 and AX2 to get AX3, which is a sound axiomatizationfor L3 with respect to type 3 structures. Again, we cannot hope to prove completenessin general, but, as before, we can prove that AXN3 is complete with respect to type 3structures of size at most N . We omit further details here.6 ConclusionsWe have provided natural semantics to capture two di�erent kinds of probabilistic rea-soning: in one, the probability is on the domain, and in the other, the probability is ona set of possible worlds. We also showed how these two modes of reasoning could becombined in a straightforward way.We then considered the problem of providing sound and complete axioms to charac-terize �rst-order reasoning about probability. While complexity results of [AH94] show18



that in general there cannot be a complete axiomatization, we did provide sound ax-iom systems that we showed were rich enough to enable us to carry out a great deal ofinteresting probabilistic reasoning. In particular, together with an axiom guaranteeing�niteness, our axiom systems were shown to be complete for domains of bounded size.Our results form an interesting contrast to those of Bacchus [Bac90]. Bacchus givesa complete axiomatization for his language (which, as we remarked above, is essentiallythe same as our language L1(�) for reasoning about probabilities on the domain), thusshowing that the set of formulas in his language that are valid with respect to the classof domains he considers is r.e. The reason for this di�erence is that Bacchus allowsnonstandard probability functions, which are only required to be �nitely additive andcan take values in arbitrary ordered �elds. Facts about the real numbers (such as thestatement that 2 has a square root), are not valid in all the domains considered byBacchus. It is not clear how much we lose by moving from the real numbers to arbitraryordered �elds. Our technical results, as well as the examples of Bacchus, suggest that theloss may not be too serious. It is worth noting that the move to nonstandard probabilityfunctions is the key reason that a complete axiomatization is obtainable. In [AH94] itis shown that all the undecidability results mentioned above can be proved even if weonly require the probability function to be �nitely additive, and restrict probabilities totaking only rational values.5The situation here is somewhat analogous to that of axiomatizing arithmetic. G�odel'sfamous incompleteness result shows that the �rst-order theory of arithmetic (for thelanguage with equality and nonlogical symbols +;�;0;1, where the domain is the naturalnumbers) does not have a complete axiomatization. The axioms of Peano Arithmetic aresound for arithmetic, but not complete. They are complete with respect to a larger classof domains (including so-called nonstandard models). Our results show that reasoningabout probabilities is even harder than reasoning about arithmetic, and so cannot havea complete axiomatization. However, Bacchus' axioms are complete with respect to alarger class of structures, where probabilities can assume nonstandard values. And justas the axioms of Peano Arithmetic are su�ciently rich to let us carry out a great dealof interesting arithmetic reasoning, so the axioms that we have provided (or the axiomsof [Bac90]) are su�ciently rich to enable us to carry out a great deal of interestingprobabilistic reasoning.5Bacchus claims [Bac90] that it is impossible to have a complete proof theory for countably additiveprobability functions. Although, as our results show, his claim is essentially correct (at least, as long asthe language contains one binary predicate symbol or equality), the reason that he gives for this claim,namely, that the corresponding logic is not compact, is not correct. For example, even if � = fPg, whereP is a unary predicate, the logic is not compact. (Consider the set fwx(P (x)) 6= 0, wx(P (x)) < 1=2,wx(P (x)) < 1=3, wx(P (x)) � 1=4, : : :g. Any �nite subset of these formulas is satis�able, but the full setis not.) However, by Theorem 5.7, the logic in this case has a complete axiomatization.19



Appendix: Proofs of Theorems 5.7, 5.8, and 5.10Before proving the theorems, we �rst show that a number of facts about probability|facts that we use repeatedly in our proofs|are provable in AX1.We say two formulas ' and  are mutually exclusive if PC ` ' ) : . A set'1; : : : ; 'k of formulas is mutually exclusive if each pair 'i; 'j, for i 6= j, is mutuallyexclusive.Lemma 6.1:1. If '1; : : : ; 'k are mutually exclusive, thenAX1 ` w~x('1 _ : : : _ 'k) = w~x('1) + � � �+ w~x('k):2. If AX1 ` ', then AX1 ` w~x(') = 1.3. AX1 ` w~x(') + w~x(:') = 1.4. AX1 ` w~x(' ^  ) � w~x(').5. AX1 ` (w~x( ) = 1) ) (w~x(' ^  ) = w~x(')).6. AX1 ` (w~x( ) = 1) ) (w~x(' ^ : ) = 0).7. AX1 ` (w~x(' �  ) = 1) ) (w~x(') = w~x( )).8. If none of the variables free in ' are contained in ~y, and the variables in ~x and ~yare distinct, then AX1 ` w~x;~y(') = w~x('):Proof: For part (1), let  = '1 _ : : : _ 'k. We proceed by induction on k, the numberof disjuncts. First observe that using PD3 we get thatAX1 ` w~x( ) = w~x( ^ '1) + w~x( ^ :'1):Since the 'i's are mutually exclusive, we get that bothPC ` ( ^ '1) � '1; andPC ` ( ^ :'1) � ('2 _ : : : _ 'k):Now using RPD1 and RCF, we get thatAX1 ` w~x( ) = w~x('1) + w~x('2 _ : : : _ 'k):We now continue by induction. 20



For part (2), suppose ~x = hx1; : : : ; xni. By applying universal generalization (the ruleGen), we have that AX1 ` 8x1 : : : xn'. The result now follows from PD1.For part (3), since PC ` (' _ :'), from part (1) we get AX1 ` w~x(' _ :') = 1.Since the formulas ' and :' are mutually exclusive, the result now follows using part(1) and straightforward reasoning about equalities.For part (4), observe that by PD3, we have AX1 ` w~x(') = w~x('^ ) +w~x('^: ).By PD2, we have AX1 ` w~x(' ^ : ) � 0. The result follows using straightforwardreasoning about inequalities (which can be done using the axioms of RCF).We prove parts (5) and (6) simultaneously. Observe that from part (3) we haveAX1 ` (w~x( ) = 1) ) (w~x(: ) = 0): (1)From part (4), we haveAX1 ` (w~x(: ) = 0) ) (w~x(' ^ : ) = 0): (2)Part (6) now follows from (1) and (2). For part (5), we need only put this together withthe following instance of PD3:AX1 ` w~x(') = w~x(' ^  ) + w~x(' ^ : ):In order to prove part (7), �rst observe that, by part (5), we getAX1 ` w~x(' �  ) = 1) w~x((' �  ) ^ ') = w~x(') andAX1 ` w~x(' �  ) = 1) w~x((' �  ) ^  ) = w~x( ):From the de�nition of �, the formula (' �  ) is an abbreviation for ('^ )_ (:'^: ).Thus, we get PC ` ((' �  ) ^ ') � (' ^  ); andPC ` ((' �  ) ^  ) � (' ^  ):By applying RPD1, we getAX1 ` w~x(' �  ) = 1) w~x(' ^  ) = w~x(') andAX1 ` w~x(' �  ) = 1) w~x(' ^  ) = w~x( ):Part (7) now follows.For part (8), given ', let  be any sentence (formula with no free variables) such thatAX1 `  . (For example, if the free variables of ' are contained in ~x, we can take  tobe w~x(') � 0.) Observe that PC ` ' � (' ^  ). Thus, by RPD1, we getAX1 ` w~x;~y(') = w~x;~y(' ^  ):21



Applying PD5, we get AX1 ` w~x;~y(' ^  ) = w~x(')� w~y( ):By part (2), we know AX1 ` w~y( ) = 1, so part (8) follows.We are now ready to prove Theorem 5.7. Recall it says that AX1 is sound andcomplete for the language L1(�), if � contains only unary predicates.Proof of Theorem 5.7: We have already dealt with soundess. In order to provecompleteness, suppose j=1 '. We want to that ' is provable in AX1. The proof issomewhat technical; we just sketch the highlights here, leaving details to the reader.We �rst need to develop some machinery. Given a �nite set of formulas  1; : : : ;  k,de�ne an atom over  1; : : : ;  k to be a formula of the form  01 ^ : : : ^  0k, where each  0iis either  i or : i. Note that the atoms are mutually exclusive. Moreover, note that i is provably equivalent to the disjunction of the 2k�1 atoms which have  i as one oftheir conjuncts. Thus, given any formula ' of the form ('1 ^  1) _ : : : _ ('k ^  k), byusing propositional reasoning (in particular, by using only axioms of the form (p ^ (q _r)) � ((p ^ q) _ (p ^ r)), we can rewrite ' to a provably equivalent formula of the form(�1 ^ �1) _ : : : _ (�m ^ �m), where the �j's are atoms over  1; : : : ;  k (since there are 2kdistinct atoms, we must have m � 2k) and the �j's are disjunctions of some subset of'i's.De�ne a pure �rst-order formula over � to be one formed from the function andpredicate symbols in � and object variables, using �rst-order quanti�cation over objectvariables; de�ne a formula in the language of real closed �elds to be one formed from0;1;+;�; >;=, and �eld variables, using �rst-order quanti�cation over �eld variables;�nally, a formula in the language of real closed �elds augmented with probability termsis a formula in the language of real closed �elds where we allow in addition probabilityterms of the form w~x( ).Ultimately, we want to reduce ' to a conjunction of a pure �rst-order formula anda formula in the language of real closed �elds. We need to �rst get ' into a certaincanonical form in order to accomplish this goal.Claim 1: We can e�ectively �nd a formula '� provably equivalent to ' such that '� isin the following canonical form:('1 ^  1) _ : : : _ ('k ^  k);where1. 'i, i = 1; : : : ; k, is a pure �rst-order formula over �,2.  i, i = 1; : : : ; k, is a formula in the language of real closed �elds augmented byprobability formulas, 22



3. there is a �xed object variable x0 such that for every probability term w~x( ) thatoccurs in '�, we have that ~x = hx0i and that  is a conjunction of the formQ1(x0) ^ : : : ^Qn(x0), where each Qi is either Pi or :Pi for some unary predicatePi in �,4. the formulas  1; : : : ;  k are mutually exclusive,5. for every pure �rst-order subformula of '� of the form 8xo'0, the formula '0 is aBoolean combination of atomic formulas of the form P (xo) (so that, in particular,8xo'0 is a closed formula).Moreover, the same variables are free in ' and '�.Proof: We prove that ' can be simpli�ed in this way by induction on the structure of'. If ' is an atomic formula of the form P (t1; : : : ; tn) then the result is immediate. Theresult is also immediate if ' is an atomic formula of the form t1 > t2 or t1 = t2, wheret1 and t2 are �eld terms, neither of which contain probability terms. If ' is of the form'0 ^'00 or :'0, we can get the result by straightforward propositional reasoning, formingthe appropriate atoms to get mutual exclusion among the  i's. Thus, there remain onlythree cases: (1) ' is of the form 8xo'0, (2) ' is of the form 8xf'0, (3) ' contains aprobability term of the form w~x('0).In the �rst case, we can assume without loss of generality that '0 is in canonical form,and so is of the form ('1 ^  1) _ : : : _ ('k ^  k). Since the variable xo does not occurfree in any of the formulas  1; : : : ;  k, by straightforward �rst-order reasoning (using thefact that the  i's are mutually exclusive) we can show thatPC ` 8xo'0 � ( k_i=1( i ^ 8xo'i)):Now we want to rewrite 8xo'i so that clause 5 in Claim 1 holds, namely, so that allthat remains in the scope of 8xo is a Boolean combination of atomic formulas of theform P (xo). By clause 5 of the induction hypothesis, we can assume that 'i is a Booleancombination of atomic formulas of the form P (xo) and formulas where xo does not appearfree. Using the same ideas as discussed above in the context of atoms, we can show that'i is provably equivalent to a formula of the form (�1 _ �1) ^ : : : ^ (�m _ �m), whereeach �i is a Boolean combination of formulas of the form P (xo), the variable xo does notappear free in any of the �i's, and the �i's are mutually exclusive. We can now proceedjust as above to pull the �i's out of the scope of the 8xo. Namely, we can show thatPC ` 8xo'i � ( m_i=1(�i ^ 8xo�i)):This completes the proof of the �rst case.The proof of the second case is similar (but easier), and is left to the reader.23



Now consider the third case, where we have a term of the form w~x('0). By theinduction hypothesis and rule RPD1, we can again assume without loss of generalitythat '0 is in canonical form; i.e., that '0 is in the form ('1 ^  1) _ : : :_ ('k ^  k), wherethe  i's are mutually exclusive. By part (1) of Lemma 6.1, we haveAX1 ` w~x(') = w~x('1 ^  1) + � � �+ w~x('k ^  k): (3)By (3), we can restrict attention to terms of the form w~x('fo^'rcf ), where 'fo is a pure�rst-order formula and 'rcf is a formula in the language of real closed �elds augmentedby probability terms.We now proceed very much along the lines of the �rst case. Suppose ~x = hx1; : : : ; xni.By the induction hypothesis, the only variables free in 'rcf are �eld variables (since thereare no free object variables in the probability terms, by clause 3 of the claim), so we getthat PC ` 'rcf ) 8x1 : : : xn'rcf . Using PD1, we get AX1 ` 'rcf ) (w~x('rcf ) = 1). Byapplying parts (5) and (6) of Lemma 6.1, we getAX1 ` 'rcf ) (w~x('fo ^ 'rcf ) = w~x('fo)); and (4)AX1 ` :'rcf ) (w~x('fo ^ 'rcf) = 0): (5)By ordinary propositional reasoning we can show thatPC ` ' � (' ^ 'rcf ) _ (' ^ :'rcf ):By standard �rst-order reasoning about equalities, thanks to (4), we can replace alloccurrences of w~x('fo ^ 'rcf ) in ' ^ 'rcf by w~x('fo), and thanks to (5), we can replaceall occurrences of w~x('fo ^ 'rcf ) in ' ^ :'rcf by 0.Thus we have transformed ' to a provably equivalent formula where the argument ina probability term is a pure �rst-order formula; i.e., we can restrict attention to termsof the form w~x('fo) where 'fo is a pure �rst-order formula. We are still not donewith this case; we must prove clause 3 of Claim 1. Now, using clause 1 of Claim 1and standard �rst-order reasoning, 'fo is provably equivalent to a formula of the form(�1 ^ �1) _ : : : _ (�k ^ �k), where each �i is the conjunction of atomic formulas of theform P (y) or :P (y), where y is one of the variables appearing in ~x, none of the variablesvariables in ~x appears free in �i, and the �i's are mutually exclusive. Using part (1) ofLemma 6.1 again and the fact that the �i's are mutually exclusive, we can show thatAX1 ` w~x('fo) = w~x(�1 ^ �1) + � � �+ w~x(�k ^ �k):Thus, we can restrict attention to a term of the form w~x(�i ^ �i), where none of thevariables in ~x appears free in �i. Using analogues to (4) and (5), we pull the �i's out ofthe scope of w~x, just as we pulled 'rcf out of the scope of w~x('fo^'rcf ). This means wecan reduce to considering terms of the form w~x(�i), where �i is a conjunction of atomicformulas of the form P (y) or :P (y), and y is one of the variables in ~x. We can then apply24



PD5 (and part (8) of Lemma 6.1) repeatedly to reduce to the case where the sequence ~xin the subscript consists of a single variable. For example, using PD5, we can showAX1 ` whx;yi(P (x) ^ :Q(y)) = wx(P (x))� wy(:Q(y)):Finally, by applying PD4, we can reduce to the case that the variable is the same for allprobability terms. This proves clause 3 of Claim 1.In order to complete the proof of Claim 1, we need only observe that the transfor-mations required to get a formula ' into the canonical form required by Claim 1 are alle�ective. Moreover, they do not introduce any new variables, so that the same variablesare free in ' and '�.Claim 2: Given ', we can e�ectively �nd a formula '0 ^  0 such that1. '0 is a pure �rst-order formula,2.  0 is a formula in the language of real closed �elds,3. AX1 ` ('0 ^  0) ) ',4. ' is valid i� '0 ^  0 is valid.Proof: We can assume without loss of generality that ' is in the canonical form de-scribed in Claim 1. Let P1; : : : ; Pn be the atomic formulas that appear in the argumentsof probability terms in ', and let x0 be the �xed object variable that appears in the prob-ability terms. Consider the 2n atoms over P1(x0); : : : ; Pn(x0); call them �1; : : : ; �2n. Aswe have already observed, we can replace a probability term whose argument is a Booleancombination of P1(x0); : : : ; Pn(x0) by a sum of probability terms whose arguments are(disjoint) atoms. Thus, ' is provably equivalent to a formula where all the probabilityterms are of the form wx0(�i). Without loss of generality, we will assume that ' is in thisform to start with. Since the �i's are mutually exclusive and their disjunction is provable,using parts (1) and (2) of Lemma 6.1, we can show AX1 ` wx0(�1) + � � �+wx0(�2n) = 1.We now show that we can replace these probability terms by variables, thus completelygetting rid of probability terms from the formula. Let y1; : : : ; y2n be fresh �eld variables,not appearing in '; we think of yi as representing wx0(�i). Let '~y be the result ofreplacing each probability term wx0(�i) that appears in ' by yi. Let '00 be the universalclosure6 of the formula8y1 : : : y2n(((y1 + � � � + y2n = 1) ^ ( 2n̂i=1 yi � 0)) ) '~y):6Recall that the universal closure of a formula � is the result of universally quantifying the freevariables in �. Thus, if the free variables in � are z1; : : : ; zk, then the universal closure of � is 8z1 : : : zk�.Note that the universal closure of a formula is guaranteed to be a closed formula.25



Intuitively, '00 says that ' holds for all ways of assigning probability to the 2n atoms�1; : : : ; �2n (as long as the probabilities are positive and sum to 1). Clearly PC ` '00 ) ',since if we instantiate the yi's in '00 with wx(�i), as we observed above, wx0(�1) + � � �+wx0(�2n) = 1 is provable, as is (by PD2) wx(�i) � 0. Moreover, if ' is valid, then '00 isvalid. This follows from the observation that for every choice of values of the yi's, withy1 + � � �+ y2n = 1 and yi � 0, i = 1; : : : ; 2n, it is possible to de�ne a probability function� on the domain such that wx(�i) = yi. Clearly it is also the case that if '00 is valid, thenso is ', since '00 ) ' is provable.Observe that the formula '00 has no occurrences of probability terms. By using Claim1, we can e�ectively �nd a formula '000 provably equivalent to '00 such that '000 is of theform ('1 ^  1) _ : : : _ ('k ^  k), where each 'i is a pure �rst-order formula and each i is a formula in the language of real closed �elds (there are no probability terms inthe  i's since there were none in '00) and the  i's are mutually exclusive. Moreover,each 'i and  i is a closed formula, since '00 is. By the arguments above, we know thatAX1 ` '000 ) '. It immediately follows that AX1 ` ('i ^  i) ) ' for each disjunct'i ^  i of '.Since '00 is equivalent to '000, and we have already shown that ' is valid if '00 is valid,it follows that ' is valid i� '000 is valid. We now show that if '000 is valid i� 'i ^  i isvalid for some i 2 f1; : : : ; kg. Clearly if 'i ^  i is valid, then so is '000. For the converse,suppose '000 is valid. By the result of Tarski mentioned above, we know that a formulain the language of real closed �elds is valid i� it is true of the reals. Since the  i's aremutually exclusive, at most one can be true of the reals. We cannot have all the  i'sbeing false of the reals, for then '000 could not be valid. Thus, exactly one of the  i's mustbe true of the reals, say  i0. It is now easy to see that 'i0 must be valid (since if thereis some �rst-order structure where :'i0 is not satis�able in some �rst-order structure,then :'000 is also satis�able in that structure augmented by the reals). We can now takethe '0 and  0 required to prove the claim to be 'i0 and  i0. From the decidability of thetheory of real closed �elds, it follows that we can e�ectively �nd the required 'i0 and  i0.The theorem now follows quickly from Claim 2. Given a valid formula ', we simplyconstruct the '0 and  0 guaranteed to exist by Claim 2. Since '0 is valid, we havePC ` '0; since  0 is valid, we have RCF `  0. Thus AX1 ` '0 ^  0. From Claim 2, wenow get AX1 ` '.We next want to prove Theorem 5.8; recall that this theorem says that AXN1 is soundand complete for L=1 (�) with respect to the domains of size at most N . As we shallsee, many of the ideas in the proof of Theorem 5.7 will reappear in the proof of thistheorem. For simplicity, we do this proof (and the following proof of Theorem 5.10)under the assumption that � contains no function symbols, although it may containarbitrary predicate symbols. (Since we can always replace a k-ary function symbol witha (k + 1)-ary predicate symbol, this assumption really entails no loss of generality.) Inparticular, this assumption implies that in an atomic formula of the form t1 = t2, t1 and26



t2 are either both �eld terms or both object variables.Proof of Theorem 5.8: Clearly AXN1 is sound. To prove completeness, suppose 'is valid with respect to type 1 structures of size at most N . Let Exactly(M) be theformula that says that there are exactly M elements in the domain. More formally, letExactly0(z1; : : : ; zM) be the formula( ^i;j=1;:::;M; i6=j(zi 6= zj)) ^ 8y(y = z1 _ : : : _ y = zM );which says that the zi's represent the M di�erent domain elements, and let Exactly(M)be the formula 9z1 : : : zMExactly0(z1; : : : ; zM). It is easy to see thatfPC;MP;FINNg ` ' � ( N̂M=1(Exactly(M) ) ')):Thus, each of the formulas Exactly(M) ) ' is valid, and in order to show that AXN1 ` ',it su�ces to show, for M = 1; : : : ; N , thatAXN1 ` Exactly(M) ) ': (6)Note that we can assume without loss of generality that the variables z1; : : : ; zM inExactly0(z1; : : : ; zM) do not appear free in '. Now using standard �rst-order reasoningand the fact that z1; : : : ; zM do not appear free in ', we getPC ` 8z1 : : : zM(Exactly0(z1; : : : ; zM) ) ') � (9z1 : : : zMExactly0(z1; : : : ; zM) ) '):Since, by de�nition, 9z1 : : : zMExactly0(z1; : : : ; zM) is just Exactly(M), the validity ofExactly(M) ) ' implies the validity of Exactly0(z1; : : : ; zM) ) ', and (given the ruleGen), in order to prove (6) it su�ces to proveAX1 ` Exactly0(z1; : : : ; zM) ) ': (7)We prove (7) using techniques similar to those used in Theorem 5.7. Again, the �rststep is to reduce ' to a certain canonical form. The following claim is in fact almostidentical to Claim 1 in Theorem 5.7, the major di�erence coming in the details of thethird clause and the fact that we no longer require an analogue to the �fth clause ofClaim 1.Claim 3: We can e�ectively �nd a formula '� such that AX1 ` Exactly0(z1; : : : ; zM) )(' � '�), and '� is in the following canonical form:('1 ^  1) _ : : : _ ('k ^  k);where1. 'i, i = 1; : : : ; k, is a pure �rst-order formula over �,27



2.  i, i = 1; : : : ; k, is a formula in the language of real closed �elds augmented byprobability formulas,3. there is a �xed object variable x0 such that for every probability term w~x( ) thatoccurs in '�, we have that ~x = hx0i and that  is a formula of the form x0 = zj,where zj is one of the M free variables in Exactly0(z1; : : : ; zM),4. the formulas  1; : : : ;  k are mutually exclusive.Moreover, a variable is free in '� i� it is free in ' or it is one of z1; : : : ; zM .Proof: Again, we proceed by induction on the structure of ', and again, there are threenontrivial cases: (1) ' is of the form 8xo'0, (2) ' is of the form 8xf'0, (3) ' contains aterm of the form w~x('0).We can deal with a formula of the form 8xo'0 just as in the corresponding part of theproof of Claim 1; indeed, since we no longer have to deal with an analogue of clause (5),we don't have to work so hard. Dealing with a formula of the form 8xf'0 is similarlystraightforward.Now consider the third case, where ' contains a term of the form w~x('0). By theinduction hypothesis and rule RPD1, we can assume without loss of generality that '0 isin canonical form; i.e., that '0 is in the form ('1^ 1)_ : : :_ ('k^ k), where the  i's aremutually exclusive. Moreover, none of the variables that appear free in the  i's appearfree in ~x (since, by clause (3) in the claim, it follows that the only free object variablesthat can appear in probability terms in  i are in fz1; : : : ; zMg). Thus, just as in the proofof Claim 1, we can reduce to the case that the argument in the probability term is a pure�rst-order formula; i.e., we can restrict attention to terms of the form w~x('0) where '0 isa pure �rst-order formula.To get the idea of what we are going to do next, suppose '0 is the atomic formulaP (y1; y2). Further suppose that P (z1; z1) and P (z1; z3) hold, and that these are the onlydomain values for which P holds. Thus P (y1; y2) is true i� (y1 = z1 ^ y2 = z3) _ (y1 =z1^y2 = z3). It then follows that w~x('0) � w~x(y1 = z1^y1 = z1)+w~x(y1 = z1^y1 = z3).Thus, we have replaced a probability term by one whose arguments are of the formyi = zj. This can be done in general.Suppose that the free variables in '0 are y1; : : : ; ym. De�ne an (M;m)-sequence to beone of the form hi1; : : : ; imi, where 1 � ij � M (note that the ij's are not necessarilydistinct). There are clearly Mm such (M;m)-sequences. If J is the (M;m)-sequencehi1; : : : ; imi, de�ne Eq(~y; J) to be an abbreviation for the formulay1 = zi1 ^ : : : ^ ym = zim:Finally, if J is a set of (M;m)-sequences, let Eq(~y;J ) be an abbreviation for the formulaWJ2J Eq(~y; J). We can think of the zj's in Exactly0(z1; : : : ; zM) as describing the elementsof the domain. Then the formula Eq(~y;J ) holds exactly if the variables in ~y take on oneof the values speci�ed by a sequence in J . 28



Now in every �rst-order structure, there is some set of domain values for which theformula '0 holds. For each (M;m)-sequence J = hi1; : : : ; imi, let '0J be an abbreviationfor the formula '0[y1=zi1 ; : : : ; ym=zim ]. Let SEQ(M;m) be the set of all subsets of (M;m)-sequences. For each J 2 SEQ(M;m), let '0J be an abbreviation for(Ĵ2J '0J) ^ (Ĵ =2J :'0J ):Thus, '0J holds if '0 is true precisely of the domain elements described by J . It is easyto see that PC ` '0J � 8x1 : : : xn('0 � Eq(~y;J )): (8)Now in every �rst-order structure, there is some set of domain values for which theformula '0 holds. Thus, it is easy to see thatPC ` Exactly0(z1; : : : ; zM) ) ( _J2SEQ(M;m)'0J ):Thus we get PC ` Exactly0(z1; : : : ; zM) ) (' � ( _J2SEQ(M;m)' ^ '0J )): (9)Suppose that ~x (the subscript in the probability termw~x('0)) is the sequence hx1; : : : ; xni.(Note that some of the xi's and yj's that appear in '0J may be identical.) From PD1 and(8), we get AX1 ` '0J ) w~x('0 � Eq(~y;J )) = 1: (10)Using part (7) of Lemma 6.1, we getAX1 ` (w~x('0 � Eq(~y;J )) = 1) ) (w~x('0) = w~x(Eq(~y;J ))): (11)Let 'J be the result of replacing all terms of the form w~x('0) in ' by w~x(Eq(~y;J )).From (8), (10), and (11), it easily follows thatAX1 ` (' ^ '0J ) � ('J ^ '0J ): (12)Thus, from (9) and (12), we getPC ` Exactly0(z1; : : : ; zM) ) (' � ( _J2SEQ(M;m)'J ^ '0J )):Now we are almost done. The argument above says that we can replace all termsw~x('0) in ' by probability terms whose argument is of the form Eq(~y;J ). Now Eq(~y;J )is an abbreviation for WJ2J Eq(~y; J); moreover, the disjuncts are mutually exclusive,since the zi's represent distinct domain elements. Thus, by part (1) of Lemma 6.1, wehave w~x(Eq(~y;J )) = XJ2J w~x(Eq(~y; J)):29



Thus, we can reduce consideration to probability terms whose arguments are of the formy1 = zi1 ^ : : : ^ ym = zim. Since none of the zj's appear in ~x, by repeated applicationsof PD5 (and part (8) of Lemma 6.1), we can reduce to the case where the sequence ~x inthe subscript consists of a single variable, which by PD4 we can rename to x0, and theargument of the probability term is a single conjunct of the form y = zj.To summarize, our arguments show that ' is equivalent to a formula '0 where allthe probability terms are of the form wx0(y = zj). If y is the variable x0, we are done.If not, then AX1 ` '0 � (('0 ^ y 6= zj) _ ('1 ^ y = zj)), where '0 (resp. '1) is theresult of replacing all occurrences of the term wx0(y = zj) in '0 by 0 (resp. 1). (Thisfollows since using PD1 and Lemma 6.1 and the fact that x0 does not appear free inthe formula y = zj, we can easily show that AX1 ` (y = zj) ) (wx0(y = zj) = 1) andAX1 ` (y 6= zj) ) (wx0(y = zj) = 0).) Thus, we can transform ' to a formula where allthe probability terms are of the form wx0(x0 = zj).Again, in order to complete the proof of Claim 1, we need only observe that thetransformations required to get a formula ' into the appropriate canonical form are alle�ective, and that no extra free variables are introduced in '� other than possibly someof the zi's.We can now prove an analogue of Claim 2.Claim 4: Given ' in the canonical form described in Claim 3, we can e�ectively �nd aformula '0 ^  0 such that1. '0 is a pure �rst-order formula,2.  0 is a formula in the language of real closed �elds,3. AX1 ` ('0 ^  0) ) ',4. Exactly0(z1; : : : ; zM) ) ' is valid i� Exactly0(z1; : : : ; zM) ) '0 ^  0 is valid.Proof: The proof is almost identical to that of Claim 2. Let y1; : : : ; yM be fresh �eldvariables, not appearing in '; we now think of yi as representing wx0(x0 = zi). Let '~y bethe result of replacing each probability term wx0(x0 = zi) that appears in ' by yi. Let'00 be the result of universally quantifying all the variables other than z1; : : : ; zM thatappear free in the formula8y1 : : : yM(((y1 + � � � + yM = 1) ^ ( M̂i=1 yi � 0)) ) '~y):As in Claim 2, we can show that PC ` '00 ) '. Moreover, if Exactly(z1; : : : ; zM) ) 'is valid, then Exactly0(z1; : : : ; zM) ) '00 is valid.Observe that the formula '00 has no occurrences of probability terms. By using Claim3, we can e�ectively �nd a formula '000 provably equivalent to '00 such that '000 is of theform ('1 ^  1) _ : : : _ ('k ^  k), where each 'i is a pure �rst-order formula and each30



 i is a formula in the language of real closed �elds, and the  i's are mutually exclusive.Since '000 has no free �eld variables, each of the  i's must be a closed formula. ClearlyAX1 ` ('i^ i) ) ' for each disjunct 'i^ i of '; moreover, using the same arguments asin Claim 2, we can show that for some i0, we must have that Exactly0(z1; : : : ; zM) ) ' isvalid i� Exactly0(z1; : : : ; zM) ) ('i0^ i0) is valid, and that we can �nd this i0 e�ectively.We now take '0 to be 'i0 and  0 to be  i0.We can now easily prove (7) (and hence the theorem). Suppose Exactly0(z1; : : : ; zM) )' is valid. We simply construct the '0 and  0 guaranteed to exist by Claim 4. It isnow easy to see that Exactly0 ) ('0 ^  0) is valid i�  0 is valid in real closed �elds(or, equivalently,  0 is true of the reals) and Exactly0(z1; : : : ; zm) ) '0 is valid. Thus,Exactly0(z1; : : : ; zM) ) ' is valid i� PC ` Exactly0(z1; : : : ; zM) ) '0 and RCF `  0.Thus, if Exactly0(z1; : : : ; zM) ) ' is valid, then AX1 ` (Exactly0(z1; : : : ; zM) ) '0)^ 0,and hence AX1 ` Exactly0(z1; : : : ; zM) ) '.Finally, we prove Theorem 5.10; recall that this theorem says that AXN2 is sound andcomplete for L=2 (�) with respect to the domains of size at most N . Again, the prooffollows the same basic pattern as the previous proofs. The key observation here is thatthe analogue of all but part (8) of Lemma 6.1 also holds for AX2 (where we replace w~xby w). The proofs are essentially identical to those in Lemma 6.1, except for part (2).In order to prove (2), suppose that AX2 ` '. We want to show AX2 ` w(') = 1. ByPW2, we have AX2 ` w(') > 0. We can now apply PW1 to the formula w(') > 0 toget AX2 ` w(w(') > 0) = 1. By straightforward propositional reasoning, we also haveAX2 ` ' � (w(') > 0). The result now follows using RPW1.Proof of Theorem 5.10: Suppose that ' is valid with respect to type 2 structures ofsize at most N . We want to show that AXN2 ` '. Just as in the proof of Theorem 5.8,it su�ces to prove AX2 ` Exactly0(z1; : : : ; zM) ) ': (13)In order to prove (13), we �nd an appropriate canonical form for formulas in L=2 (�).Claim 5: We can e�ectively �nd a formula '� such that AX1 ` Exactly0(z1; : : : ; zM) )(' � '�), and '� is in the following canonical form:('1 ^  1) _ : : : _ ('k ^  k);where1. 'i, i = 1; : : : ; k, is a pure �rst-order formula over �,2.  i, i = 1; : : : ; k, is a formula in the language of real closed �elds augmented byprobability formulas,3. the argument  in every probability term w( ) that occurs in '� is a Booleancombination of atomic formulas of the form P (zj1 ; : : : ; zjm), where P is an m-ary31



predicate symbol in � (thus,  is a quanti�er-free formula, the only variables thatcan appear free in  are z1; : : : ; zM , and there are no equality terms of the formt1 = t2 in  ),4. the formulas  1; : : : ;  k are mutually exclusive.Moreover, a variable is free in '� i� it is free in ' or it is one of z1; : : : ; zM .Proof: Again, we proceed by induction on the structure of '. We discuss only the casewhere ' contains a term of the form w('0). By the induction hypothesis and rule RPW1,we can assume without loss of generality that '0 is in canonical form; i.e., that '0 is inthe form ('1^ 1)_ : : :_('k^ k), where the  i's are mutually exclusive. Thus, using theappropriate analogue of Lemma 6.1 (and using PW1 in place of PD1 to prove analoguesof Equations (4) and (5)), we can reduce just as in the previous proofs to the case thatthe argument in the probability term is a pure �rst-order formula; i.e., we can restrictattention to terms of the form w('0) where '0 is a pure �rst-order formula. By usingequivalences of the form 8x � VMi=1  [x=zi], we can easily �nd a quanti�er-free formula'00 such that PC ` Exactly0(z1; : : : ; zM) ) ('0 � '00):Similar arguments to those used in Claim 3 now allow us to replace each occurrence ofw('0) in ' by w('00). We omit details here.We now want to replace all free variables that occur in '00 by z1; : : : ; zM . Suppose thefree variables of '00 are y1; : : : ; ym. Let Eq(~y; J) be de�ned just as in the proof of Claim3, where J is an (M;m)-sequence. Clearly we have PC ` WJ2J Eq(~y; J). Thus,PC ` ' � ( _J2J (' ^ Eq(~y; J))): (14)Given J = hi1; : : : ; imi, let '00J be the result replacing all atomic formulas in '00[y1=zi1 ; : : : ; ym=zim ]of the form zi = zi by true, and all atomic formulas of the form zi = zj, i 6= j, by false.Clearly PC ` Eq(~y; J) ) ('00 � '00J). Thus PC ` (Eq(~y; J) � (Eq(~y; J) ^ ('00 � '00J))Using RPW1 and part (3) of (the analogue of) Lemma 6.1, we can now show thatAX2 ` w(Eq(~y; J)) � w('00 � '00J): (15)By PW1, we have AX2 ` Eq(~y; J) ) w(Eq(~y; J)) = 1. Thus, from (15), we getAX2 ` Eq(~y; J) ) (w(' � '00J) = 1):Let 'J be the result of replacing occurrences of w('00) in ' by w('00J ). Similar argumentsto those used in Claim 3 now showAX2 ` (' ^ Eq(~y; J)) � ('J ^ Eq(~y; J)): (16)By combining (16) with (14), we can see that Claim 5 follows.Claim 6: Given ' in the canonical form described in Claim 5, we can e�ectively �nd aformula '0 ^  0 such that 32



1. '0 is a pure �rst-order formula,2.  0 is a formula in the language of real closed �elds,3. AX1 ` ('0 ^  0) ) ',4. Exactly0(z1; : : : ; zM) ) ' is valid i� Exactly0(z1; : : : ; zM) ) '0 ^  0 is valid.Proof: Let �1; : : : ; �n be all the atomic formulas that appear in probability terms in'. Let �1; : : : ; �2n be the atoms over �1; : : : ; �n. We now proceed as in Claim 2. Wecan write each �i as a disjunction of atoms. Thus, by Lemma 6.1, we can replace allprobability terms that appear in ' by a sum of probability terms whose arguments are(disjoint) atoms. Thus, we can assume without loss of generality that the probabilityterms that appear in ' are all of the form w(�i). Let '~y be the result of replacingeach probability term w(�i) that appears in ' by yi. Let '00 be the result of universallyquantifying all the variables other than z1; : : : ; zM that appear free in the formula8y1 : : : y2n(((y1 + � � � + y2n = 1) ^ ( 2n̂i=1 yi � 0)) ) '~y):As in Claim 2, we can show that PC ` '00 ) '. Moreover, if Exactly0(z1; : : : ; zM) )' is valid, then Exactly0(z1; : : : ; zM) ) '00 is valid. (We remark that the validity ofExactly0(z1; : : : ; zM) ) '00 depends crucially on the fact that the predicates that appearas the conjuncts in the �i's only have zi's as their arguments, since this allows us totreat the atomic formulas as independent propositions. For example, if we had allowedarbitrary variables as arguments, and the only atomic formulas appearing in probabilityterms were P (x) and P (x0), then we would have an atom of the form P (x) ^ :P (x0).If ' included a conjunct of the form x = x0, then this atom could not have positiveprobability, and we could not just replace it by a fresh variable y. Similar di�cultiesarise if we allow equalities of the form t1 = t2 in probability terms.) The rest of the proofnow proceeds just as in Claims 2 and 4, so we omit details here.Acknowledgements: Discussions with Fahiem Bacchus provided the initial impetusfor this work. Fahiem also pointed out the need for the rigidity assumption in Lemma 4.4and Theorem 4.5 and the need to restrict substitution in type 2 structures, as well asmaking a number of other helpful observations on earlier drafts of the paper. I wouldalso like to thank Mart��n Abadi, Ron Fagin, Henry Kyburg, Hector Levesque, Joe Nunes,and Moshe Vardi for their helpful comments on earlier drafts.References[AH94] M. Abadi and J.Y. Halpern. Decidability and expressiveness for �rst-orderlogics of probability. Information and Computation, 112(1):1{36, 1994.33
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