
An Object-Oriented Architecture for Text RetrievalDoug Cutting, Jan Pedersen, andPer-Kristian HalvorsenXerox Palo Alto Research Center3333 Coyote Hill Road, Palo Alto, CaliforniaAbstractFor almost all aspects of information access systems it is still the case that their optimalcomposition and functionality is hotly debated. Moreover, di�erent application scenarios putdi�erent demands on individual components. It is therefore of the essence to be able to quicklybuild systems that permit exploration of di�erent designs and implementation strategies. Thispaper presents a software implementation architecture for text retrieval systems that facilitates(a) functional modularization (b) mix-and-match combination of module implementations and(c) de�nition of inter-module protocols. We show how an object-oriented approach easily ac-commodates this type of architecture. The design principles are exempli�ed by code examples inCommon Lisp. Taken together these code examples constitute an operational retrieval system.The design principles and protocols implemented have also been instantiated in a large scaleretrieval prototype in our research laboratory.1 IntroductionIt is good design practice in building any large software artifact, such as a text retrieval system,to decompose it into modules that reect identi�able pieces of functionality. This is especiallythe case if the modules are to be reused or combined in a variety of di�erent ways to form newsystems. In particular, we argue that text retrieval systems bene�t from this design strategy and thatobject-oriented programming is the appropriate method for abstracting the observed functionality.To illustrate this point we propose an object-oriented text retrieval architecture that captures thevariability in a wide variety of text retrieval systems.Modularity leads to robustness and exibility through the careful de�nition of protocols whichserve as the sole interconnections between modules. Since modules need only be plug-compatible,they may be replaced when appropriate without disturbing the remainder of the system. This alsoimplies that system variability may be expressed by supplying multiple implementations of the samemodule, one of which is selected at system construction time. This can be made explicit in object-oriented programming languages, which are designed to support multiple protocol implementations.Text retrieval systems exhibit a large number of possible time/space trade-o�s. There is alsovariation (and controversy) in the appropriate combination of components to form complete systems,as well as research and evaluation e�orts which demand exibility in the choice of components. Thus,the ability to select subsystems from a range of options should be particularly useful in this context.1



22 DesiderataIn considering the composition of an appropriate text retrieval architecture, we concentrate on thefollowing major sources of variation:� Corpus RetargetingText retrieval is always relative to some collection of documents, or corpus, yet corpora comein di�erent formats, reside on di�erent storage media, etc. Indeed, some corpora may requirecomplex computations to be performed (e.g. decompression [23]) before text is available forprocessing.� Text AnalysisAutomatic indexing implies that the source text must be analyzed to some degree, if only toextract word tokens. Speci�c corpora may employ domain-speci�c jargon or sub-languagesthat require special handling. Text may be stemmed or normalized by morphological analysis[13, 14]. Additionally one may wish to experiment with higher level linguistic analysis, such aspart-of-speech identi�cation [4, 17] and phrase parsing [8, 4]. These analysis modules must beparametrized by source language in a multilingual environment.� Indexing StrategiesIndices are used to accelerate search. The degree of acceleration can often be traded forsmaller storage requirements by varying the indexing granularity. Signature techniques requirevalidation [9], others are only appropriate for static corpora [11].� Storage SubstrateSome systems may store their indices in private �le-based data structures [12], others may em-ploy a standard relational database accessed over a local-area network. Some may be requiredto store their indices on optical disks [3]. These alternatives have very di�erent performancecharacteristics and demand di�erent storage layout strategies.� Search MethodsA variety of search methods have been proposed for use in information retrieval [21, 20, 19].Some are preferred in commercial environments, while others are still undergoing validationin the research community. Each search method places a di�erent demand on the underlyingdatabase layer, although most can be accommodated through variations on the basic invertedindex.� User InterfaceA retrieval system may be presented to the user in numerous di�erent ways, ranging from aline-oriented tty-based approach to 3D animated information visualizations [2]. Often the modeof interaction places strict requirements on the performance of the underlying search engine.3 An ArchitectureAn appropriate text retrieval architecture will naturally account for the sorts of variation outlinedabove in a way that a�ords maximal exibility with minimal overhead. We will adopt the positionthat there should be one module for each expected source of variation. However, the interconnectionsbetween these modules remains unresolved.One approach that helps discover these interconnections, and thus leads towards protocol de�ni-tions, is to consider the control and data ow in two tasks central to a text retrieval system:



3
Search

Index

Analysis

Corpus

Storage
Access Maintenance

User Interface

Legend

Protocol

ImplementationFigure 1: System Architecture� Index constructionSource text must be noticed and analyzed to enable accelerated search. This may be a one-timecomputation, in the case of a static corpus, or a continuing incremental task in the case of adynamically changing corpus.Control here begins with the user interface calling the index maintenance module. This employsthe analysis module which in turn invokes the corpus module to get raw text. The analysismodule provides this text as index terms, and the index module stores them with calls to thestorage module.� Query resolutionSearch algorithms are the keystones of a retrieval system, and the major clients of all systemcomponents. Control in a search task begins with a search algorithm, which may invoke theanalysis module to extract search terms from a query. These search terms are then used askeys for calling into the index access module which returns posting previously stored in thestorage module. On occasion, the index access module may be required to refer back to theoriginal text source to completely resolve the postings query. These results are then employedby the search algorithm as desired.These tasks suggest a hierarchical module arrangement, as illustrated in Figure 1. Note that formost purposes the corpus is only seen through the analysis module and that the indexing module isthe only client of the storage layer. The search module rests above with access both to the indexingand analysis modules. User interfaces are logically separable from the indexing and search engine,with primary access to the search module, and an occasional need, for display reasons, to peekdirectly through to the corpus abstraction. We will not further address the complex issue of userinterface in this paper.We have successfully employed this architecture in the construction of a high performance pro-totype text retrieval system, incorporating approximately 25,000 lines of Common Lisp code [6].The use of an object-oriented programming style to implement this architecture incurs negligiblerun-time overhead since method calls are con�ned to the protocols which interconnect modules, eachof which o�ers substantial functionality. 1 In fact, performance is improved because the exibility1In languages such as C++ even this cost is reduced since method selection is often resolved at compile-time.



4(defclass string-corpus () ((strings :initarg :strings)))(defmethod open-document ((corpus string-corpus) id)(with-slots (strings) corpus(make-string-input-stream (nth id strings))))Figure 2: String Corpus Implementationto supply alternative implementations allows for application-speci�c optimizations which would notbe appropriate in a generic system. This has been demonstrated in our prototype which has provenperformance in excess of industry standards over a 64 Megabyte corpus. We have also found thatthis architecture enables experimentation both in the ways envisaged (replacement of modules) andin ways not envisaged.The remainder of this paper illustrates how this architecture can be implemented using object-oriented techniques, focusing on the de�nition of protocols through the appropriate attachment ofmethods to class objects. Accompanying the text is a simple, demonstration implementation ofthe suggested design, written in Common Lisp [22]. Since the emphasis is on architecture notalgorithms, the demonstration system is unencumbered with optimized module implementations;interconnections are emphasized rather than speci�c functions. We note in the text where improvedalgorithms are appropriate. Nonetheless, the demonstration system is fully functional and runable.We conclude with the description of a sample run of the demonstration system.The demonstration system only uses classical methods (specialized only on the �rst argument),but does rely heavily on multiple inheritance. Thus it should be a straightforward matter to translateit to, for example, C++, but would be somewhat more complicated to implement in Smalltalk, whichdoes not support multiple inheritance.Method invocations that are part of one of the protocols are highlighted with an underline. Eachmodule is abstracted as an object with an associated protocol. It is intended that each applicationde�nes a class which is a subclass of implementations of each protocol, so that it inherits the appro-priate method de�nitions. The programmer is then able to mix and match implementations to buildan application with the desired characteristics.4 Corpus AbstractionA corpus is, for our purposes, a collection of documents, each with a textual component. Documentsmay have other components (e.g. titles, authors and dates) and super-structure (e.g. volumes andchapters) but these properties are extraneous for the purpose of textual access. Access to thesenon-textual properties is outside the scope of this architecture (though it is also amenable to anobject-oriented treatment [10]) and is better layered on top of the retrieval subsystem.The purpose of the corpus module is to map from abstract document identi�ers (ID's) to text.The corpus protocol is intentionally kept simple to minimize the burden placed on each application,and so maximize the applicability of the retrieval system. The corpus protocol is a major interface(along with search and indexing) to client applications.A corpus is implemented by a class. Thus a corpus is an object with some private state variables(for example, a table mapping from ID's to �le names), and on which methods may be specialized.Methods must be de�ned for each corpus class which, given an ID, provide the text of the indicateddocument. All access to the text of a document for the rest of the system is through these methods.Character streams are used to represent the text of documents. These are objects which primarilyjust support sequential access to the characters of the text of a document.Each corpus need not be implemented from scratch. A library of generic corpus implementationscan be developed which enables one to quickly access common corpus formats and representations.Such a library might include:



5(defclass virtual-corpus () ((sub-corpora :initarg :sub-corpora)))(defmethod open-document ((corpus virtual-corpus) id)(with-slots (sub-corpora) corpus(let ((modulus (length sub-corpora)))(open-document (nth (mod id modulus) sub-corpora)(floor id modulus)))))Figure 3: Virtual Corpus Implementation� a �le corpus implementationMany corpora contain all documents in a single �le. Documents consist of stretches of textwithin these �les. Clients of this generic corpus need only specify start and end positions foreach document to fully implement the above protocol.� a directory corpus implementationA facility can be provided which allows the maintenance of corpora where each document is ina separate �le, often all in one directory. Here the �le system implements most of the details,and, in the simple case, all clients need specify is the name of a directory.The demonstration system implements a minimal corpus protocol that represents document ID'sas integers and supplies a single text access method open-document, which returns the text as acharacter stream (see Figure 2). In this implementation corpora are represented simply as a list ofa strings, one for each document. ID's supply the position in the list.Additionally one may de�ne corpora in terms of other corpora. One might, for example de�nea corpus which represents the union of some number of other corpora. This can be accomplishedby just renumbering ID's on access to retain uniqueness, as illustrated in Figure 3. Here the virtualcorpus ID's encode both a corpus selector and a document selector in the same integer.5 Text AnalysisAnalysis converts text into objects which form the basis of search. Documents are analyzed prior tothe generation of index terms, and queries are analyzed to yield search terms.The analysis on queries and documents being indexed need not be the same, although theymust produce terms in the same domain. For example, one might delay replacement of words withsynonym sets until query time, as such replacement is risky and may require human intervention. Ingeneral, pre-indexing analysis should be restricted to that which can be done automatically withoutundue loss of potentially pertinent information.To convert text into terms we establish a protocol which tra�cs in proto-terms, or tokens. Im-plementations of this protocol are typically composed of a pipeline of processing elements.At the start of the pipeline is a tokenizer which extracts tokens from the text. Subsequent stagesact as �lters on these base tokens. Stop lists, stemmers, part-of-speech taggers [4, 17] and phrasespotting can be implemented as �lters. Tokens emitted at the end of the pipeline are terms forindexing and search.Token pipelines may be implemented as concatenated token streams. The example code illustratesa technique for doing this in object-oriented languages with multiple inheritance.Figure 4 provides an implementation of some basic pipeline elements: a tokenizer, a normalizing�lter and a stop-word �lter. The tokenizer parses the character stream, emitting a token for eachcontiguous sequence of alphabetic characters. The normalizing �lter just lowercases tokens, and the



6(defclass tokenizer ()((char-stream :initarg :char-stream)))(defmethod next-token ((token-stream tokenizer))(with-slots (char-stream) token-stream(with-output-to-string (string-stream)(let ((in-token-p nil))(loop (let ((char (read-char char-stream nil)))(cond ((null char) ; EOF(if in-token-p (return) (return-from next-token nil)))((alpha-char-p char)(write-char char string-stream)(setq in-token-p t))(t (if in-token-p (return))))))))))(defclass normalizer () ())(defmethod next-token ((token-stream normalizer))(let ((token (call-next-method)))(if token (string-downcase token) nil)))(defclass stop-list ()((stop-words :initform '("an" "and" "by" "for" "of" "the" "to" "with"))))(defmethod next-token ((token-stream stop-list))(with-slots (stop-words) token-stream(loop (let ((token (call-next-method)))(cond ((null token) (return nil)) ; EOF((member token stop-words :test #'string=))(t (return token)))))))Figure 4: Pipeline Component De�nition(defclass simple-analysis-pipeline (stop-list normalizer tokenizer) ())(defclass simple-analyzer () ())(defmethod make-token-stream ((analyzer simple-analyzer) char-stream)(make-instance 'simple-analysis-pipeline :char-stream char-stream))Figure 5: Pipeline De�nition(defclass appending-token-stream () ((streams :initarg :streams)))(defmethod next-token ((token-stream appending-token-stream))(with-slots (streams) token-stream(if streams(or (next-token (first streams))(progn (setf streams (rest streams))(next-token token-stream))))))Figure 6: Appending Token Stream



7stop-word �lter removes words which appear on a small stop list. Note that the �lters access tokenstream elements by invoking the next method in the method inheritance.Here tokens are just character strings. A more advanced implementation might have di�erenttypes of tokens (e.g. dates, numbers, punctuation, phrases) and possibly annotate tokens with typo-graphic information.Figure 5 shows how these elements can be composed by de�ning a class which inherits from eachof them. The order of pipeline processing is determined by the precedence of the classes in theinheritance. Here tokens ow right-to-left through the superclasses.This implementation technique has the feature that all processing elements are top-level objectsin the protocol, i.e. individual elements can support operations without requiring other elements topass the message down the pipeline. This is particularly valuable in the case of the tokenizer, asclients may inquire from the tokenizer where emitted tokens occurred in the source character stream.This facilitates the construction of user interfaces which wish to show fragments from the source textin query results. [5]We also see here the de�nition of simple-analyzer, the class which embodies the analysis pro-tocol. This is used later in Figure 10 when an application is de�ned.Figure 6 de�nes a token stream which appends the contents of a list of other token streams,thus exhibiting a token stream which is not a pipeline, but is rather de�ned in terms of othertoken pipelines. This technique is useful in the de�nition of corpora in terms of other corpora forexperimental purposes. We also use it in the implementation of relevance feedback (see Figure 9).6 StorageThe storage module provides a generic means for accessing persistent store. The purpose of thismodule boundary is to allow systems to store their indices in di�erent manners: some may wish tostore their indices in an existing relational database; others may require that indices be stored onoptical disks. We would like to be able to accommodate these sorts of variation with little change toother parts of the system. 2Support of indexing is a broad goal, as there are many di�erent strategies for indexing. We havehowever identi�ed a few generic facilities which we hope satisfy this goal:� MapsOne would like to be able to store small records, composed of strings and integers, and then re-call them given distinguished components, or keys. Often it is desirable to be able to enumeratesuch records, in key order. Such maps can be supported in many di�erent ways. B-trees weredesigned speci�cly to solve this problem for ordered sets which are so large that they must bepaged to secondary storage [1]. BIM-trees are similar to B-trees but were designed for use withCIV optical storage [3]. Hashing does not usually enable e�cient ordered enumeration, but isa good implementation technique when this is not required [16]. Most commercial databasemanagement systems, relational and otherwise, also provide this functionality (which is usuallyimplemented internally as B-trees).� BlocksOne would also like to be able to associate blocks of binary data with map entries. Thus itshould be possible for components of maps to be pointers to such blocks, which may be readand written. An variety of allocation strategies for this sort of storage are covered in [15], and,again, most commercial database systems provide access to this sort of functionality.2The primary goal of the storage module is to support the storage of indices, and the design of a protocol must becertain to support this. However it would be fortuitous if this module were also able to generically handle the storagerequirements of applications, e.g. maintaining author and date indices. This is by nature rather ill-de�ned usage, andwe thus do not attempt to further specify it here.



8(defclass hash-store ()((table :initform (make-hash-table :test #'equal))))(defmethod get-mapping ((store hash-store) term)(with-slots (table) store(gethash term table)))(defmethod (setf get-mapping) (value (store hash-store) term)(with-slots (table) store(setf (gethash term table) value)))Figure 7: Hash Table Storage ImplementationDynamic and static inverted indices can be implemented entirely with such structures [7, 12].Terms are typically stored in a map, potentially with frequency information, while postings arestored in blocks. Signature techniques typically have similar requirements, with signatures or bit-slices being stored as blocks indexed by some map.As the storage module is entirely hidden behind the indexing module, implementations of theindexing protocol may be tempted to use their own storage. However when reusability and variabilityare highly valued, the protocol should be amended rather than circumvented.The storage implementation presented in Figure 7 provides access to an unordered mapping inthe form of Common Lisp's built-in hash table facility. Keys are assumed to be strings, and valuesare pointers. Because this is not a persistent store (and for the sake of brevity) a block accessimplementation is not shown. Clients can store pointers to arbitrarily large structures directly in themap.7 IndexingAn index is a cache used by search engines. One must thus have some notion of what searchstrategies are to be employed before an index can be speci�ed. However most search methods maybe implemented by treating terms as atomic entities (indeed, this observation is exploited by theanalysis protocol). Indices are typically used to accelerate the enumeration of statistics about theseterms, such as their frequency, and the documents which contain them. In the case of some signaturetechniques, lookup is not by individual terms, but rather by sets of terms.The protocol for accessing the index consists of the procedures for reporting these statistics, aswell as those for creating and maintaining the index in the face of a changing document base. (It ishowever, the responsibility of the application, not the index, to invoke these maintenance routineswhen necessary.)A given indexing implementation will actually record only certain statistics. These may notalways match the requirements of the desired search strategy. While reconciliation is not alwayspossible, this con�ct may often be viewed as a time/space tradeo�. Details which are not stored inthe index can be extracted directly from the text at query time. A particular application, i.e. a givencorpus on given hardware, can vary the indexing detail to tune the index for reasonable responsewhile minimizing storage.For example, if an inverted index contains term o�sets then searches involving term proximity[21] may be resolved with reference only to the index. However, if term o�sets are not recorded thenthey may be recovered at search time by a scanning the text of documents known to contain theterm of interest, albeit somewhat more slowly.Some index optimizations are only applicable to static corpora. For example, postings for high-frequency terms may be e�ciently represented as bit-vectors [11]. Indices for dynamic corpora requiresomewhat more complex representations and maintenance strategies [7].



9(defun map-tokens (function token-stream)(loop (let ((token (next-token token-stream)))(if token (funcall function token) (return)))))(defclass binary-index () ())(defmethod index-document ((index binary-index) id)(map-tokens #'(lambda (token) (pushnew id (get-mapping index token)))(make-token-stream index (open-document index id))))(defmethod get-binary-postings ((index binary-index) term)(get-mapping index term))(defmethod get-term-frequency ((index binary-index) term)(length (get-binary-postings index term)))(defmethod get-frequency-postings ((index binary-index) term)(mapcar #'(lambda (id)(let ((freq 0))(map-tokens #'(lambda (token)(if (string= token term) (incf freq)))(make-token-stream index (open-document index id)))(cons id freq)))(get-binary-postings index term)))Figure 8: Binary Index ImplementationIndices which will reside on read-only media have special requirements as well. Here the im-plementation which creates the index is not the same as that which accesses it. This fractures theindexing module into separate creation and access modules. These presumably have much in com-mon, but we do not have experience with this problem and will not speculate about an appropriatesub-architecture.The sample index implementation shown in Figure 8 stores only binary posting information. Foreach term a list of all the documents which contain it is recorded in a map provided by the storagemodule. It can thus support access to binary postings directly as an access to the map. Termfrequency is not stored directly, but can be computed on demand without reference to the text bymeasuring the length of the binary postings. Access to within-document frequencies requires a scanof the documents named in the binary postings, counting occurrences.8 Search AlgorithmsSearch algorithms are the major clients for most system components. The search task encompassesquery speci�cation, which may include query text parsing and analysis, and index access for termpostings. Search methods are distinguished through their speci�cation and manipulation of thequery; most are term-based, although each places a di�erent demand on the index. For example,classical boolean search simply performs set operations on postings lists, where only the presenceor absence of a term need be noted in the index. Elaborations, such as proximity search, thatemploy nearness constraints require sequential placement information [21]. Ranking methods, suchas extended boolean [20], fuzzy boolean [18], and relevance search [19] introduce weights, typicallybased on term frequencies.The proposed text retrieval architecture supports the implementation of at least these search



10paradigms. This capability is actually a property of the index access protocol described above sincethe determining factor is what information can be extracted from that database. At least twostrategies are possible. Methods may be de�ned whose contracts are to deliver term statistics ofeach desired sort, with an understanding that if that information is not immediately available inthe index itself, a computation may be performed over the original source text to recover it (as inget-frequency-postings above). Alternatively, indices need only implement those access methodsthat can be serviced e�ciently, and a constraint can be placed on the pairings of indices and searchmethods that can coexist in a complete system. This constraint is enforced by simply allowing theobject system to note that no binding is provided for the required access method in the given system.The demonstration system follows the �rst strategy by supplying access methods for binary post-ings (implemented as lists of document identi�ers), and frequency annotated postings (implementedas lists of document identi�ers paired with frequencies). These two methods are su�cient to sup-port simple implementations of boolean search without negation and relevance search with inversefrequency term weights (see Figure 9). Note that the query input to relevance-search is simplya token stream, which is pumped for tokens in the usual manner. This allows for the possibilitythat the caller may apply a di�erent parsing strategy on the query than the one supplied with thecorpus. This feature is exploited to easily implement relevance-feedback by simply passing downan appending token stream, which e�ectively concatenates the contents of the provided documentset.Since the search algorithms are top-level entry points to the demonstration system there wouldbe only marginal utility in organizing them as method protocol on a search object. Instead they arepresented as procedures (which, in Common Lisp, simply makes them methods on the \anything"class t). There would be an advantage in specifying a search protocol if it was desirable to providedi�erent implementations of the same search method tuned to di�erent index implementations.9 Sample SessionThe disparate pieces of the demonstration system are brought together in a sample application (seeFigure 10). A class demo is de�ned which mixes together a corpus implementation string-corpus,an analyzer simple-analyzer, a storage layer hash-store, and an index binary-index, and henceinherits the methods associated with each of these classes. It also uses an initialization protocol toload the corpus object with a string representation of each �le in a given directory. The directoryin question contains a collection of biographies donated by members of our laboratory, with eachbiography in a separate �le. The :aftermethod on initialize-instance notices and indexes eachdocument accessible through the corpus object. Hence, simply creating an instance of demo class willperform all the computations required prior to search.Figure 11 illustrates the output of some sample searches over this application. The �rst exampleevaluates a boolean search with the expression \information and (access or retrieval)". Results arereturned in an unspeci�ed order (which in this case is document ID order). The second example exe-cutes a relevance search with the textual query \information access". Here the results are presentedin scored rank order. Finally, a feedback step over the document ID's 70, 86, and 27, yield the �nalresults, also in similarity score order.



11(defmethod boolean-search ((app t) expr)(labels ((resolve (x)(if (listp x)(case (first x)(and (intersection (resolve (second x)) (resolve (third x))))(or (union (resolve (second x)) (resolve (third x)))))(get-binary-postings app x))))(resolve expr)))(defmethod relevance-search ((app t) query &optional (threshold 10))(let ((terms ())(scores ()))(map-tokens #'(lambda (token) (pushnew token terms :test #'string=)) query)(dolist (term terms)(let ((weight (/ 1.0 (get-term-frequency app term))))(dolist (freq-pair (get-frequency-postings app term))(let* ((id (car freq-pair))(freq (cdr freq-pair))(score-pair (assoc id scores)))(unless score-pair(setq score-pair (cons id 0.0) scores (cons score-pair scores)))(incf (cdr score-pair) (* weight freq))))))(mapcar #'car (subseq (sort scores #'> :key #'cdr) 0 threshold))))(defmethod relevance-feedback ((app t) ids)(relevance-searchapp(make-instance 'appending-token-stream:streams (mapcar#'(lambda (id)(make-token-stream app (open-document app id)))ids))))Figure 9: Generic Search Implementations(defclass demo (string-corpus simple-analyzer hash-store binary-index) ()(:default-initargs:strings (mapcar #'file-to-string (directory "~/demo-corpus/"))))(defmethod initialize-instance :after ((app demo) &key &allow-other-keys)(dotimes (id (length (slot-value app 'strings)))(index-document app id)))(defun file-to-string (pathname)(with-output-to-string (string-stream)(with-open-file (file-stream pathname)(loop (let ((char (read-char file-stream nil)))(if char (write-char char string-stream) (return)))))))(defmethod print-titles ((app demo) ids)(dolist (id ids (values))(format t "~&~3D ~A~%" id (read-line (open-document app id)))))Figure 10: An Application



12> (setq app (make-instance 'demo))#<DEMO 27212576>> (print-titlesapp(boolean-search app '(and "information" (or "retrieval" "access"))))20 Daniel M. Russell - System Sciences Laboratory22 George G. Robertson - System Sciences Laboratory - User Interface Research27 Jan O. Pedersen - System Sciences Laboratory43 Jock Mackinlay - User Interface Research50 Julian Kupiec - System Sciences Laboratory61 Herb Jellinek - User Interface Research70 Per-Kristian Halvorsen - System Sciences Laboratory, Natural Language86 Douglass R. Cutting - System Sciences Laboratory89 Stuart K. Card - System Sciences Laboratory / User Interface Research92 Francoise Brun-Cottan> (print-titles app(relevance-search app(make-token-stream app(make-string-input-stream"information access"))))20 Daniel M. Russell - System Sciences Laboratory27 Jan O. Pedersen - System Sciences Laboratory70 Per-Kristian Halvorsen - System Sciences Laboratory, Natural Language22 George G. Robertson - System Sciences Laboratory - User Interface Research89 Stuart K. Card - System Sciences Laboratory / User Interface Research92 Francoise Brun-Cottan86 Douglass R. Cutting - System Sciences Laboratory61 Herb Jellinek - User Interface Research13 Mark Stefik -- System Sciences Laboratory50 Julian Kupiec - System Sciences Laboratory> (print-titles app (relevance-feedback app '(70 86 27)))70 Per-Kristian Halvorsen - System Sciences Laboratory, Natural Language86 Douglass R. Cutting - System Sciences Laboratory27 Jan O. Pedersen - System Sciences Laboratory76 Dan Gerson - System Sciences Laboratory/Collaborative Systems Area7 John W. Tukey - System Sciences Laboratory - Consultant105 John Batali -- SSL -- NLTT68 Pat Hayes - Embedded Computation Area36 Scott Minneman - Design, Use, and Shared Spaces Area16 Jeff Shrager97 Daniel G. Bobrow - System Sciences LaboratoryFigure 11: Sample Session



13References[1] R. Bayer and E. McCreight. Organization and maintenance of large ordered indices. ActaInformatica, 1:173{189, 1972.[2] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer, an informationworkspace. In CHI'91 Conference Proceedings, pages 181{187. ACM SIGCHI, ACM Press, April1991.[3] S. Christodoulakis and D. A. Ford. File organizations and access methods for CLV opticaldisks. In Proceedings of the Twelfth Annual International ACMSIGIR Conference on Researchand Development in Information Retrieval, pages 152{159, June 1989.[4] K. Church. A stochastic parts program and noun phrase parser for unrestricted text. In Pro-ceedings of the International Conference on Acoustics, Speech and Signal Processing, 1989.[5] D. R. Cutting, P.-K. Halvorsen, J. O. Pedersen, and M. Withgott. Information theater versusinformation re�nery. In AAAI Spring Symposium on Text-based Intelligent Systems, StanfordUniversity, Stanford, CA, March 1990. Also available as Xerox PARC technical report SSL-89-101.[6] D. R. Cutting and J. O. Pedersen. The TDB cookbook. Xerox internal memorandum.[7] D. R. Cutting and J. O. Pedersen. Optimizations for dynamic inverted index maintenance.In Proceedings of SIGIR'90, September 1990. Also available as Xerox PARC technical reportSSL-90-10.[8] J. L. Fagan. Automatic phrase indexing for information retrieval. In Proceedings of the TenthAnnual International ACMSIGIR Conference on Research and Development in InformationRetrieval, pages 91{101, June 1987.[9] C. Faloutsos and S. Christodoulakis. Signature �les: an access method for documents and itsanalytical performance evaluation. ACM Transactions on O�ce Information Systems, 2(4),October 1984.[10] Edward A. Fox and Robert K. France. Architecture of an object-oriented expert system forcomposite document analysis, representation, and retrieval. Technical Report TR-86-10, VirginiaTech, Department of Computer Science, Blacksburg VA 24061, April 1986.[11] D. Harman and G. Candela. A very fast prototype retrieval system using statistical ranking.SIGIR Forum, 23(3,4):100{110, Summer 1989.[12] IBM. STAIRS/VS: Reference Manual, 1979.[13] R. Kaplan and M. Kay. Phonological rules and �nite state transducers. Unpublished manuscript,1982.[14] L. Karttunen, K. Koskenniemi, and R. Kaplan. A compiler for two-level phonological rules.Report CSLI-87-108, Center for the Study of Language and Information, 1987.[15] D. Knuth. The Art of Computer Programming, volume 1: Fundamental Algorithms. Addison-Wesley, 1968.[16] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley, 1973.[17] J. M. Kupiec. Augmenting a hidden Markov model for phrase-dependent word tagging. InProceedings of the DARPA Speech and Natural Language Workshop, pages 92{98, Cape Cod,MA, 1989. Morgan Kaufmann.



14[18] T. Radecki. Fuzzy set theoretical approach to document retrieval. Information Processing andManagement, 15(5):247{259, 1979.[19] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Journal ofthe American Society for Information Science, 41(4):288{297, June 1990.[20] G. Salton, E. A. Fox, and H. Wu. Extended boolean information retrieval. Communications ofthe ACM, 26(11):1022{1036, November 1983.[21] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.[22] G. L. Steele, Jr. Common Lisp, The Language. Digital Press, second edition, 1990.[23] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactionson Information Theory, 24(5):530{536, September 1978.


