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Abstract

We study the fundamental communication properties of two major shared-memory models,
namely the ones in which processes communicate via Single-Writer/Multi-Reader (SWMR for
short) atomic registers and Atomic-Snapshot object, respectively.

In 1998, Gafni already adressed this question. We prove in this paper that the characteriza-
tion he gave does not match the well-known equivalence between these two models.

The formalism we use is the HO model developed by Charron-Bost and Schiper, in which
the features of a specific system (degree of synchrony, failure model...) are encapsulated into a
single abstract entity, called a communication predicate. In particular, we give a new character-
ization of SWMR and Atomic-Snapshot models only in terms of the predicates that capture the
properties of their communications. Moreover, we prove that our characterization is consistent
regarding the equivalence result mentioned above.

key words: Round-based model, fault-tolerant distributed systems, shared-memory model,
Single-Writer/Multi-Reader atomic registers, Atomic-Snapshot registers.
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Introduction

In [9], Gafni defined a new round-based computational model, called Round-by-Round Fault Detec-
tor model (RRFD for short), for the analysis of distributed systems. In this model, computations
are defined to evolve round by round, the properties of communication between processes, either via
shared variables or by message passing, being captured by a single module called Round-by-Round
Fault Detector module. At each round r, and for each process p, the module provides a set of
suspected processes from which p will not wait for a message. Hence, synchrony degree and failure
model are encapsulated into the same abstract entity.

In [6], Charron-Bost and Schiper combined this approach with the Transmission Faults model,
introduced by Santoro and Widmayer in [14], designed for synchronous message-passing systems
and which locates the failure without specifying their cause. As a result, Charron-Bost and Schiper
developed the Heard-Of model (HO for short), a computational round-based model suitable for
distributed systems subject to benign failures, which is based only on the notion of transmission
failure and renounce the one of faulty component. Computations in this model evolve in rounds. At
each round r, each process p sends a message to all the others and waits to receive messages from
a subset of them, denoted by HO(p, r), which consists of the processes that p ”hears of” at round
r. Communication missed at a round is lost, and so rounds are communication-closed layers, using
the terminology of [7]. A transmission failure from q to p at round r is thus charaterized by the fact
that q does not belong to HO(p, r). A crash of some process p can be modeled by the fact that,
from some point in the execution, p does not belong to any heard-of set and thus has no impact
on the rest of the computation. The features of a particular system (synchrony degree, failure
model,...) are captured by a communication predicate, which is a predicate over the collections of
the HO(p, r)’s sets.

The HO model lies at a very high abstraction level. It is thus important to study what com-
munication predicates can be implemented in what system. This allows to characterize and to
compare different systems.

Contribution

In [9], Gafni informally studied the capability of the RRFD model to cover various classical types of
distributed systems. We analyse here the results he gave regarding two particular types of shared-
memory systems, namely the ones in which processes communicate via SingleWriter/MultiReader
atomic registers (SWMR for short) [10, 12, 11], and Atomic-Snaphot objects [1, 2], respectively.

For the first type, each process p is associated with a read/write register Rp such that (i) p
is the sole process that is allowed to write into Rp, and (ii) every process can read the value of
Rp. Moreover, accesses to a given register are atomic in the sense of [12], i.e., in any execution of
the system, there is a way of totally ordering reads and writes so that the values returned by the
reads are the same as if the operations had been performed in that order, with no overlapping. An
Atomic-Snapshot object consists of an array of SWMR atomic registers, one for each process of the
system. The main difference with SWMR registers lies in the fact that a process can atomically
take a snapshot of the whole array, instead of reading all the registers one after the other. Gafni
informally showed the correspondance between Atomic-Snapshot systems and the RRFD module
such that at each round and for any two processes p and q, the sets of processes suspected by p and
q are ordered by inclusion. As for SWMR systems, he proposed the RRFD module that ensures
that at each round there exists some process which is not supected by anyone. Note that any
RRFD module can be seen as a communication predicate by defining, for each round, the heard-of
set of any process to be the complementary of the set of suspected processes provided by the RRFD
module to this process at that round.
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The rest of this paper is organized as follow. We give a formal proof of Gafni’s result regarding
the RRFD module corresponding to Atomic-Snapshot systems in Section 2, and demonstrate that
the one he proposed for SWMR systems is strictly weaker. The well-known equivalence between
SWMR systems and Atomic-Snaphots ones [1, 2, 8] then leads us to consider an alternative commu-
nication predicate. In Section 3, we prove this third predicate to be (1) implementable in SWMR
systems and (2) equivalent to the one corresponding to Atomic-Snapshot systems. Moreover, we
give a direct proof of the fact that this predicate is strictly stronger than the one corresponding
to the RRFD module proposed by Gafni for characterizing SWMR systems. Section 4 draws some
conclusions.

1 The HO model

As explained in the Introduction, computations in this model are structured in rounds that are
communication-closed layers in the sense that a message sent at some round can be received only
at that round.

1.1 Heard-Of sets and communication predicates

Let Π be a finite non-empty set of cardinality n, and let M be a set of messages (optionally including
a null placeholder indicating the empty message). To each p in Π, we associate a process, which
consists of the following components: a set of states denoted by statesp, a subset initp of initial
states, and for each positive integer r called round number , a message-sending function Srp mapping
statesp ×Π to a unique message from M , and a state-transition function T rp mapping statesp and
partial vectors (indexed by Π) of elements of M to statesp. The collection of processes is called an
algorithm on Π.

In each round r, a process p

1. applies Srp to the current state, and emits the “messages” to be sent (according to its sending
function Srp) to each process;

2. applies T rp to the partial vector of incoming messages whose support is HO(p, r).

Computations evolves in an infinite sequence of rounds. Each run is entirely determined by the
initial configuration (i.e., the collection of process initial states), and the collection (HO(p, r))p∈Π,r>0

of heard-of sets.
A communication predicate P is a predicate over collections of subsets of Π (representing heard-

of collections), that is not the constant predicate false. As an exemple, the predicate

∀r > 0, ∀p ∈ Π : |HO(p, r)| ≥ n− f

models the fact that at each round, each process receives a message from at least n − f distinct
processes. A heard-of machine (HO machine for short) for a set of processes Π is a pair (A,P),
where A is an algorithm on Π, and P is a communication predicate.

1.2 Translations

Our concern in this paper is to compare different communication predicates and to determine
the one corresponding to SWMR systems by using the equivalence between such systems and the
Atomic-Snapshot ones. For that, we will use the notion of equivalence between communication
predicates. We thus have to formalize what it means for an HO machine (A,P) to emulate a
communication predicate P ′. This leads us to introduce the notion of translation of P into P ′
defined in [6].
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Let k be any positive integer, and let A be an algorithm that maintains a variable NewHOp
at every process p, which contains a subset of Π. We call macro-round ρ the sequence of the k
consecutive rounds k(ρ − 1) + 1, . . . , kρ. The value of NewHOp at the end of macro-round ρ is
denoted NewHO(ρ)

p . We say that the HO machineM = (A,P) emulates the communication pred-
icate P ′ in k rounds if for any run of M, the following holds:

E1: If process q belongs to NewHO
(ρ)
p , then there exist an integer l ∈ J1; kK, a chain of l + 1

processes p0, p1, . . . pl from p0 = q to pl = p and a subsequence of l rounds r1, . . . , rl in macro-round
ρ such that for any index i, 1 ≤ i ≤ l, we have pi−1 ∈ HO(pi, ri).

E2: The collection
(
NewHO

(ρ)
p

)
p∈Π,ρ>0

satisfies predicate P ′.

Condition E1 avoid trivial emulations of P ′ since it requires that for each macro-round ρ, if
some process q belongs to NewHO(ρ)

p , then p actually hears of q during this macro-round (possibly
not directly but through intermediate processes). If there exists an algorithm A such that the
HO machine emulates P ′ in k rounds, then we write P �k P ′, and we say that A is a k-rounds
translation of P into P ′. We shall also say that P is at least as strong as P ′. Moreover, predicates
P and P ′ are said to be equivalent if P �k P ′ and P ′ �k′ P for some integers k and k′.

Note that if P ⇒ P ′, the trivial algorithm in which each process p writes the value of HO(p, r)
into NewHOp at the end of each round r is a 1-round translation of P into P ′.

2 Gafni’s characterization of SWMR and Atomic-Snapshot sys-
tems

As said in the Introduction, Gafni presented in [9] the RRFD model, a round-based model for the
analysis of distributed systems subject to benign failures, and informally adressed its expressivity.
In particular, he introduced two RRFD modules that he claimed to “naturally” correspond to sys-
tems with Atomic-Snaphots objects and SWMR registers, respectively.

Informally speaking, in a system with SWMR registers each process of a set Π is associated
with a register Rp that supports two operations: (1) Write(Rp, v), where v is a value drawn from
a given set V , and (2) Read(Rp). Each process p can read all the registers but no process q 6= p
can write into Rp. Moreover, the registers we consider are atomic in the sense of [12], i.e., the
Read and Write operations behave as if they occur in some definite order. In other words, for any
execution of the system there exists a way of totally ordering them so that the values returned by
the reading operations are the same as if the operations had been performed in that order, with no
overlapping.

An Atomic-Snapshot object consists of an array of n atomic SWMR registers, one for each
process of the system. Each process can either write a value into its register (it updates the object)
or take a snapshot of the whole array (it performs a scan). The operations on the object (either
updates or scans) are atomic in the same sense as above.

2.1 Predicates corresponding to Gafni’s RRFD modules

The two RRFD modules claimed by Gafni to correspond to SWMR and Atomic-Snapshot systems,
respectively, are expressed in the HO model by the two predicates PGaf and PRD, given in Figure 1.

To see that Atomic-Snapshot systems effectively implement PRD consider the algorithm AtSn,
given as Algorithm 1. Roughly speaking, at each round r, all processes can access an Atomic-
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PGaf :: ∀r > 0,
⋂
p∈ΠHO(p, r) 6= ∅

PRD :: ∀r > 0,
∣∣∣∣ p ∈ HO(p, r)
∀p, q ∈ Π,

(
HO(p, r) ⊆ HO(q, r)

)
∨
(
HO(q, r) ⊆ HO(p, r)

)
Figure 1: Predicates corresponding to Gafni’s RRFD modules

Algorithm 1 Algorithm AtSn: code for process p

1: Initialization
2: r ∈ N; initially 1
3: vp ∈ V , initially vp = idp, with idp the identifier of p
4: HOp ⊆ Π

5: Round r:
6: HOp := ∅
7: Write(Ar[p], vp)
8: Scan(Ar)
9: HOp := {q : Scan(Ar)[q] 6= ⊥}
10: r := r + 1

Snapshot object Ar. Each process p first updates its own component Ar[p] by writing its identifier
into it and then scans the whole array. The following proposition shows that at the end of any
round r, for any two processes p and q, the sets of processes’ identifiers read by p and q, respectively,
at round r are ordered by inclusion.

Proposition 2.1. Let e be any execution of AtSn in an Atomic-Snapshot system and let r be any
integer such that r ≥ 1. At the end of round r, the collection

(
HOp

)
p∈Π

satisfies PRD.

Proof: Let r be any integer such that r ≥ 1. First let p be any process in Π. The code of AtSn
(lines 7 and 8) directly implies that p belongs to HOp at the end of round r.

Now let q be any process distinct from q. By the atomicity of the Atomic-Snapshot object,
either p or q is the first process to scan Ar. Since the values written cannot be deleted, we deduce
that all the identifiers read by the first process that scans Ar are also read by the second one.
Hence, at the end of round r, we have either HOp ⊆ HOq or HOq ⊆ HOp. 2

The fact that an Atomic-Snaphot object can be implemented in a system whose executions
satisfy PRD is a simple corollary of [5]. Combining this result with Proposition 2.1, we derive the
following theorem:

Theorem 2.2. The communication predicate PRD entirely captures the communication properties
of Atomic-Snapshot systems in the benign case.

For the SWMR systems, in which at each round each process writes into its own register and
then reads all the registers, Gafni noticed that, by the atomicity assumption, the first process to
write into its register at some round is necessarily heard by all the others at that round, and so
belongs to all the heard-of sets.

At this point, regarding the equivalence between the two considered types of systems and
Theorem 2.2, it seems natural to check whether the two corresponding predicates PRD and PGaf
are actually equivalent, according to the definition given in Section 1.2. Although, the two following
propositions show that PRD is actually strictly stronger than PGaf .

Proposition 2.3. The communication predicate PRD is at least as strong as PGaf .

4
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Psym :: ∀r > 0, ∀p, q ∈ Π :
(
p ∈ HO(q, r)

)
∨
(
q ∈ HO(p, r)

)
Figure 2: Predicate Psym, our candidate for SWMR atomic registers

Proof: We are going to show that PRD in fact directly implies PGaf . Let
(
HO(p, r)

)
p∈Π,r>0

be
a collection of heard-of sets which satisfies PRD and let r > 0 be any round number.

The second part of PRD implies that the collection of all the heard-of sets of round r is ordered
by the inclusion, while the first one ensures that each of them is nonempty. It thus follows that
their intersection is nonempty. We therefore conclude that

(
HO(p, r)

)
p∈Π,r>0

satisfies PGaf . 2

Proposition 2.4. The communication predicate PGaf is not at least as strong as PRD.

Proof: We proceed by contradiction. Assume that there exists an algorithm A that translates
PGaf into PRD in k rounds, for some positive integer k.

Let e be the execution of the HO machine (A,PGaf ) such that

∃q ∈ Π, ∀r > 0, ∀p ∈ Π : HO(p, r) = {q}.

Let ρ be a macro-round of e and let p be some process, other than q. Since A is a transla-
tion of PGaf into PRD, condition E2 of the definition of a translation ensures that the collection(
NewHO

(ρ)
p

)
p∈Π,ρ>0

satisfies PRD, and so that p belongs to NewHO
(ρ)
p . From condition E1, we

then deduce that p hears of itself (possibly through intermediate processes) during macro-round ρ.
In particular, this implies that there exist some round r of macro-round ρ and some process p′ ∈ Π
(possibly p′ = p) such that p ∈ HO(p′, r), which contradicts the fact that for all rounds r of e and
for all processes p′ ∈ Π, HO(p′, r) = {q}, whith q 6= p. Hence A is not a translation of PGaf into
PRD. 2

By combining Propositions 2.3 and 2.4, we derive the following theorem:

Theorem 2.5. The communication predicate PRD is strictly stronger than PGaf .

This result points out that, since PRD has been shown to be the predicate which entirely char-
acterizes Atomic-Snapshot systems, we cannot morally consider that PGaf effectively corresponds
to SWMR systems.

3 In search for equivalence

As shown in the above section, the communication predicate PGaf appears to be too weak for
characterizing SWMR systems. We consider here an alternative predicate, called Psym and given
in Figure 2, that we claim to be (i) guaranteed by such systems, and (ii) equivalent to PRD.

For the first point, we introduce the algorithm SWMR, given as Algorithm 2. In this algorithm,
at each round r ≥ 1, each process p writes its own identifier into a SWMR atomic register Rrp and
then reads all the Rrq’s. The following proposition shows that at each round r, for any two processes
p and q, either p belongs to HOq or q belongs to HOp.

Proposition 3.1. Let e be any execution of SWMR in a SWMR system. At the end of any round
r, we have:

p ∈ HOq ∨ q ∈ HOp.

5
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Algorithm 2 Algorithm SWMR: code for process p

1: Initialization
2: r ∈ N; initially 1
3: vp ∈ V , initially vp = idp, whith idp being the identifier of process p
4: HOp ⊆ Π

5: Round r:
6: HOp := ∅
7: Write(Rr

p, vp)
8: Pour tout q ∈ Π, Read(Rr

q)
9: HOp := {q : Read(Rr

q) 6= ⊥}
10: r := r + 1

Proof: Let p and q be two processes in Π. First assume that p = q. The code of SWMR trivially
implies that p reads its own identifier at round r, and so p ∈ HOp. Now assume that p and q
are two distinct processes and that p /∈ HOq at the end of round r. By the atomicity of the
registers, this implies that q started executing line 8 of its code before p executed line 7. The code
of SWMR therefore ensures that p started reading the registers after q has written its identifier,
and so q ∈ HOp at the end of round r. 2

3.1 Psym and PRD are equivalent

The result of the previous section shows that Psym is guaranteed by SWMR systems in the benign
case. We give in this section a rigorous proof of the equivalence between Psym and PRD which,
thanks to Theorem 2.2 and the equivalence between SWMR systems and Atomic-Snapshot ones,
demonstrate that Psym entirely characterizes SWMR systems in the benign case.

We start our demonstration by showing that PRD is at least as strong as Psym.

Theorem 3.2. The communication predicate PRD implies Psym.

Proof: Let
(
HO(p, r)

)
p∈Π,r>0

be a collection of heard-of sets that satisfies PRD. We show that(
HO(p, r)

)
p∈Π,r>0

also satisfies Psym.

Let r > 0 be any round number and let p and q be any two processes in Π. We have to
demonstrate that either p ∈ HO(q, r) or q ∈ HO(p, r).

• If p = q, then the first part of PRD implies that p ∈ HO(p, r).

• Now assume that p and q are distinct and p /∈ HO(q, r). The first part of PRD implies that
p ∈ HO(p, r), and therefore that HO(p, r) 6⊆ HO(q, r). The second part of PRD then ensures
that HO(q, r) ⊆ HO(p, r). Since, by the first part of PRD, q belongs to HO(q, r), we finally
conclude that p ∈ HO(q, r).

Hence, the collection
(
HO(p, r)

)
p∈Π,r>0

satisfies Psym, as needed. 2

It remains to show that Psym is at least as strong as PRD, i.e., there exists a translation of
Psym into PRD. We present here the algorithm SRD, given as Algorithm 3, which we prove to
be such a translation. Informally speaking, at each macro-round ρ, each process p maintains a
variable Dp consisting of the processes that p hears of, directly or through intermediate processes,
during ρ. If Dp does not change for a given number of rounds, then p defines NewHOp to be the
set of all processes it heard of during ρ. This scheme is inspired by the double-collect used in many
implementations (e.g. [2], [3]) of Atomic-Snapshot objects by SWMR atomic registers.

6
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Algorithm 3 The SRD algorithm

1: Initialization:
2: Dp ⊆ Π; initially {p}
3: NewHOp ⊆ Π; initially ∅
4: Knownp ⊆ Π; initially ∅
5: k,Np ∈ N; initially 0

6: Sr
p :

7: send 〈Dp〉 to all processes

8: T r
p :

9: if ∃l > 0 such that r = (n2 + n) · l + 1 then
10: NewHOp := ∅;
11: Knownp := ∅;
12: Dp := {p}
13: (endif)

14: if NewHOp = ∅ then
15: Knownp :=

S
{Dq : q ∈ HO(p, r)}

16: if Knownp ⊆ Dp then
17: k := k + 1
18: else
19: k := 0

20: Dp := Dp ∪Knownp

21: if k = 1 then
22: Np := |HO(p, r)|
23: if k = 2 then
24: k := k − 1; Np := Np − 1

25: if Np = 0 then
26: NewHOp := Dp

Before starting our correctness proof, we introduce some piece of notation which we will use in
the sequel. Let p be any process, and xp be some variable local to p. For each round r > 0, we
denote by x(r)

p the value of xp at the end of round r.

We first show that during any macro-round, each process p sets its variable NewHOp to another
value than ∅. In other word, the guard in line 25 is well defined.

Lemma 3.3. Let e be an execution of the HO machine (SRD,Psym) and let ρ be any macro-round
of e. Let r1, r2, . . . , rn+1 be any sequence of n+ 1 consecutive rounds of ρ and let p be some process
in Π.

If NewHO(r1−1)
p = ∅, then there exists some index i ∈ J1;n+ 1K such that

D(ri)
p 6= D(ri−1)

p ∨ NewHO(ri)
p 6= ∅.

Proof: Let e be an execution of (SRD,Psym) and let ρ > 0 be any macro-round of e. Let
r1, r2, . . . , rn+1 be a sequence of n+ 1 consecutive rounds of ρ. We proceed by contradiction.

Assume that there exists some process p such that NewHO(r1−1)
p = ∅ and, for all indices

i ∈ J1;n+ 1K,
D(ri)
p = D(ri−1)

p ∧ NewHO(ri)
p = ∅.

The code of SRD ensures that p executes the line 24 during each round r2, . . . , rn+1. It follows
that N (rn+1)

p ≤ N (r2)
p − n. Since N (r2)

p = |HO(p, r2)|, we deduce that N (rn+1)
p ≤ 0. Therefore, there

exists an index j ≤ n+ 1 such that N (rj)
p = 0, and so such that p executes the line 26 at round rj .

Hence NewHO(rj)
p = D

(rj)
p . However, for all rounds r > 0, process p belongs to D

(r)
p , since

Psym is satisfied in e. We thus conclude that NewHO(rj)
p 6= ∅, a contradiction. 2

As a corollary of the previous lemma, we derive the following proposition:

Proposition 3.4. Let e be any execution of the HO machine (SRD,Psym). For any macro-round
ρ of e and for any process p, we have NewHO(ρ)

p 6= ∅.

Proof: Let e be an execution of (SRD,Psym) and let ρ > 0 be any macro-round of e.
Let p be any process of Π. Since Dp = {p} at the beginning of macro-round ρ and D(r)

p ⊆ Π for
all rouds r > 0, we deduce that there exist at most n− 1 rounds r1, r2, . . . , rn−1 of macro-round ρ

such that, for all indices i ∈ J1, ;n− 1K, we have D(ri)
p 6= D

(ri−1)
p .
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Since ρ consists of n2 + n rounds, Lemma 3.3 implies that p necessarily executes the line 26
during ρ, and so NewHO

(ρ)
p = D

(ρ)
p . The result finally follows from the fact that, since Psym is

satisfied in e, for all rounds r > 0, we have D(r)
p 6= ∅.

2

We are now in position to show that for any execution of the HO machine (SRD,Psym), the
collection

(
NewHO

(ρ)
p

)
p∈Π,ρ>0

satisfies PRD. The following proposition shows that every process
p belongs to its own set NewHOp at the end of every macro-round ρ.

Proposition 3.5. Let e be any execution of the HO machine (SRD,Psym) and let ρ > 0 be any
macro-round of e. For all processes p ∈ Π we have p ∈ NewHO(ρ)

p .

Proof: Let e be any execution of the HO machine (SRD,Psym) and let ρ > 0 be any macro-round
of e.

Since Psym is satisfied in e we have, for all rounds r > 0, p ∈ D(r)
p . Moreover, Proposition 3.4

ensures that every process p executes the line 26 during ρ, and so that NewHO(ρ)
p = D

(ρ)
p . We thus

conclude that, for every process p, we have p ∈ NewHO(ρ)
p . 2

It remains to show that at the end of any macro-round ρ, for any two processes p and q, the
sets NewHO(ρ)

p and NewHO
(ρ)
q are ordered by inclusion.

Lemma 3.6. Let e be any execution of the HO machine (SRD,Psym), let ρ > 0 be any macro-round
of e and let r0 be any round of ρ.

If p and q are two distinct processes that both execute line 26 at round r0, then

NewHO(ρ)
p ⊆ NewHO(ρ)

q ∨ NewHO(ρ)
q ⊆ NewHO(ρ)

p .

Proof: Let e be any execution of the HO machine (SRD,Psym) and let ρ > 0 be any macro-round
of e. Assume that there exist two distinct processes p and q that both execute line 26 at some
round r0 of macro-round ρ.

Since Psym is satisfied in e, we have either p ∈ HO(q, r0) or q ∈ HO(p, r0). The code of SRD
(line 15) then ensures that D(r0−1)

p ⊆ Known
(r0)
q or D(r0−1)

q ⊆ Known
(r0)
p , respectively, which

implies that D(r0−1)
p ⊆ D(r0)

q or D(r0−1)
q ⊆ D(r0)

p

Since p and q both execute line 26 at round r0, we necessarily haveD(r0−1)
p = D

(r0)
p = NewHO

(ρ)
p

and D
(r0−1)
q = D

(r0)
q = NewHO

(ρ)
q . Hence, we finally deduce that either NewHO(ρ)

p ⊆ NewHO(ρ)
q

or NewHO(ρ)
q ⊆ NewHO(ρ)

p . 2

We now extend the result to the case in which p and q determine NewHOp and NewHOq
during two distinct rounds.

Lemma 3.7. Let e be any execution of the HO machine (SRD,Psym), let ρ > 0 be any macro-round
of e and let r0 be any round of ρ.

If p and q are two distinct processes that execute line 26 at rounds r0 and r1 respectively, with
r0 6= r1, then

NewHO(ρ)
p ⊆ NewHO(ρ)

q ∨ NewHO(ρ)
q ⊆ NewHO(ρ)

p .

Proof: Let e be any execution of the HO machine (SRD,Psym) and let ρ > 0 be any macro-round
of e. Assume that there exist two distinct processes p and q that execute line 26 at rounds r0 and
r1 respectively, with r0 6= r1.

We proceed by contradiction and assume that

NewHO(ρ)
p 6⊆ NewHO(ρ)

q ∧ NewHO(ρ)
q 6⊆ NewHO(ρ)

p .
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Since Psym is satisfied in e, we have either p ∈ HO(q, r0) or q ∈ HO(p, r0). If we assume
p ∈ HO(q, r0), then the code of SRD ensures that D(r0−1)

p ⊆ D
(r0)
q . By the definition of r0, we

thus have D(r0−1)
p = NewHO

(ρ)
p . Moreover, since D(r0)

q ⊆ NewHO(ρ)
q , it follows that NewHO(ρ)

p ⊆
NewHO

(ρ)
q , a contradiction. We thus deduce that p /∈ HO(q, r0), which implies q ∈ HO(p, r0), and

so D(r0−1)
q ⊆ D(r0)

p = NewHO
(ρ)
p .

By assumption, NewHO(ρ)
p 6⊆ NewHO

(ρ)
q . Since D

(r0−1)
q ⊆ NewHO

(ρ)
q , we then obtain

D
(r0−1)
q ⊂ NewHO

(ρ)
p . We also assumed that NewHO(ρ)

q 6⊆ NewHO
(ρ)
p . Hence there exists some

process q0 /∈ NewHO(ρ)
p which belongs to NewHO(ρ)

q .
Let rq be the round of ρ such that q0 ∈ D

(rq)
q \ D(rq−1)

q . Since D
(r0−1)
q ⊂ NewHO

(ρ)
p and

q0 /∈ NewHO(ρ)
p , we necessarily have rq ≥ r0.

Assume rq = r0. Then there exists some process q1 distinct from p such that

q0 ∈ D(r0−1)
q1 ∧ NewHO(ρ)

p 6⊆ D(r0−1)
q1 ∧ q1 ∈ HO(q, r0).

Now assume that q0 ∈ D(r0−2)
q1 . This implies that q1 /∈ HO(p, r0 − 1) and therefore, under Psym,

we have p ∈ HO(q1, r0 − 1). By the definition of r0, it follows that NewHO(ρ)
p ⊆ D

(r0−1)
q1 , and so

NewHO
(ρ)
p ⊆ D(r0)

q , a contradiction. Hence, q0 ∈ D(r0−1)
q1 \D(r0−2)

q1 .
The same argument as above shows that there exist N (r0)

p processes q1, . . . , qN(r0)
p

, each distinct

from p, such that for all indices l ∈ J1;N (r0)
p K we have

q0 ∈ D(r0−l)
ql

\D(r0−l−1)
ql

∧ NewHO(ρ)
p 6⊆ D(r0−l)

ql
,

which implies that for all indices l ∈ J1;N (r0)
p K, we have NewHO(ρ)

p 6⊆ D
(r0−N

(r0)
p )

ql .
However, since Psym is satisfied, the definition of N (r0)

p ensures that there exist at most N (r0)
p −1

processes q′ distinct from p such that NewHO(ρ)
p 6⊆ D

(r0−N
(r0)
p )

q′ , a contradiction. Hence rq > r0.

By a similar argument, we show that for any round r′ of ρ such that r′ > r0, we have rq ≥
r′, a contradiction since ρ consists of a finite number of rounds. We thus conclude that either
NewHO

(ρ)
p ⊆ NewHO(ρ)

q or NewHO(ρ)
q ⊆ NewHO(ρ)

p .
2

As a last step in our argumentation, we demonstrate that Psym is at least as strong as PRD:

Theorem 3.8. Algorithm SRD is a translation of Psym into PRD.

Proof: Let e be any execution of the HO machine (SRD,Psym).
We first argue condition E2, which requires that the collection

(
NewHO

(ρ)
p )p∈Π,ρ>0 satisfies

PRD. Proposition 3.5 ensures that every process p belongs to NewHOp at the end of each macro-
round ρ of e, while the combination of Lemmas 3.6 and 3.7 implies that for any two distinct
processes p and q, and for any macro-round ρ, the sets NewHO(ρ)

p and NewHO
(ρ)
q are ordered by

inclusion. Therefore, condition E2 is satisfied.

Condition E1 directly follows from the code of SRD (lines 15, 20 and 26) and from the fact
that under Psym, each process p belongs to HO(p, r) at each round r. 2

Combining Theorems 3.2 and 3.8, we derive our main result:

Theorem 3.9. Predicates Psym and PRD are equivalent.
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3.2 A 2-rounds translation of Psym into PGaf
We have shown in the above section that (i) PRD implies PGaf , and (ii) algorithm SRD is a
(n2 + n)-rounds translation of Psym into PRD. It trivially follows that SRD is a (n2 + n)-rounds
translation of Psym into PGaf .

Algorithm 4 Algorithme ST N ): code of process p

1: Initialisation:
2: NewHOp ∈ 2Π, initially empty
3: idp is the identifier of process p

4: Round r = 2ρ− 1
5: Sr

p :
6: Send 〈 idp 〉 to all

7: T r
p :

8: NewHOp := ∅

9: Round r = 2ρ
10: Sr

p :
11: Send 〈HO(p, r − 1) 〉 to all

12: T r
p :

13: NewHOp :=
S

q∈HO(p,r) HO(q, r − 1)

We present here the algorithm ST N , given as Algorithm 4, which we prove to be a 2-rounds
translation of Psym into PGaf . For that, we use a purely combinatorial result stated by the following
lemma:

Lemma 3.10. Let n be an integer such that n ≥ 2, and let A = (ai,j)i,j∈J1;nK and B = (bi,j)i,j∈J1;nK
be two matrices in Mn×n({0, 1}).

If A and B verify

∗ ∀i, j ∈ J1;nK, ai,j + aj,i > 0

∗ ∀i, j ∈ J1;nK, bi,j + bj,i > 0

and if M = (mi,j)i,j∈J1;nK is defined by M = A×B, then M verifies the following condition:

∃i ∈ J1;nK, ∀j ∈ J1;nK mi,j > 0.

Proof: We procced by induction on the size n (n ≥ 2) of matrices A and B.

• If n = 2. Let A = (ai,j)i,j∈{1,2} and B = (bi,j)i,j∈{1,2} in M2×2({0, 1}).
If A is such that

∀i, j ∈ {1, 2}, ai,j + aj,i > 0,

then there exists i0 ∈ {1, 2} such that ai0,1 > 0 and ai0,2 > 0. Moreover, if B is such that

∀i, j ∈ {1, 2}2, bi,j + bj,i > 0

then we have b1,1 > 0 and b2,2 > 0. It follows that if M is defined by M = A × B then we have
mi0,1 > 0 and mi0,2 > 0.

• Now assume that the result holds for matrices of size n− 1.
Let A = (ai,j)i,j∈J1;nK and B = (bi,j)i,j∈J1;nK be two matrices in Mn×n({0, 1}) that satisfy

- ∀i, j ∈ J1;nK, ai,j + aj,i > 0

- ∀i, j ∈ J1;nK, bi,j + bj,i > 0

10
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Let M = (mi,j)i,j∈J1;nK be the matrix defined by M = A × B. By contradiction assume that M
satisfies

∀i ∈ J1;nK, ∃j ∈ J1;nK : mi,j = 0.

For all indices k = 1, · · · , n, let Ak, Bk inM(n−1)×(n−1)({0, 1}) and Mk inM(n−1)×(n−1)(N) be the
matrices defined by

Ak = (ai,j)i,j 6=k, Bk = (bi,j)i,j 6=k, Mk = (mi,j)i,j 6=k.

By the definition of A and B, for all indices k = 1, · · · , n, matrices Ak and Bk satisfy

- ∀i, j ∈ ({1, · · · , n} \ {k}), ai,j + aj,i > 0

- ∀i, j ∈ ({1, · · · , n} \ {k}), bi,j + bj,i > 0

Consider A1 and B1. The recurrence assumption implies that there exists an index i1 6= 1 such
that, for all indices j = 2, · · · , n, we have

n∑
l=2

ai1,l · bl,j > 0.

Moreover, for all indices j = 2, · · · , n

mi1,j =
n∑
l=2

ai1,l · bl,j .

It follows that, for all indices j = 2, · · · , n,

mi1,j ≥
n∑
l=2

ai1,l · bl,j > 0

Since we have assumed that

∀i ∈ J1;nK, ∃j ∈ J1;nK, mi,j = 0,

we thus conclude that mi1,1 = 0.

Now consider A2, B2 and M2. By the same argument, we show that there exists an index i2 6= 2
such that mi2,2 = 0 and ∀j 6= 2, mi2,j > 0. We have shown that mi1,1 = 0, so we deduce that
i2 6= i1.

Repeating the same argument for Ak, Bk and Mk, k = 3, · · · , n, we show that

- for all k = 1, · · · , n there exists an index ik ∈ {1, · · · , n} such that

mik,k = 0 and ∀l ∈ {1, · · · , n} \ {k}, mik,l > 0

- ∀l, k ∈ J1;nK, k 6= l ⇒ ik 6= il

Hence we can define a mapping i : J1;nK −→ J1;nK such that, for all indices j = 1, · · · , n, i(j) = ij .
By construction, the mapping i is bijective.

11
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Now, let k ∈ {1, · · · , n}. Since i : j → i(j) is bijective, we have mi(k),i(i−1(k)) = 0. The fact that
bi(i−1(k)),i(i−1(k)) > 0 then implies ai(k),i(i−1(k)) = 0.

Moreover, for all i, j ∈ J1;nK, ai,j + aj,i > 0 and so ai(i−1(k)),i(k) > 0.

By the definition of the mapping i, we have mi(i−1(k)),i−1(k) = 0, i.e., ai(i−1(k)),i(k) · bi(k),i−1(k) = 0.

We then deduce that bi(k),i−1(k) = 0 which, by the definition of B, implies that bi−1(k),i(k) > 0.

Repeating the same argument, we obtain ai(i(k)),i−1(k) = 0 and then ai−1(k),i(i(k)) > 0.

Therefore, bi(i(k)),i−2(k) = 0 which implies that bi−2(k),i(i(k)) > 0 and then ai3(k),i−2(k) = 0.

Generalizing we obtain

∀l, ai−l(k),il+1(k) > 0 (1)

where ir is the r-th iterated of i.

Since i : {1, · · · , n} → {1, · · · , n} is bijective, there exists an integer lk ≥ 1 such that ilk(k) = k.
Setting lk = l + 1 in equation (1), we obtain ai(k),k > 0, a contradiction. 2

Theorem 3.11. Algorithm ST N is a 2-rounds translation of Psym into PGaf .

Proof: Let e be an execution of the HO machine and let ρ > 0 be any macro-round of e.
The fact that e satisfies condition E1 of the definition of a translation is a straightforward con-

sequence of the way ST N works. Indeed, the code of ST N (line 13) ensures that if some process
q belongs to the set NewHO(ρ)

p of some process p, then p actually heard of q, possibly through an
intermediate process, during macro-round ρ.

We now argue condition E2. Let Aρ = (ai,j)i,j∈J1;nK, Bρ = (bi,j)i,j∈J1;nK and Mρ = (mi,j)i,j∈J1;nK
be the matrices defined by:

∗ ai,j = 1 if pi ∈ HO(pj , 2ρ− 1), and 0 otherwise

∗ bi,j = 1 if pi ∈ HO(pj , 2ρ), and 0 otherwise

∗ Mρ = Aρ ×Bρ
By these definitions, it is obvious to see that, for all indices i, j ∈ J1;nK, we have mi,j > 0 if and

only if process pi belongs to NewHO(ρ)
pj . Hence, e satisfies condition E2 if and only if Mρ verifies

the following condition:
C : ∃i ∈ J1;nK, ∀j ∈ J1;nK mi,j > 0.

Since Psym is satisfied in e, matrices Aρ and Bρ verify

∗ ∀i, j ∈ J1;nK, ai,j + aj,i > 0

∗ ∀i, j ∈ J1;nK, bi,j + bj,i > 0

Lemma 3.10 then ensures that Mρ = Aρ × Bρ verifies condition C, which ends to show that
ST N translates Psym into PGaf . 2
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4 Conclusions and future work

In this paper, we adress the expressivity of the HO model. We give a first answer regarding two
major types of models for distributed computing in the presence of benign failures. In particular,
we present the first formal characterization of classical models only in terms of predicates that
capture the properties of their communications. Moreover, we show how it is possible to compare
and hierarchize such predicates.

In [4], Charron-Bost et al. generalized the HO model to cope with value failures. This extended
model covers both the Byzantine failures [13] and the dynamic transmission faults of [14]. The HO
model thus appears to be suitable for systems with any type of failures.

Future works may try to apply the techniques presented in this paper to rigorously determine
the predicates corresponding to other existing models, either shared-memory or message passing,
with benign failures or value failures. This would provide a formal unified framework for the analysis
of fault-tolerant distributed systems and may give new insights about questions such : (i) what
communication properties are really crucial, or (ii) what problems are solvable in what systems.
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