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1. INTRODUCTION 31. IntroductionOne of the most successful insights in modern physics is that symmetry is fun-damental. Perhaps, this is most apparent in gauge theories: The standard model-formulated as a gauge �eld theory- constitutes the most prominent example of aquantum �eld theory. It provides a description of all known fundamental forcesbesides gravity. Furthermore, some of its predictions have been checked experi-mentally and are by far the most accurate ones in the history of physics. However,there are still a lot of unsolved problems concerning the standard model itself and,even more, concerning the uni�cation of the standard model with general relativityto a theory of everything. Many of the problems of the standard model are mathe-matical in nature and only a few can be treated in a mathematically rigorous way.For example, Minkowskian theories typically formulated in the language of pathintegrals seem not to make sense mathematically. Many di�erent lines of researchhave been developed to overcome these problems. We only want to mention veryshortly two of them and their relation to conformal �eld theories (CFTs), the topicof this thesis.Firstly, algebraic quantum �eld theory (AQFT) (developed by Haag, Kastler andBorchers in the �fties and sixties (see e.g. [Ha] and references therein)) starts ata very fundamental level and encodes the basic features of quantum �eld theoriesin a very clear and mathematically rigorous way. So far, however, the treatmentof `realisitic' quantum �eld theories on the basis of algebraic quantum �eld theoryis not possible. The best understood examples of quantum �eld theories that can-at least to some extend- be described within this framework are euclidean twodimensional conformal �eld theories.Secondly, string theories, originally developed to describe strong interactions, areconsidered nowadays as one of the most promising candidates for theories of ev-erything unifying the standard model and general relativity (for a review see e.g.[GSW]). Although a lot of progress has been made in string theory in the last twodecades, the description of `realistic' states of matter and something like a deriva-tion of the standard model from string theory are far from being solved. Formulat-ing �eld theory on the `world sheet' of the strings gives rise to a two dimensionalconformal �eld theory.In this thesis we will be concerned with two dimensional chiral conformal �eldtheories. In the last ten years two dimensional CFTs have played a profound rolein theoretical physics as well as in mathematics. Starting with the work of A.A.Belavin, A.M. Polyakov and A.B. Zamolodchikov [BPZ] in 1984 it was shown thatall correlation functions of chiral rational conformal �eld theories (RCFTs), i.e.conformal �eld �eld theories depending only on one of the two light cone coordinatesand having only �nitely many primary �elds, are determined by the symmetry ofthe theory and can -at least in principle- be calculated. Using conformal �eld theorymany new results connecting statistical mechanics and string theory with the theoryof topological invariants of 3-manifolds or with number theory were found (see e.g[Wi,C]).



4The classi�cation of RCFTs became one of the important problems in mathematicalphysics. However, a complete classi�cation seems to be an impossible task since,for example, all self dual double even lattices lead to RCFTs and there is at thisstage no hope to classify all such lattices of rank greater than 24. Nevertheless, itmight be possible to classify all RCFTs with `small' e�ective central charge ~c. (Thee�ective central charge is given by the di�erence of the central charge and 24 timesthe smallest conformal dimension of the rational model under consideration.) Inparticular, for ~c � 1 a classi�cation of RCFTs can be obtained by using a theoremof Serre-Stark describing all modular forms of weight 1=2 on congruence subgroupsif one assumes that the corresponding conformal characters are modular functionson a congruence subgroup.With this thesis we want to contribute to the classi�cation program of RCFTs withonly a few primary �elds and for low values of the e�ective central charge. Ourinvestigations concern mainly two di�erent directions:Firstly, we investigate the structure of modular fusion algebras associated to RCFTsusing the known classi�cation of the irreducible representations of the �nite groupsSL(2;Zp�). For ~c > 1 only partial results have been obtained so far. One of thepossibilities is to look at RCFTs where the corresponding fusion algebra has a`small' dimension. In the special case of a trivial fusion algebra the RCFT has onlyone superselection sector and a classi�cation of the corresponding modular invariantpartition functions for unitary theories with c � 24 has been obtained [Sche]. As anext step in the classi�cation one can try to classify the nontrivial fusion algebrasof low dimension �rst and then investigate corresponding RCFTs. Indeed, themodular fusion algebras of dimension less than or equal to three satisfying the so-called Fuchs conditions have been classi�ed (see e.g. [MMS,CPR]). In this thesiswe develop several tools, following the ideas of references [E2, E3], which enable usto classify all strongly-modular fusion algebras of dimension less than or equal tofour (for a de�nition of strongly-modular fusion algebras see x2.2). Our approachis based on the known classi�cation of the irreducible representations of the groupsSL(2;Zp�) [NW].Another possibility is to investigate theories where the corresponding fusion al-gebra has a certain structure but may have arbitrary or `big' dimension. Here, aclassi�cation of all selfconjugate fusion algebras which are isomorphic to a poly-nomial ring in one variable, where the distinguished basis has a certain form andwhere the structure constants are less than or equal to one, has been obtained (seee.g. [CPR]1 ). Furthermore, a classi�cation of all fusion algebras which are isomor-phic to a polynomial ring in one variable and where the quantum dimension of theelementary �eld is smaller or equal to 2 is known (this classi�cation contains thefusion algebras occurring in the classi�cation of ref. [CPR]; for a review see e.g.[F]). With the tools developed in this thesis we obtain another partial classi�cation,namely of those strongly-modular fusion algebras of dimension less than 24 where1More precisely, in [CPR] all selfconjugate modular fusion algebras with Nkij � 1, which areisomorphic to Q[x]= < P (x) > and �0 �= 1;�1 �= x;�j �= pj(x) (j = 2; : : : ; n � 1) for somepolynomials P and pj and where the degree of P is n and the degree of the pj is j, have beenclassi�ed (the assumption on the degree of pj was used implicitly in loc. cit. ).



1. INTRODUCTION 5the corresponding representation � of the modular group is such that �(T ) hasnondegenerate eigenvalues. The nondegeneracy of the eigenvalues of �(T ) meansthat the di�erence of any two conformal dimensions of a possibly underlying RCFTis not an integer. The restriction on the dimension is of purely technical natureso that it should be possible to obtain a complete classi�cation of all nondegener-ate strongly-modular fusion algebras with the methods described in this thesis bysystematical use of Galois theory.Secondly, we discuss properties of conformal characters related to rational mod-els which are an important tool in the study of rational models of W-algebras.These conformal characters �h form a �nite set of modular functions satisfying atransformation law �h(A�) =Xh0 �(A)h;h0�h0(�):Here A runs through the full modular group � = SL(2;Z) or through a certainsubgroup G(2) (if the underlying W-algebra is fermionic), and � is a matrix repre-sentation of � or G(2), which depends on the rational model under consideration.It already has been noticed in the literature that conformal characters are verydistinguished modular functions: First of all, similar to the j-function, their Fouriercoe�cients are nonnegative integers and they have no poles in the upper half plane.They sometimes admit interesting sum formulas: These formulas, which allow aninterpretation as generating functions of the spectrum of certain quasi-particles,can be used to deduce dilogarithm-identities (see e.g. [NRT,KRV]). In some casesthe conformal characters have simple product expansions. If one has both, sum andproduct expansions, the resulting identities are what is known in combinatorics asRogers-Ramanujan type identities.In this thesis we add one more piece to this theme. We show that in a numberof cases the conformal characters of some RCFT are uniquely determined by thecorresponding central charge and set of conformal dimensions. More precisely, weshall state a few general and simple axioms which are satis�ed by the conformalcharacters of all known rational models of W-algebras. These axioms state essen-tially not more than the SL(2;Z)-invariance of the space of functions spanned bythe conformal characters, the rationality of their Fourier coe�cients and an upperbound for the order of their poles. The only data of the underlying rational modeloccurring in these axioms are the central charge and the conformal dimensions,which give the upper bound for the pole orders and a certain restriction on theSL(2;Z)-invariance. We then prove that, for various sets of central charges andconformal dimensions, there is at most one set of modular functions which satis�esthese axioms (cf. the main theorem 3 in x4.1).Finally, we describe a mean which can be used to construct conformal charactersusing theta series associated to certain lattices. In particular, we shall apply ourmethod to the case of �ve special rational models. The reason for the choice ofthese models is that the SL(2;Z)-representations on their conformal characters canbe treated in some generality, and that the conformal characters of one of thesemodels (of type W(2; 8) with central charge c = � 316423 ) could not be computedexplicitly by the so far known methods.



6 This thesis is organized as follows: In section 2 we give a short introduction intothe theory of vertex operator algebras and present basic (working) de�nitions ofW-algebras and RCFTs or rational models. Furthermore, this section contains theabstract de�nition of fusion algebras and some of their basic properties. Section 3contains two of our main results: The classi�cation of the strongly-modular fusionalgebras of dimension less than or equal to four and the classi�cation of the nonde-generate strongly-modular fusion algebras of dimension less than 24. In the othersubsections we prove our results and comment on the realization of the fusion alge-bras occurring in our classi�cations contained in x3.1. In x4 we present and proveanother main result of this thesis, namely theorem 3 on uniqueness of conformalcharacters which states that, for several rational models, the central charge andthe set of conformal dimensions together with a set of axioms ful�lled by all knownRCFTs uniquely determine the conformal characters of the rational model underconsideration. In order to prove the main theorem 3 we develop in x4.2 and x4.3some mathematical tools which may be of independent interest. In the next sec-tion, we describe how one can actually construct conformal characters transformingunder a certain congruence representation of the modular group. After presentinga general construction procedure we discuss concrete examples by constructing ex-plicitly the conformal characters of certain rational models. Finally, we draw someconclusions and discuss open questions in x6.Parts of this thesis have already been published:ReferencesW. Eholzer, Fusion Algebras Induced by Representations of the Modular Group, Int. J. Mod. Phys.A 8 (1993), 3495-3507 (see x3).W. Eholzer, On the Classi�cation of Modular Fusion Algebras, preprint BONN-TH-94-18, MPI-94-91, Commun. Math. Phys. (to appear) (see x2.2, x2.3, x3, x7.1-3).W. Eholzer, N. -P. Skoruppa, Modular Invariance and Uniqueness of Conformal Characters,preprint BONN-TH-94-16, MPI-94-67, Commun. Math. Phys. (to appear) (see x2.1, x4).W. Eholzer, N.-P. Skoruppa, Conformal Characters and Theta Series, preprint MSRI No. 012-95,BONN-TH-94-24, Lett. Math. Phys. (to appear) (see x5).R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck, R. H�ubel, Coset Realization of UnifyingW-Algebras, preprint BONN-TH-94-11, DFTT-25/94, Int. Jour. Mod. Phys. A (to appear)(see x7.4).



1. INTRODUCTION 7Notation. We use ZN for Z=NZ, H for the complex upper half plane, � as avariable in H, q = e2�i� , q� = e2�i�� , T = � 1 10 1�, S = � 0 �11 0 �, � for the groupSL(2;Z), and �(n) = fA 2 SL(2;Z) j A � 1I (mod n)gfor the principal congruence subgroup of SL(2;Z) of level n. Recall that a congru-ence subgroup of � is a subgroup containing �(n) for some n. We use � for theDedekind eta function �(�) = e�i�=12 Yn�1(1� qn):The group � acts on H byA� = a� + bc� + d (A = � a bc d�):For a complex vector valued function F (�) on H, and for an integer k we writeF jkA for the function de�ned by(F jkA)(�) = (c� + d)�kF (A�):Finally, for a matrix representation �: � ! GL(n; C ) and an integer k we useMk(�) for the vector space of all holomorphic maps F :H! C n (= column vectors)which satisfy F jkA = �(A)F for all A 2 �, and which are bounded in any regionIm(�) � r > 0. Thus, if � is the trivial representation, then Mk(�) is the space ofordinary modular forms on � and of weight k.



8 2. Rational conformal �eld theories and fusion algebrasIn order to proceed towards a classi�cation of RCFTs one needs precise de�-nitions of the objects under consideration. One attempt to formulate the axiomsof RCFTs mathematically rigorous starts with the de�nition of vertex operatoralgebras (see e.g. [FHL]). We summarize some basic facts about vertex operatoralgebras, their representations, intertwining operators and fusion algebras in thissection. In particular, we concentrate on those aspects which are closely related toconformal �eld theory. We do not give all the mathematical details but rather tryto describe the basic structures one needs for dealing with conformal �eld theoryproblems in the language of vertex operator algebras. The results in section x2.1serve as (mathematically) motivating introduction and are not really needed in thefollowing.This section is organized as follows: the three parts of section 2.1 contain thede�nition of vertex operator algebras (VOAs), their representations and intertwin-ing operators. Furthermore, we give working de�nitions ofW-algebras and rationalmodels and review some basic theorems. In x2.2 we de�ne various types of fusionalgebras and comment on the relation of abstract fusion algebras to fusion algebrasassociated to RCFTs. Finally, in x2.3 we state and prove some basic lemmas onmodular fusion algebras which we need in x3.2.1 Vertex operator algebras, W-algebras and rational models.W-algebras are a special kind of vertex operator algebras. For the reader's conve-nience we repeat the de�nition of vertex operator algebras and their representations(see e.g. [FHL,FZ]) and comment on their relation to conformal �eld theory.Vertex algebras and vertex operator algebras.Let us �rst comment on some basic properties of conformal �eld theories mo-tivating the de�nition of vertex algebras below. Conformal �eld theories in twospace time dimensions consist of �elds �(z; �z) which are parameterized by coor-dinates z and �z. These theories live on a cylinder with time coordinate t andspace coordinate x which is periodic with period 2�. The coordinates z; �z are givenby z = et+ix and �z = et�ix, respectively. The fact that conformal �eld theoriesdescribe massless phenomena and that they live in two space time dimensions al-lows to consider right and left movers (i.e. holomorphic and antiholomorphic �elds)separately (the corresponding �elds are called chiral). We will concentrate in thefollowing only on holomorphic �elds. Holomorphy on the cylinder implies that a�eld �(z) (corresponding to the formal power series Y (�; z) below) has a Laurentseries expansion �(z) =Xn2Zz�n�1�nwhere the `modes' �n are given by �n = Resz (zn�(z)). In addition to the holo-morphic chiral �elds there exists the vacuum state (denoted by 1I) such that themap � := �(0)1I ! �(z) is injective. Translational covariance is implemented bythe generator L�1 which acts via(L�1�) (z) = ddz�(z)



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 9on the �elds. Furthermore, locality implies that�(z) = Xm2Zz�m�1�mwhere �m is given by �m = Resz (zm�(z) ). Using translation invariance of thevacuum we �nd thatR(�(z) (w))1I = Xm2Z(z � w)�m�1�m(w)1Iwhere the left hand side as to be understood as the radial ordered product of thetwo �elds R(�(z) (w)) := � �(z) (w) jzj > jwj (w)�(z) jzj < jwj(for details see e.g. [Gi]). The �elds �m(w) are given by�m(w) = Resz�w ((z � w)mR(�(z) (w))) :Using Cauchy integration one can easily calculate the n-th mode of �k(w) and thusobtains the so-called Jacobi identity, i.e. the formula in axiom (3) in the de�nitionof a vertex algebra below. For k � �1 the �eld �k(w) is (up to normalization)the `normal ordered product of � ddz ��m�1 �(z) and  (z)' and usually denoted by1(�m�1)!N(@�m�1�;  )(z) in the physical literature. Finally, time translations areimplemented by the energy generator L0 which gives rise to a grading with re-spect to the energy. Covariance with respect to this grading and the full conformalcovariance, i.e. a representation of the Virasoro algebra on the space of �elds, com-pletes the properties of conformal �eld theories which motivate the mathematicallyrigorous de�nition of vertex algebras.Definition (Vertex algebra). A vertex algebra is a complex Z-graded vec-tor space V =Mn2ZVn(an element � 2 Vn is said to be of dimension n), together with a linear mapV ! (EndV )[[z; z�1]]; � 7! Y (�; z) =Xn2Z�n z�n�1;(the elements of the image are called vertex operators), and two distinguishedelements 1 2 V0 (called the vacuum) and ! 2 V2 (called the Virasoro element)satisfying the following axioms:(1) The map � 7! Y (�; z) is injective.(2) For all �;  2 V there exists an n0 such that �n = 0 for all n � n0.(3) For all �;  2 V and m;n 2 Z one has(�m )n =Xi�0(�1)i�mi � (�m�i n+i � (�1)m m+n�i�i) :



10 (For m < 0 the sum on the right hand side is in�nite; in this case thisidentity has to be read argumentwise, i.e. it has to be understood in thesense that the left hand side applied to an arbitrary element of V equals theright hand side applied to the same element: Note that this makes sensesince by (2) in the sum on the right hand side all but a �nite number ofterms become 0 when evaluated at an element of V .)(4) Y (1; z) = 1IV .(5) Writing Y (!; z) =Pn2ZLnz�n�2 one hasL0jVn = n 1IVn ;Y (L�1�; z) = ddzY (�; z);[Lm; Ln] = (m� n)Lm+n + �m+n;0 (m3 �m) c121IV ;for all n;m 2 Z, � 2 V , where c is a complex constant (called the centralcharge or rank).Remarks.(1) For m � 0 property (3) is equivalent to[ m; �n] =Xi�0 �mi �( i�)m+n�i:where the left hand side denotes the ordinary commutator of endomor-phisms.(2) This commutator identity implies in particular [L0; �n] = (L�1�)n+1 +(L0�)n, hence [L0; �n] = (d�1�n)�n for � 2 Vd (here we used (L�1�)n+1 =(�n� 1)�n from axiom (5)). From this one obtains�nVm � Vm+d�n�1:(3) Although elements of negative dimension do not turn up directly in physicalapplications, ghosts (�elds of negative dimension) quite often serve as animportant tool in free �eld constructions. The corresponding structures cane.g. be described in terms of vertex algebras.Symmetry algebras of conformal �eld theories have additional properties moti-vating theDefinition (Vertex operator algebra). A vertex algebra is called a vertexoperator algebra (VOA) if(1) the spectrum of L0 is bounded from below by 0, and(2) the graded components Vn of V are �nite dimensional.Of particular interest are special elements of VOAs which are lowest weightswith respect to the sl(2) or Virasoro algebra inside the VOA.



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 11Definition ((Quasi-)primary elements of a VOA). An element  2 Vd ofa VOA V is called quasi-primary of dimension d if L1 = 0, i.e.  2 ker(L1), andprimary of dimension d if Ln = 0 for all n > 0.Remark. Note that for a quasi-primary element  of dimension d one has  n �1 = 0 for n � 0 and [Lm;  n] = ((d�1)(m+1)�n) n+m (m = 0;�1). For primaryelements this formula holds true without any restrictions on m.All known symmetry algebras arising in conformal �eld theory are generated byquasi-primary elements.Definition (Quasi-primary generated VOA). A vertex operator algebraV is called quasi-primary generated ifV = �1n=0(L�1)n ker(L1):Remark. All homogeneous elements of a quasi-primary generated VOA arelinear combinations of terms of the form  n � 1 for some quasi-primary  .In order to make closer contact with physics we need the notion of an `invariant'bilinear form on VOAs.Definition (Invariant bilinear form of a VOA). A bilinear form (�; �) ona VOA V is said to be invariant if it satis�es the condition:( nu; v) = (�1)d Xm�0 1m! (u; (Lm1  )�n�m�2(d�1)v)for all u; v 2 V and  2 Vd.Remark. Note that for  2 Vd quasi-primary the invariance condition reads( nu; v) = (u;  �n�2(d�1)v):Therefore, one de�nes for a quasi-primary element  2 Vd yn :=  �n�2(d�1);in particular Lyn = L�n.For quasi-primary generated VOAs there always exists a `natural' invariant bi-linear form.Theorem (Existence of an invariant bilinear form of a VOA [L]). LetV be a quasi-primary generated simple VOA. Then one has(1) dim(V0) = 1, and(2) the invariant bilinear form (�; �) on V de�ned by:(Vn; Vm) = 0; n 6= mand( m � 1; u) � 1 =  ymu; u;  m � 1 2 Vn and quasi-primary  is nondegenerate.Of course we also need the notion of



12 Modules of vertex operator algebras and intertwining operators.Definition (Representation of a VOA). A representation of a VOA V isa linear map�:V ! (EndM)[[z; z�1]]; � 7! YM (�; z) =Xn2Z�(�)nz�n�1;where M is an N-graded complex vector spaceM =Mn2NMn;such that the following axioms are satis�ed:(1) For all � 2 Vd and m;n one has �(�)nMm �Mm�n�1+d:(2) For all � 2 V and v 2 M there exists an n0 such that �(�)nv = 0 for alln � n0.(3) For all �;  2 V and all m;n 2 Z one has�(�m )n =Xi�0(�1)i�mi � (�(�)m�i�( )n+i � (�1)m�( )m+n�i�(�)i) ;where again this identity has to be read argumentwise.(4) YM (1; z) = 1IM :(5) Using YM (!; z) = Pn2Z�(L)nz�n�2, i.e. �(L)n = �(!)n+1 (note that thisequality is not an identity involving some special L 2 V , but introducesonly a suggestive abbreviation for the right hand side), one hasYM (L�1�; z) = ddzYM (�; z);[�(L)m; �(L)n] = (m� n)�(L)m+n + �m+n;0 (m3 �m) c121IM ;for all n;m 2 Z, � 2 V , where c is the central charge of V .The representation � is called irreducible if there is no nontrivial subspace of Mwhich is invariant under all �(�)n.In the following we shall occasionally use the term V -module M instead of rep-resentation � : V ! End(M)[[z; z�1]].Remarks.(1) Note that a vertex operator algebra V is a V -module itself via � 7! Y (�; z)(use remark (2) after the de�nition of vertex operator algebra for verifyingaxiom (1) of a representation).(2) A VOA is called simple if it is irreducible as a module of itself.(3) For a given module M of a VOA V there exists a dual module M 0 of Vgiven by: M 0 = �n2NM 0n := �n2NM�n



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 13and < YM 0(�; z)w0; w >=< w0; YM(ezL1(�z�2)L0�; z�1)w >where < �; � > is the natural pairing between M 0 and M . Furthermore,(YM ;M) is irreducible if and only if (YM 0 ;M 0) is irreducible and (YM 0 ;M 0)is isomorphic to (YM ;M) [FHL].As a simple consequence of the de�nition we have theLemma. Let �:V ! End(M)[[z; z�1]] be an irreducible representation of VOAwith dim(Mn) <1 (n 2 N). Then there exists a complex constant hm such that�(L)0jMn = (hM + n) 1IMnfor all n 2 N.Proof. By axiom (1) of a vertex operator algebra representation we have that�(L)0M0 � M0. Hence, since M0 is �nite dimensional, there exists an eigenvectorv of �(L)0 in M0. Let hM be the corresponding eigenvalue. Since � is irreduciblethe vector space M is generated by the vectors �(�)nv (� � Vd, d 2 N , n 2 Z);for proving this, note that the subspace spanned by the latter vectors is invariantunder all �(�)n as can be deduced from axiom (3)). For m 2 N let M 0m be thesubspace generated by all �(�)nv with � 2Md and d�n�1 = m. By axiom (1) wehave M 0m �Mm, and since M is the sum of all the M 0m we conclude M 0m =Mm.On the other hand, one has [�(L)0; �(�)n] = (d�n�1)�n for all n and all � 2 Vd(similarly as in remark (2) after the de�nition of vertex operator algebras). Fromthis we obtain �(L)jM 0n = (hM + n) 1IM 0n . This proves the lemma. �The lemma suggests the followingDefinition (Character of a VOA module). LetM be an irreducible mod-ule of the vertex operator algebra V (with respect to the representation �) andassume that dim(Mn) < 1 (n 2 N). Then the character �M of M is the formalpower series de�ned by�M (q) := trM (q�(L)0�c=24) := qhM�c=24Xn2N dim(Mn)qnwhere c is the central charge of V and hM the conformal dimension of M .The most important class of VOAs is given by `rational' vertex operator algebras:Definition (Rationality of a VOA). A vertex operator algebra V is calledrational if the following axioms are satis�ed:(1) V has only �nitely many inequivalent irreducible representations M .(2) For all inequivalent irreducible representations M one has dim(Mn) < 1(n 2 N).(3) Every �nitely generated representation of V is equivalent to a direct sum of�nitely many irreducible representations.



14 Here the notions equivalence and direct sum are to be understood in the obvioussense. Furthermore, �nitely generated means that there exists a �nite dimensionalsubspace V 0 of V such that the smallest vectorspace containing V 0 which is invariantunder all �( )n (n 2 Z;  2 V 0) equals V (this should not be confused with the(di�erent) notion of �nitely generated W-algebras cf. below).The importance of the rational algebras becomes clear by the following theorem:Theorem (Zhu [Zh]). LetMi (i = 0; : : : ; n�1) be a complete set of inequivalentirreducible modules of the rational vertex operator algebra V . Assume, furthermore,that Zhu's �niteness condition is satis�ed, i.e.dim(V=(V )�2V ) <1where (V )�2V � V is de�ned by (V )�2V := f��2 j�;  2 V g: Then the conformalcharacters �Mi become holomorphic functions on the upper complex half plane Hby setting q = e2�i� with � 2 H. Furthermore, the space spanned by the conformalcharacters �Mi (i = 0; : : : ; n�1) is invariant under the natural action (�(�); A) 7!�(A�) of the modular group SL(2;Z).Naively one would like to talk about the multiplicity of a certain representationof a VOA in the tensor product of two VOA representations. However, the tensorproduct of two representations does in general not carry the structure of a VOArepresentation. Instead, we use the notion of intertwining operators and fusionrules.Definition (Intertwining operator). An intertwining operator I of threeirreducible modules (�i;M i); (�j;M j); (�k;Mk) of a VOA V satisfying dim(M�n ) <1 (n 2 N ;� = i; j; k) is a linear mapI:M i ! z�hi�hj+hk Hom(M j;Mk)[[z; z�1]];v 7! I(v; z) = z�hi�hj+hk Xn2ZI(v)nz�n�1;such that the following axioms are satis�ed:(1) For all v 2M id and m;n one has I(v)nM jm �Mkm�n�1+d:(2) For all � 2 V , v 2M i and all m;n 2 Z one hasI(�i(�)mv)n =Xl�0(�1)l�ml ���k(�)m�lI(v)n+l � (�1)mI(v)m+n�l�j(�)l� ;where again this identity has to read argumentwise.(3) For all v 2M i one has I(L�1v; z) = ddz I(v; z).We call (M i;M j;Mk) the type of the intertwining operator I.Remark. Note that an irreducible representation � of a simple VOA is an in-tertwining operator of type (V;M;M).We are now able to de�ne the fusion rule coe�cients which will be the startingpoint of our results on the classi�cation of fusion algebras in x3.



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 15Definition (Fusion rule coefficient). The fusion rule coe�cient Nki;j ofthree irreducible modules (�i;M i); (�j;M j); (�k;Mk) of a VOA V which satisfydim(M�n ) <1 (n 2 N ;� = i; j; k) is the dimension of the space of the correspondingintertwining operators.This de�nition can be viewed as a natural generalization of the situation forsimple Lie algebras. In the case of simple Lie algebras the dimension of the spaceof intertwing operators between three irreducible representations gives exactly themultiplicity of the third representation in the tensor product of the �rst two repre-sentations. This also provides us with a motivation for calling property (3) in thede�nition of vertex algebras and in the de�nition of representation of VOAs andproperty (2) in the de�nition of intertwining operators `Jacobi identity'.Remark. LetM i (i = 0; : : : ; n�1) be a complete set of inequivalent irreduciblemodules of a simple rational VOA and assume that all fusion coe�cients are �nite,i.e. Nki;j <1. It is then proven -under certain further assumptions- that (for detailssee [HL,Hu]):(1) The representation �0 of the VOA acting on itself is isomorphic to its dualrepresentation �00 .(2) The following equalities for the fusion coe�cients hold trueN j0;i = �i;j ; N0i;j = �i;j0 ; Nki;j = Nkj;i; Nki;j = Nk0i0;j0 ;nXk=0Nki;jNmk;l = nXk=0Nmi;kNkj;l;where i; j; l;m run from 0 to n� 1.In this case one can interpret the fusion coe�cients as structure constants of aunital associative commutative algebra, the fusion algebra (see x2.2 for a abstractde�nition of fusion algebras).W-algebras and rational models.One of our aims in this section is to make the notion of W-algebras and rationalmodels mathematically precise. Note, however, that the de�nitions below justcollect the basic properties of the objects called `W-algebras' and `rational models'in the physical literature. We would like to stress therefore that our de�nitions canonly serve as working de�nitions and it might be necessary to change them in thefuture. Nevertheless, we think that the de�nitions below will among others help toclarify notions.Definition (W-algebra). A simple vertex operator algebra V is called W-algebra if it is quasi-primary generated.All known W-algebras which de�ne rational models are `�nitely generated'. Wemake the notion of being `�nitely generated' precise as follows. For any subspaceW � V of a W-algebra V denote by U(W ) the smallest subspace of V which isinvariant under  m ( 2W ;m � �1) and contains 1. A subspace V 0 of aW-algebraV is called a generating subspace if V 0 � ker(L1) and V = U(V 0).



16 Definition (Finitely generated W-algebra). A W-algebra V is called�nitely generated if there exists a �nite dimensional subspace V 0 � ker(L1) gener-ating V , i.e. V is the smallest vectorspace which contains 1 and is invariant underall  m ( 2 V 0;m � �1).Remark. A generating subspace V is called minimally generating ifVn \ U(�i<nVi) = f0g (n 2 N):For any generating subspace V there obviously exists a minimal generating subspaceV̂ contained in V . For a generating subspace V with V = �ni=1Vdi and dim(Vdi) =ki de�ne the type of V by (dk11 ; : : : ; dknn ). Furthermore, de�ne an ordering on thetype of generating subspaces by:(dk11 ; : : : ; dknn ) < (d0k011 ; : : : ; d0k0n0n0 ) if(1) dkii = d0k0ii for i < i0 � min(n; n0) and either di0 < d0i0 or di0 = d0i0 andki0 < k0i0 or(2) n < n0 and dkii = d0k0ii for i = 1; : : : ; n.In the physical literature the type of W-algebras is used frequently:Definition (Type of a W-algebra). A �nitely generated W-algebra V issaid to be of typeW(dk11 ; : : : ; dknn ) if the minimum (with respect to the order above)of the type of all generating subspaces of V is given by (dk11 ; : : : ; dknn ) .Remarks.(1) Examples of W-algebras can be constructed directly from the Virasoro andKac-Moody algebras. They are of type W(1n), respectively W(2) for theVirasoro algebra [FZ].(2) Starting from a Kac-Moody algebra associated to a simple Lie algebra Kone can construct a 1-parameter family WK of W-algebras, the parameterbeing the central charge (see e.g. [BS]) (Note that this construction is dif-ferent from the one mentioned in (1)). For all but a �nite number of centralcharges these W-algebras are of type W(d1; : : : ; dn) where n is the rank ofK and the di (i = 1; : : : ; n) are the orders of the Casimir operators of K.The remaining ones, called truncated, are of typeW(di1 ; : : : ; dir) where thedik form a proper subfamily of the di above. Note that theW-algebras con-structed from the Virasoro algebra mentioned in (1) are exactly the CasimirW-algebras associated to A1. The rational models of Casimir W-algebras(sometimes called minimal models) have been determined, assuming certainconjectures, in [FKW] (some corresponding data can be also be found inAppendix 7.4).(3) In the physical literature one refers to a �nitely generated W-algebra bygiving their type (although this does not specify the W-algebra uniquely inmany cases).One can try to construct �nitely generatedW-algebras directly from their axioms(see e.g. [KW,BFKNRV]). In this direct construction ofW-algebras one starts witha �nite number of `simple' elements which are de�ned by



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 17Definition (Simple elements of a W-algebra). A quasi-primary element� of a simple W-algebra is called simple if(�;  m��1 � 1) = 0 (m � �1; ; � 2 ker(L1))where (�; �) is the invariant bilinear form whose existence is guaranteed by one ofthe theorems given above.One of the main ingredients in the direct construction of W-algebras is thefollowing commutator formula (see e.g. [Na,FRT]):Theorem (Commutator formula for W-algebras). Let � and  be twoquasi-primary elements of aW-algebra V of dimension d; d0 � 1, respectively. Thenthere exist quasi-primary elements �d00 2 Vd00 (0 � d00 < d+ d0) such that[�n;  m] = d+d0�1Xd00=0 p(d; d0; d00;m; n)�d00d00+1�d�d0+m+nwhere the p(d; d0; d00;m; n) are universal polynomials given byp(d; d0; d00;m; n) =Xr+s=d+d0�1�d00(�1)r r! s! �D � rs ��D0 � sr ��D �mr ��D0 � ns �and D = 2(d� 1) and D0 = 2(d0 � 1).Proof. For the proof we need the simpleLemma. For a quasi-primary element  2 Vd and integers 0 � a � b one has�La�1 �b = (�1)a+1a!�ba� b�aand [La1; Lb�1] = (a!)2�ba��2d� 1 + ba �Lb�a�1  :Proof. We leave the easy calculation to the reader.With remark (1) after the de�nition of vertex algebras we have[�m;  n] =Xi�0 �mi �(�i )m+n�i:Since V is quasi-primary generated we know that there exist quasi-primary elements�d00 2 Vd00 such that �0 = d+d0�1Xd00=0 Ld+d0�1�d00�1 �d00 :



18Assume w.l.o.g. that d � d0. Using that � is quasi-primary and applying the Lemmaabove we �nd�i = 1Qin=0(2d� 2� n) �ad(L1)i�0� = �i!�2d� 2i ���1 Li1�0 = �i!�2d� 2i ���1Xd00 [Li1; Ld+d0�1�d00�1 ]�d00= i!�2d� 2i ��1Xd00 �d+ d0 � 1� d00i ��d+ d0 + d00 � 2i �Ld+d0�1�d00�i�1 �d00 :Since�Ld+d0�1�d00�i�1 �d00�m+n�i =(�1)d+d0�1�d00�i+1(d+ d0 � 1� d00 � i)!� m+ n� id+ d0 � 1� d00 � i��d00m+n+d0+1�d�d00we �nd [�n;  m] = d+d0�1Xd00=0 p(d; d0; d00;m; n)�d00m+n+d0+1�d�d00wherep(d; d0; d00;m; n) = (�1)d+d0�d00(d+ d0 � 1� d00)! �d+d0�1�d00Xi=0 �mi ��2d� 2i ��1�d+ d0 + d00 � 2i ���m � n+ d+ d0 � d00 � 2d+ d0 � 1� d00 � i �(here we have used �xr� = (�1)r�r�x�1r �). Finally, note that this polynomial equals(up to a constant factor depending on d; d0 and d00)Xr+s=d+d0�1�d00(�1)r r! s! �D � rs ��D0 � sr ��D �mr ��D0 � ns �where D = 2(d� 1) and D0 = 2(d0 � 1) as one can e.g. see by comparing the zerosof the two polynomials. �Remark. Note that polynomials similar to the polynomials above occur in thetheory of modular forms (cf. [BEH3] and [Za2]).We make the notion of `rational models' precise.Definition (Rational model). A rational model (or rational model of a W-algebra) is a rational W-algebra V which satis�es Zhu's �niteness condition. Thee�ective central charge of a rational model is de�ned by~c = c� 24minfhMig



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 19where Mi runs through a complete set of inequivalent irreducible representationsof V .Remarks.(1) In the literature rational models are frequently called rational conformal�eld theories (RCFTs) and we will also do so.(2) Examples of rational models are given by certain vertex operator algebrasconstructed from Kac-Moody algebras [FZ] or the Virasoro algebra [Wa](for more details see also below).(3) One can show that the e�ective central charge of a rational model with aminimal generating subspace of dimension n lies in the range [EFH2NV]0 � ~c < n:(4) Historically the term `rational models' was used in the physical literature[BPZ] for �eld theories in which the operator product expansion of any twolocal quantum �elds decomposes into �nitely many conformal families froma �nte set.The following theorem justi�es the terminology `rational models':Theorem ([AM]). Assume that the representation of the modular group actingon the space spanned by the conformal characters of a rational model is unitary.Then the central charge and the conformal dimensions of the rational model arerational numbers.2.2 De�nition of fusion algebras.Consider a rational model consisting of a W-algebra V and its (�nitely many)inequivalent irreducible modulesMi (i = 0; : : : ; n�1). HereM0 denotes the vacuumrepresentation, i.e. the representation of V acting on itself. Recall, that for a moduleM of V there is the notion of the dual (or adjoint or conjugate) module M 0 andthat one has (M 0)0 �=M . Since V is rational the conjugation de�nes a permutation� of order two of the irreducible modules M 0i �=M�(i).The structure constants Nki;j of the `fusion algebra' associated to V are given bythe dimension of the corresponding space of intertwining operators of three modules(cf. x2.1). From now on we will assume that the fusion coe�cients related to therational models under consideration are always �nite.One of the important properties of the Nki;j which is well known in the phys-ical literature is the fact that the numbers Nki;j can be viewed as the structureconstants of an associative commutative algebra, the fusion algebra. In the ter-minology of vertex operator algebras a corresponding statement is proven undercertain assumptions in a recent series of papers [Hu] (see also the remark below thede�nition of fusion coe�cients in x2.1). In the abstract de�nition of fusion algebrasthe properties of all known examples associated to RCFTs are collected.Definition (Fusion algebra). A fusion algebra F is a �nite dimensionalalgebra over Q with a distinguished basis �0 = 1I; : : : ;�n�1 (n = dim(F)) satisfyingthe following axioms:(1) F is associative and commutative.



20 (2) The structure constants Nki;j (i; j; k = 0; : : : ; n � 1) with respect to thedistinguished basis �i are nonnegative integers.(3) There exists a permutation � 2 Sn of order two such that for the structureconstants in (2) one hasN0i;j = �i;�(j); N�(k)�(i);�(j) = Nki;j ; i; j; k = 0; : : : ; n� 1:Remarks.(1) An isomorphism � of two fusion algebras F ;F 0 is an isomorphism of unitalalgebras which maps the distinguished basis to the distinguished basis, i.e.there exists a permutation � 2 Sn such that �(�i) = �0�(i) (i = 0; : : : ; n�1).(2) The tensor product of two fusion algebras F and F 0 is again a fusion algebra,its distinguished basis is given by �i1 
 �0i2 (i1 = 0; : : : ; dim(F )� 1; i2 =0; : : : ; dim(F 0)� 1).(3) The permutation � of order two is called charge conjugation. Fusion alge-bras with trivial charge conjugation are called selfconjugate.(4) Note that it is an open question whether two nonisomorphic fusion algebrascan be isomorphic as unital algebras.It is known that fusion algebras arising from RCFTs have additional propertiesbelieved to be generic. One of these additional properties is their relation to confor-mal characters. Recall, that one can show for rational vertex operator algebras sat-isfying Zhu's �niteness condition [Zh] that the conformal characters de�ned in x2.1become holomorphic functions in the upper complex half plane by setting q = e2�i� .Furthermore, for these RVOAs the space spanned by the �nitely many conformalcharacters is invariant under the action of the modular group � = SL(2;Z) (notethat it is conjectured that Zhu's �niteness condition is not a necessary assumptionfor rational VOAs). It was conjectured in 1988 by E. Verlinde [Ve] that for anyrational model there exists a representation � : �! GL(n; C ) of � such that�i(A�) = (�ijA)(�) = n�1Xm=0 �(A)j;i�j(�) A 2 �N0i;j = �(S2)i;jNki;j = n�1Xm=0 �(S)i;m�(S)j;m�(S�1)m;k�(S)0;m :We will refer to this formula as `Verlinde's formula' in the following. The aboveconjecture motivates the de�nition of modular fusion algebras.Definition (Modular fusion algebra). Amodular fusion algebra (F ; �)is a fusion algebra F together with a unitary representation � : SL(2;Z)! GL(n; C )satisfying the following additional axioms:(1) �(S) is a symmetric and �(T ) is a diagonal matrix.(2) N0i;j = �(S2)i;j ,(3) Nki;j =Pn�1m=0 �(S)i;m�(S)j;m�(S�1)m;k�(S)0;m



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 21where Nki;j (i; j; k = 0; : : : ; n� 1) are the structure constants of F with respect tothe distinguished basis.Remarks.(1) Note that property (3) already implies that F is associative and commuta-tive.(2) Two modular fusion algebras (F ; �) and (F 0; �0) are called isomorphic if:1) F and F 0 are isomorphic as fusion algebras, 2) � and �0 are equivalent,3) �(T )i;j = �0(T )�(i)�(j) where � 2 Sn is the permutation de�ned by theisomorphism of the fusion algebras.(3) The tensor product of two modular fusion algebras (F ; �); (F 0; �0) is de�nedby (F 
 F 0; �
 �0) and is again a modular fusion algebra.(4) A (modular) fusion algebra is called composite if it is isomorphic to a tensorproduct of two nontrivial (modular) fusion algebras. Here a (modular)fusion algebra is called trivial if it is one dimensional. A noncomposite(modular) fusion algebra is also called simple.(5) Note that for a modular fusion algebra with trivial charge conjugation(�(S2) = 1I) the matrix �(S) is real.(6) For modular fusion algebras associated to rational models the eigenvaluesof �(T ) are given by the conformal dimensions hi (i = 0; : : : ; n� 1) of theirreducible modules Mi (hi is the smallest L0 eigenvalue in the moduleMi)and the central charge c of the theory:�(T ) = diag(e2�i(h0�c=24); : : : ; e2�i(hn�1�c=24)):(7) Quite often nonisomorphic modular fusion algebras are isomorphic as fusionalgebras.In the later sections we will investigate which representations of � are related tomodular fusion algebras.Definition (Admissible representation of SL(2;Z)). A representation ofthe modular group � : SL(2;Z)! GL(n; C ) is called conformally admissible orsimply admissible if there exists a fusion algebra F such that (F ; �) is a modularfusion algebra.It is known that modular fusion algebras associated to rational models havemany additional properties. In particular, the central charge and the conformaldimensions are rational [Va,AM]. Furthermore, there exist certain compatibilityconditions between the central charge c, the conformal dimensions hi and the fusioncoe�cients Nkij (the so-called Fuchs conditions) (see e.g. [MMS],[CPR]2):2Note that the formula connecting the central charge with the conformal dimension in [CPR]contains a misprint.



22 n(n� 1)12 � n�1Xm=0�hi � c24� 2 16(Nnf1g);n�1Xm=0 �(hi + hj + hk + hl)Nmi;jN lk;m � hm(Nmi;jN lk;m +Nmi;kN lj;m +Nmi;lNmk;j)�� 12  n�1Xm=0Nmi;jN lk;m! 1� n�1Xm=0Nmi;jN lk;m! 2 NIn many contexts the so-called quantum dimensions of the irreducible represen-tations of the symmetry algebra are of particular interest.Definition (Quantum dimension). Let V be a rational model. Then the realnumber �Mi := lim�!i1 �i(�)�0(�)associated to an irreducible representationMi of V is called the quantum dimensionof Mi.Of course, the quantum dimensions are nonnegative. If there exists a unique irre-ducible representationM� with minimal conformal dimension h� then the quantumdimensions are given by �Mi = �(S)i;��(S)0;� :In the rest of this thesis we will extensively rely on the observation that inall known examples of RCFTs the conformal characters are modular functions onsome congruence subgroup of �. Therefore, the corresponding representation �factors through a representation of �(N). Here we have used �(N) for the principalcongruence subgroup of � of level N�(N) = f A 2 � j A � 1I mod N g:Definition (Strongly-modular fusion algebra). A modular fusion alge-bra (F ; �) is called strongly-modular if the kernel of the representation � containsa congruence subgroup of �.In this case � de�nes a representation of SL(2;ZN ) and is called a level Nrepresentation of � (here and in the following we use ZN for Z=NZ). A level Nrepresentation � will be called even or odd if �(S2) = 1I or �(S2) = �1I, respectively.Furthermore, one can show that for strongly-modular fusion algebras associated torational models the representation � is de�ned over the �eld K of N -th roots ofunity, i.e. � : �! GL(n;K) if the corresponding conformal characters are modularfunctions on some congruence subgroup [ES1]. Indeed, we expect that this is truefor all RCFTs thus motivating the following de�nition and conjecture.Definition (K-rational representation of SL(2;Z)). A level N represen-tation � : SL(2;Z)! GL(n; C ) is called K-rational if it is de�ned over the �eld Kof the N -th roots of unity, i.e. � : SL(2;Z)! GL(n;K).



2. RATIONAL CONFORMAL FIELD THEORIES AND FUSION ALGEBRAS 23Conjecture. All modular fusion algebras associated to rational models arestrongly-modular fusion algebras and the corresponding representations of the mod-ular group are K-rational.2.3 Some simple properties of modular fusion algebras.In this section we prove some simple lemmas about modular fusion algebraswhich will be needed in the proofs of the main theorems in x3.Lemma 1. Let (F ; �) be a modular fusion algebra. Assume that �(T ) has non-degenerate eigenvalues. Then � is irreducible.Proof. Assume that � is reducible and �(T ) has nondegenerate eigenvalues.Then �(S) has block diagonal form and therefore �(S)0;m = 0 for some m. This isa contradiction to property (3) in the de�nition of modular fusion algebras.Definition ((Non-)degenerate modular fusion algebra). A modularfusion algebra (F ; �) is called degenerate or nondegenerate if �(T ) has degen-erate or nondegenerate eigenvalues, respectively.Lemma 2. Let �; �0 : �! GL(n; C ) be equivalent, irreducible, unitary represen-tations of the modular group. Assume that �(T ) = �0(T ) is a diagonal matrix withnondegenerate eigenvalues. Then there exists a unitary diagonal matrix D suchthat � = D�1�0D.Proof. Since � and �0 are equivalent there exists a matrix D0 such that � =D0�1�0D0. Since �(T ) = �0(T ) is a diagonal matrix with nondegenerate eigenval-ues D0 is diagonal. Finally, the irreducibility of � implies by Schur's lemma thatD0+D0 = �1I for some positive real number � so that D = 1p�D0 satis�es thedesired properties.Lemma 3. Let (F ; �) and (F 0; �0) be two nondegenerate modular fusion algebras.Assume that � is equivalent to �0 and �(T ) = �0(T ). Then F and F 0 are isomorphicas fusion algebras.Proof. The lemma follows directly from the de�nition of (modular) fusion al-gebras and Lemma 2.Lemma 4. Let (F ; �) be a modular fusion algebra. Then � is not isomorphic toa direct sum of one dimensional representations.Proof. If � is the direct sum of one dimensional representations �(S) is also adiagonal matrix. This implies that one cannot apply Verlinde's formula giving acontradiction since we have assumed that (F ; �) is a modular fusion algebra.Since there are exactly 12 one dimensional representations of � one has thefollowing trivial lemma.Lemma 5.(1) Let � be a one dimensional representation of �. Then � is equivalent to oneof the following representations�(S) = e2�i 3n4 ; �(T ) = e2�i n12 ; n = 0; : : : ; 11:



24 (2) Let (F ; �) be a one dimensional modular fusion algebra. Then (F ; �) isstrongly-modular, F is trivial and � is given by�(S) = (�1)n; �(T ) = e2�in6 ; n = 0; : : : ; 5:Lemma 6. Let (F ; �) be a strongly-modular fusion algebra associated to a ratio-nal model. Then � is K-rational.Proof. For a rational vertex operator algebra satisfying Zhu's �niteness con-dition the characters are holomorphic functions on the upper complex half plane.Since we have assumed that (F ; �) is strongly-modular, � is a level N representa-tion for some N . This implies that the characters are modular functions on �(N).Moreover, their Fourier coe�cients are positive integers so that one can apply thetheorem on K-rationality of ref. [ES1] implying that � is K-rational.Although Lemma 6 will not be used in the following it provides us with a goodmotivation for looking at K-rationality of level N representations.



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 253. On the classi�cation of modular fusion algebrasIn this section we develop several tools, following references [E2,E3], which enableus to classify all strongly-modular fusion algebras of dimension less than or equal tofour (for a de�nition of strongly-modular fusion algebras see x2.2). Our approachis based on the known classi�cation of the irreducible representations of the groupsSL(2;Zp�) [NW].With the tools developed in this section we obtain another partial classi�cation,namely of those strongly-modular fusion algebras of dimension less than 24 wherethe corresponding representation � of the modular group is such that �(T ) hasnondegenerate eigenvalues. The nondegeneracy of the eigenvalues of �(T ) meansthat the di�erence of any two conformal dimensions of a possibly underlying RCFTis not an integer. The restriction on the dimension is of purely technical nature sothat it should be possible to obtain a complete classi�cation of all nondegeneratestrongly-modular fusion algebras with the methods described in this thesis by usingsystematically Galois theory.This section is organized as follows: In x3.1 state our main results on the clas-si�cation of strongly-modular fusion algebras. Section 3.2 contains some remarksabout the realization of strongly-modular fusion algebras in rational models. In thenext four subsections we give a short review of the classi�cation of the irreduciblerepresentations of SL(2;Zp�) which will be the main tool in the proof of the maintheorems. The proofs of our main theorems 1 and 2 are contained in the last threesubsections. Finally, the three Appendices 7.1-7.3 at the end of the thesis containthe explicit form of the modular fusion algebras occurring in our classi�cations aswell as the explicit form of the irreducible level p� representations of dimension lessthan or equal to four.3.1 Results on the classi�cation of strongly-modular fusion algebras.We summarize our results on the classi�cation of low dimensional strongly-modular fusion algebras in the following two main theorems (note that the ter-minology used for the fusion algebras will be explained in detail in x3.2):Main theorem 1 (Classification of strongly-modular fusion alge-bras of dimension � 4). Let (F ; �) be a two, three or four dimensional simplestrongly-modular fusion algebra. Then F is isomorphic to one of the followingfusion algebras:Z2; "(2; 5)"; Z3; "(2; 7)"; "(3; 4)"; Z4; Z2 
 Z2; "(2; 9)":Furthermore, (F ; �) is isomorphic to the tensor product of a one dimensional mod-ular fusion algebra with one of the modular fusion algebras in Table 7.2a or 7.2b(see Appendix).In the nondegenerate case we have theMain theorem 2 (Classification of nondegenerate strongly-modularfusion algebras of dimension < 24). Let (F ; �) be a simple nondegeneratestrongly-modular fusion algebra of dimension less than 24. Then F is isomorphicto one of the following types of fusion algebrasZ2; "(3; 4)"; "(2; 9)"; "(2; q)"; B9; B11; G9; G17; E23



26where q < 47 is an odd prime. Moreover, F is isomorphic to Q [x]= < P (x) >with distinguished basis pj(x) (j = 0; : : : ; n � 1). Here P and pj are the uniquepolynomials satisfyingP (x) = det(N1 � x)p0(x) = 1; p1(x) = x; pj(x) = n�1Xk=0(N1)j;k pk(x):where the (N1)j;k := Nk1;j are the fusion matrices given in Appendix 7.3. Further-more, � is isomorphic to the tensor product of an even one dimensional represen-tation of � with one of the representations in Table 7.3 (see Appendix).In the next subsection we comment on the question which of the strongly-modular fusion algebras described by the the main theorems 1 and 2 occur inknown RCFTs.3.2 Realization of strongly-modular fusion algebras in RCFTs and dataof certain rational models.Let us �rst comment on the fusion algebras related to the theorems in x3.1.The fusion algebras of type "(2; q)" occur in the Virasoro minimal models withcentral charge c = c(2; q). Here the rational models of the Virasoro vertex operatoralgebra for c = c(p; q) = 1 � 6 (p�q)2pq (p; q > 1; (p; q) = 1) [BPZ,Wa] are calledVirasoro minimal models and the corresponding fusion algebras are denoted by"(p; q)". A list of conformal dimensions for these models can be found at the endof this subsection.The fusion algebra of type Zn occurs in the so-called Zn-models (see e.g. [De]).This fusion algebra are isomorphic to the group algebra of Zn with the distinguishedbasis given by the group elements. We will call the fusion algebra given by the groupalgebra of Zn in the following Zn fusion algebra.For all fusion algebras in the main theorem 2 apart from B9 there indeed existRCFTs where the associated fusion algebras are isomorphic to the ones in Table 7.3:The fusion algebra in the �rst row occurs in the so-called Z2-model, the ones in row2, 3 and 4 in the corresponding Virasoro minimal models (see above) and, �nally,the ones in row 6, 7, 8 and 9 occur as fusion algebras of certain rational models, so-called minimal models of Casimir W-algebras (cf. x2.1 and Appendix 7.4), namelyfor WB2 and c = � 44411 , WG2 and c = � 5909 , WG2 and c = � 142017 and WE7 andc = � 316423 [E2] (central charges, conformal dimensions and characters of CasimirW-algebras are described in Appendix 7.4; the data for �ve of the particular rationalmodels mentioned here is also collected at the end of the subsection in Table 3.2c).The fusion algebras of type B9 seems to be related toWB2 and c = �24. However,in this case the model is not rational.The fact that we do not know examples of RCFTs for all of the modular fu-sion algebras in our classi�cation can be understood as follows. The classi�cationof the strongly-modular fusion algebras implies restrictions on the central chargeand the conformal dimensions of possibly underlying RCFTs. In Table 3.2a wehave collected the possible values of c and the hi for the simple strongly-modularfusion algebras of dimension less than or equal to four. Note, however, that these



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 27restrictions are not as strong as the ones in [Ki] for the two dimensional case or in[CPR] for the two and three dimensional case. A natural way to obtain strongerrestrictions than the ones presented in Table 3.2a is to look whether there exist vec-tor valued modular functions transforming under the corresponding representationof the modular group which have the correct pole order at i1. This can be doneusing the methods which will be developed in x4 and indeed leads to much strongerrestrictions on c and the hi as we shall discuss elsewhere. Of course, we expect thatfor any RCFT the corresponding characters are modular functions so that thesestronger restrictions have to be valid explaining that our classi�cation containsmodular fusion algebras for which we do not know any realization in RCFTs.Table 3.2a: Central charges and conformal dimensions related tosimple strongly-modular fusion algebras of dimension � 4F c (mod4) hi (modZ)Z2 1 0; 143 0; 34Z3 2 0; 13 ; 13 or 0; 23 ; 23Z4 1 0; 18 ; 12 ; 18 or 0; 58 ; 12 ; 583 0; 38 ; 12 ; 38 or 0; 78 ; 12 ; 78Z2 
 Z2 0 0; 0; 0; 12 or 0; 12 ; 12 ; 12"(2; 5)" 65 0; 35145 0; 2525 0; 15185 0; 45"(2; 7)" 167 0; 47 ; 57127 0; 37 ; 2747 0; 37 ; 17247 0; 47 ; 6787 0; 67 ; 27207 0; 17 ; 57"(2; 9)" 103 0; 13 ; 23 ; 2n923 0; 13 ; 23 ; n9n = 1; 4; 7"(3; 4)" 3n2 0; 12 ; 3n16n = 0; : : : ; 15We �nally give concrete lists of the central charges and conformal dimensions ofcertain rational models which will appear again in the main theorem 3 on uniquenessof conformal characters in x4 and by the main theorem 5 on theta formulas forconformal characters in x5.



28Central charges and conformal dimensions of certain rational models .Note that some of the results summarized in this section are not yet proved ona mathematically rigorous level. However, taken as an input into the formalismdeveloped in x4 the central charges and sets of conformal dimensions given belowwill lead to consistent representations of the modular group on spaces of modularfunctions. This section serves rather as a motivation than as a background for theconsiderations in the subsequent sections.Firstly, we review some known rational models with e�ective central charge lessthan 1. The simplest W-algebras are those which can be constructed from the Vi-rasoro algebra (as already mentioned inx2.1). The rational models among these arecalled the Virasoro minimal models (see e.g. [BPZ,RC,Wa]). They can be parame-terized by a set of two coprime integers p; q � 2. The rational model correspondingto such a set p; q has central chargec = c(p; q) = 1� 6(p� q)2pqand its conformal dimensions are given by:h(p; q; r; s) = (rp� sq)2 � (p� q)24pq (1 � r < q; (2; r) = 1; 1 � s < p);where we assume q to be odd.The Virasoro minimal models are special examples of the larger class of rationalmodels with ~c < 1 which emerges from the ADE-classi�cation of modular invariantpartition functions [CIZ,EFH2NV]. Their central charges and conformal dimensionsare given in Table 3.2b: The �rst column describes the type of modular invariantpartition function, the central charge is always c = c(p; q) where p and q are the pa-rameters of the respective row under consideration. Moreover, c(p; q) and h(p; q; �; �)are as de�ned above. Note that the listed models exist also for p; q;m not neces-sarily prime. The primality restrictions have been added for technical reasons onlywhich will become clear in the next section.Table 3.2b: Data of certain rational W-algebras related to the ADE-classi�cationtype type of W-algebra Hc(p;q) (In := f1; : : : ; ng)(Aq�1; Ap�1) W(2) fh(p; q; r; s) j r 2 Iq�1; s 2 Ip�1; (2; r) = 1gp > q odd primes(Aq�1; Dm+1) W(2; (m�1)(q�2)2 ) fh(p; q; r; s) j r 2 I(q�1)=2; s 2 Im; (2; s) = 1gp = 2mq and m odd primes(Aq�1; E6) W(2; q � 3) fmin(h(p; q; r; 1); h(p; q; r; 7)) j r 2 I(q�1)=2g[p = 12; q � 5 fmin(h(p; q; r; 5); h(p; q; r; 11)) j r 2 I(q�1)=2g[q prime fh(p; q; r; 4) j r 2 I(q�1)=2g(Aq�1; E8) W(2; q � 5) fmin(h(p; q; r; 1); h(p; q; r; 11)) j r 2 I(q�1)=2g[p = 30; q � 7 fmin(h(p; q; r; 7); h(p; q; r; 13)) j r 2 I(q�1)=2gq prime



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 29The second list of rational models which we shall consider are special cases of theso-called Casimir W-algebras (cf. x2.1).In Table 3.2c we list the central charges c, e�ective central charge ~c and the setsof conformal dimensions Hc of 5 rational models with ~c > 1.The last three are minimal models of Casimir W-algebras associated to B2;G2and E7.The �rst two W-algebras are `tensor products' of the rational W-algebra withc = �22=5 constructed from the Virasoro algebra and the rationalW-algebras withc = 14=5 or c = 26=5 constructed from the Kac-Moody algebras associated to G2or F4, respectively. We denote them by WG2(2; 114) and WF4(2; 126), respectively.Here the construction of the W-algebras in question is the one mentioned in x2.1in the remark after the de�nition of the type of W-algebras in (2).Table 3.2c: Data of the �ve rational modelsW-algebra c ~c HcWG2(2; 114) � 85 165 15f0;�1; 1; 2gWF4(2; 126) 45 285 15f0;�1; 2; 3gW(2; 4) � 44411 1211 � 111f0; 9; 10; 12; 14; 15; 16; 17; 18; 19gW(2; 6) � 142017 2017 � 117f0; 27; 30; 37; 39; 46; 48; 49; 50;52; 53; 55; 57; 58; 59; 60gW(2; 8) � 316423 2823 � 123f0; 54; 67; 81; 91; 94; 98; 103; 111;112; 116; 118; 119; 120; 122; 124;125; 129; 130; 131; 132; 133gWe give some comments on these 5 rational models. Using [RC] and [Ka] the centralcharges, conformal characters and dimensions of the two composite rational modelscan be computed. For the rational models of type W(2; d) lists of the associatedconformal dimension can be found in [EFH2NV].As it will be seen in the next section the �rst �ve rational models in Table 3.2cdo have a common feature: The representations of � a�orded by their conformalcharacters belong, up to multiplication by certain 1-dimensional �-representations,to one and the same series �l (cf. x4.4 and x5.2 for details). So one could ask whetherthere exist more rational models with this property. A more detailed investigationof the fusion algebras associated to such potentially existing models showed thatthis is not the case [E2] (cf. also the speculation in [EfH2NV]).3.3 Some theorems on level N representations of SL(2;Z).In this subsection we will consider level N representations of SL(2;Z). Firstly,we review the fact that all irreducible representations of SL(2;ZN ) can be obtainedby those of SL(2;Zp�) where p is a prime and � is a positive integer. Secondly, wediscuss the construction of level p� representations using Weil representations (inthis part we follow ref. [NW]).



30 Lemma 7. Let � be a �nite dimensional representation of SL(2;ZN ) where N isa positive integer. Then the representation � is completely reducible. Furthermore,each irreducible component ! of � has a unique product decomposition! �= 
nj=1�(p�jj )where N = Qnj=1 p�jj is the prime factor decomposition of N and the �(p�jj ) areirreducible representations of SL(2;Zp�jj ).Proof. Since SL(2;ZN ) is a �nite group, � is completely reducible.For a proof of the second statement note thatSL(2;ZN ) = SL(2;Zp�11 )� � � � � SL(2;Zp�nn )where N = Qnj=1 p�jj (see e.g. [G]). Obviously, the tensor product of irreduciblerepresentations �(p�jj ) of SL(2;Zp�jj ) is an irreducible representation of SL(2;ZN ).Using now Burnside's lemma we obtain the second statement.In order to deal with the representations of the groups SL(2;Zp�) we describetheir structure by the following theorem.Theorem (Structure of SL(2;Zp�) [NW, Satz 1, p. 466]). The �nite groupSL(2;Zp�) is generated by the elementsS = � 0 �11 0 � ; T = � 1 10 1� ;and the relationsT p� = 1I; S2 = H(�1)H(a)H(a0) = H(aa0); H(a)T = T a2H(a); SH(a) = H(a�1)Swhere H(a) := T�aST�a�1S�1T�aS�1 and a; a0 2 Z�p�.Remark. As elements of SL(2;Zp�) the H(a) (a 2 Z�p�) are given byH(a) = � a 00 a�1 � :We will now describe the construction of representations of SL(2;Zp�) by meansof Weil representations.Definition (Quadratic form). Let M be a �nite Zp� module. A quadraticform Q of M is a map Q :M ! p��Z=Z such that(1) Q(�x) = Q(x) for all x 2M .(2) B(x; y) := Q(x+ y)�Q(x)�Q(y) de�nes a Zp�-bilinear map from M �Mto p��Z=Z.



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 31Definition (Quadratic module). A �nite Zp� module M together with aquadratic form Q is called a quadratic module of Zp�.Definition (Weil representation). Let (M;Q) be a quadratic module. De-�ne a right action of SL(2;Zp�) on the space of C valued functions on M by(f jT )(x) = e2�iQ(x) f(x)(f jH(a))(x) = �Q(a)�Q(�1) f(x) 8a 2 Z�p�(f jS�1)(x) = �Q(�1)jM j1=2 Xy2M e2�iB(x;y) f(y)where jM j denotes the order of M ,�Q(a) = 1jM j Xx2M e2�iaQ(x)and f is any C valued function on M .If this right action of SL(2;Zp�) de�nes a representation of SL(2;Zp�) it is calledthe (proper) Weil representation associated to the quadratic module (M;Q) anddenoted by W (M;Q).Note that the above right action always de�nes a projective representation of �.A necessary and su�cient condition for it to de�ne a proper representation is givenby the following theorem.Theorem (Proper Weil representation [NW, Satz 2, p. 467]). The aboveright action of SL(2;Zp�) de�nes a representation of SL(2;Zp�) if and only if�Q(a)�Q(a0) = �Q(1)�Q(aa0) a; a0 2 Z�p�:In the following we will only deal with proper Weil representations and, therefore,call them simply Weil representations.3.4 Weil representations associated to binary quadratic forms.Although the classi�cation of the irreducible representations of the �nite groupsSL(2;Zp�) is contained in [NW] we will give a short review here. Our main mo-tivation for this is the fact that we will strongly rely on this classi�cation in theproofs of the main theorems 1 and 2 in x3.7 and x3.9. (Furthermore, ref. [NW] isnot written in English but in German.)In the this subsection we describe how to obtain irreducible level p� representa-tions as subrepresentations of Weil representations. In subsections x3.5 and x3.6 wegive complete lists of the irreducible representations for the cases p 6= 2 and p = 2,respectively.In addition to the review we investigate in some cases whether the irreduciblerepresentations are K-rational or not.Most of the irreducible representations of SL(2;Zp�) can be obtained as subrep-resentations of Weil representations W (M;Q) associated to a module M of rankone or two. The following two theorems describe the Weil representations neededin the later sections.



32 Theorem (Weil representations of SL(2;Zp�) (p 6= 2) [NW, Lemma 1,Satz 3, p. 474]). Let p 6= 2 be a prime. Then the following quadratic modules ofZp� de�ne Weil representations:(1) M = Zp�; Q(x) = p��rx2 (� � 1) (R�(r))(2) M = Zp� � Zp�; Q(x) = p��x1x2 (� � 1) (D�)(3) M = Zp� � Zp�; Q(x) = p��(x21 � ux22) (� � 1) (N�)(4) M = Zp� � Zp��� ; Q(x) = p��r(x21 � p�tx22) (� � 2) (R��(r; t))where r; t run through f1; ug with (up ) = �1 (( ��) denotes the Legendre symbol),where � = 1; : : : ; �� 1 and where the last column contains the name of the corre-sponding Weil representation.Theorem (Weil representations of SL(2;Z2�) [NW, Satz 4, p. 474]). Letp = 2. Then the following quadratic modules of Z2� de�ne Weil representations:(1) M = Z2� � Z2�; Q(x) = 2��x1x2 (� � 1) (D�)(2) M = Z2� � Z2�; Q(x) = 2��(x21 + x1x2 + x22) (� � 1) (N�)(3) M = Z2��1 � Z2����1; Q(x) = 2��r(x21 + 2�tx22) (� � 2) (R��(r; t))where � = 0; : : : ; �� 2, where (r; t) run through a system of representatives of theclasses of pairs de�ned by (r1; t1) �= (r2; t2)if t1 � t2 mod min(8; 2���) and8>>><>>>: r2 � r1 mod 4 or r2 � r1t1 mod 4 for � = 0r2 � r1 mod 8 or r2 � r1 + 2r1t1 mod 8 for � = 1r2 � r1 mod 4 for � = 2r2 � r1 mod 8 for � � 3and where the last column contains the name of the corresponding Weil represen-tation.All irreducible representations of SL(2;Zp�) can be obtained as subrepresenta-tions of Weil representations W (M;Q). One possibility to extract subrepresenta-tions of such representations is to use characters of the automorphism group of thequadratic form Q:Theorem (Subrepresentation of a Weil representation [NW, p. 480]).Let W (M;Q) be a Weil representation described by one of the theorems on Weilrepresentations of SL(2;Zp�) above, U an abelian subgroup of Aut(M;Q) and � acharacter of U . Then the subspaceV (�) := f f :M ! C j f(�x) = �(�)f(x); x 2M; � 2 U gof CM is invariant under SL(2;Zp�). The corresponding subrepresentation is de-noted by W (M;Q; �).



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 33Remarks.(1) The space V (�) is spanned by V (�) =< fx(�) >x2M wherefx(�)(y) =X�2U �(�)��x;y ; �x;y = � 1 for x=y0 otherwise.(2) The automorphism group of the quadratic forms in Theorem 4 contain aconjugation �: �(x1; x2) = (x2; x1) in case (1) and �(x1; x2) = (x1;�x2) inthe cases (2) and (3). In these cases the spaceV (�)� := f f 2 V (�) j f(�x) = �f(x); x 2M gis invariant under SL(2;Z2�). The corresponding subrepresentation is de-noted by W (M;Q; �)�.From now on we will denote the trivial character � � 1 by �1. Indeed, almost allirreducible representations of SL(2;Zp�) can be obtained as subrepresentations ofthe Weil representations described by the main theorems on Weil representationsof SL(2;Zp�) using `primitive' characters:Definition (Primitive character of a Weil representation)3.Let W (M;Q) be a Weil representation described by one of the two theorems onWeil representations of SL(2;Zp�) above and let U = Aut(M;Q). A character � ofU is called primitive i� there exists an element � 2 U with �(�) 6= 1 such that eachelement of pM is a �xed point of �. The set of primitive characters of U will bedenoted by P.Theorem (Isomorphy of Weil representations [NW, Hauptsatz 1, p.492]). Let W (M;Q) and W (M 0; Q0) be Weil representation described by oneof the two theorems on Weil representations above and �; �0 primitive characters.Then one has(1) W (M;Q; �) is an irreducible level p� representation.(2) W (M;Q; �) and W (M 0; Q0; �0) are isomorphic if and only if the quadraticmodules (M;Q) and (M 0; Q0) are isomorphic and � = �0 or � = ��0.The second main theorem of ref. [NW] describes the classi�cation of the irre-ducible representations of SL(2;Zp�).Theorem (Classification of irreducible representations of SL(2;Zp�)[NW, Hauptsatz 2, p. 493]). The Weil representations described by the two theoremson Weil representations of SL(2;Zp�) above contain all irreducible representationsof the groups SL(2;Zp�) (in general they are of the form W (M;Q; �) for a primitivecharacter �) apart from 18 exceptional representations for p = 2. These exceptionalrepresentations can be obtained as tensor products of two representations containedin some W (M;Q) (described by the theorem on Weil representations of SL(2;Z2�)above).x3.5 and x3.6 contain lists of all irreducible level p� representations.3In the case ofM = Z2��1�Z2 (� � 5) the de�nition of primitive characters is slightly di�erent[NW, p. 491]: Here U �=< �1 >< � > with � = ( 1 + 4t+p�8t � = 51� 2��3 +p�2��2t � > 5and � is primitive if �(�) = �1.



34 3.5 The irreducible representations of SL(2;Zp�) for p 6= 2.In the classi�cation of the irreducible representations of SL(2;Zp�) for p 6= 2 onehas to distinguish the cases � = 1 and � > 1. Therefore, we treat them separately.Following [NW] we denote the trivial representation by C1.Theorem (Classification of irreducible representations of SL(2;Zp)(p 6= 2) [NW]). A complete set of irreducible representations of SL(2;Zp) for aprime p with p 6= 2 is given by the representations collected in Table 3.5a. In Table3.5a the � run through the set of characters of U and ��1 is the unique nontrivialcharacter of U taking values in �1. Furthermore, we denote by # (here and in thefollowing) the number of inequivalent representations.Table 3.5a: Irreducible representations of SL(2;Zp) for p 6= 2type of rep. dimension #D1(�) � 2 P p+ 1 12(p� 3)N1(�) � 2 P p� 1 12(p� 1)R1(r; �1) � rp� = �1 12(p+ 1) 2R1(r; ��1) � rp� = �1 12(p� 1) 2N1(�1) p 1We will denote the 3 one dimensional level 3 representations C1, R1(1; ��1) andR1(2; ��1) by B1, B2 and B3, respectively.The explicit form of these representations is well known (see e.g. [E2]) and onecan address the question which of these representations are K-rational (see alsox4). Note that, in view of the results in x2, this question is natural in the contextof admissible representations.Lemma 8. Let p 6= 2 be a prime.(1) For p � 1 (mod 3) there is exactly one and for p 6� 1 (mod 3) there is noK-rational representation of type D1(�).(2) For p � 2 (mod 3) there is exactly one and for p 6� 2 (mod 3) there is noK-rational representation of type N1(�) (� 2 P).(3) The representations of type R1(r; ��1) and N1(�1) are K-rational.Proof. Using a character table for the above representations (see e.g. [Do]) oneeasily �nds that the characters of representations of typeD1(�) orN1(�) take valuesin the �eld of p-th roots of unity only if p � 1 (mod 3) or p � 2 (mod 3) and if �is a character of order 3. Therefore, there is at most one K-rational representationof type D1(�) or N1(�) for the corresponding values of p. Using the explicit formof these representations (see e.g. [E2]) one �nds that these two representations areindeed K-rational. For the other two types of representations the K-rationalityfollows directly from the fact that ��1 takes values in �1.



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 35Theorem (Classification of irreducible representations of SL(2;Zp�)(p 6= 2;� > 1) [NW]). A complete set of irreducible representations of SL(2;Zp�)for p 6= 2 prime and � > 1 is given by the representations in Table 3.5b. Where ��1is the unique nontrivial character with values in �1 and R�(r; ��1)1 is the uniquelevel p� subrepresentation of R�(r; ��1) which has dimension 12 (p2 � 1)p��2.Table 3.5b: Irreducible representations of SL(2;Zp�) for p 6= 2 and � > 1type of rep. dimension #D�(�) � 2 P (p+ 1)p��1 12 (p� 1)2p��2N�(�) � 2 P (p� 1)p��1 12 (p2 � 1)p��2R��(r; t; �) � rp� = �1; � tp� = �1 12 (p2 � 1)p��2 4P��1�=1(p� 1)p����1R�(r; ��1)1 � rp� = �1 12 (p2 � 1)p��2 4Lemma 9. Let p 6= 2 be a prime and � > 1 an integer.(1) The representations of type R��(r; t; �) are K-rational for p 6= 2 and � > 1.(2) The representations of type R�(r; ��1)1 are K-rational for p 6= 2 and � > 1.Furthermore, the image of T under these representations has nondegenerateeigenvalues only if p = 3 and � = 2.Proof. Since the automorphism group of the quadratic form of R��(r; t; �) isgiven by [NW, p. 495] U �= Z2�Zp��� we obtain (1). In the second case one obvi-ously has U �= Z2 so that the K-rationality follows directly. The statement concern-ing the eigenvalues of the image of T for the representations of type R�(r; ��1)1 isproved in Satz 4 of [NW].3.6 The irreducible representations of SL(2;Z2�).The classi�cation of the irreducible representations of SL(2;Z2�) is complicatedsince there are a lot of exceptional representations for � < 6 [NW]. Since theserepresentations have small dimensions and we will be interested in such represen-tations in x3.7 and x3.9 we describe them in the rest of this subsection. The Tables3.6a-3.6f list complete sets of inequivalent irreducible representations of the groupsSL(2;Z2�) for the corresponding values of �.For � = 1 there are only two irreducible representations (see Table 3.6a). Therepresentation C2 is given by C2(S) = C2(T ) = �1 and both level 2 representationsare K-rational.For � = 2 there are seven irreducible representations (see Table 3.6b). Therepresentation C3 is given by C3(S) = C3(T ) = �i, C4 by C4(S) = C4(T ) = i andR02(1; 3)1 is de�ned by R02(1; 3) �= R02(1; 3)1 � C1. All level 4 representations areK-rational.For � = 3 there are 20 irreducible representations (see Table 3.6c). Here �̂ is oneof the two characters of U of order 4 and the representation R03(1; 3; �1)1 is de�nedby R03(1; 3; �1) �= R03(1; 3; �1)1 �N1(�1)� C2 � C2:For � = 4 there are 46 irreducible representations (see Table 3.6d). Here therepresentation R24(r; 3; �1)1 is given by the equality R24(r; 3; �1) �= R24(r; 3; �1)1 �R02(r; t).



36 Table 3.6a: Irreducible representations of SL(2;Z2)type of rep. dim #C2 = N1(�) � 2 P 1 1N1(�1) 2 1Table 3.6b: Irreducible representations of SL(2;Z22)type of rep. dim #D2(�)+ � 6� 1 3 1D2(�)� � 6� 1 3 1R02(1; 3)1 3 1C2 
 R02(1; 3)1 3 1N2(�) � 2 P; � 6� 1 2 1C3 = R02(3; 1; �) � 6� 1 1 1C4 = R02(1; 1; �) � 6� 1 1 1Table 3.6c: Irreducible representations of SL(2;Z23)type of rep. dim #D3(�)� � 2 P 6 4R03(1; 3; �1)1 6 1C3 
 R03(1; 3; �1)1 6 1N3(�) � 2 P; �2 6� 1 4 2N3(�)� � 2 P; �2 � 1 2 4R03(r; t; �̂) r = 1; 3; t = 1; 5 3 4R03(1; t; �)� � 6� 1; t = 3; 7 3 4Table 3.6d: Irreducible representations of SL(2;Z24)type of rep. dim #D4(�) � 2 P 24 2N4(�) � 2 P 8 6R04(r; t; �) � 2 P; � 6� 1; r = 1; 3; t = 1; 5 6 4R04(r; t; �)� � 2 P; �2 � 1; r = 1; 3; t = 1; 5 3 16R04(1; t; �)� � 2 P; t = 3; 7 6 8R24(r; t; �) � 6� 1; r; t 2 f1; 3g 6 4C2 
 R24(r; 3; �) � 6� 1; r = 1; 3 6 2R24(r; 3; �1)1 r = 1; 3 6 2N3(�)+ 
 R04(1; 7;  )+ � 2 P; �2 � 1;  6� 1; 12 2 2 � 1;  (�1) = 1



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 37For � = 5 there are 92 irreducible representations (see Table 3.6e). Here for �xedr = 1; 3 the 2 irreducible representations of type R25(�; 1; �)1 (� 62 P) are given bythe 2 two dimensional irreducible level 5 subrepresentations of R25(r; 1).Table 3.6e: Irreducible representations of SL(2;Z25)type of rep. dim #D5(�) � 2 P 48 4N5(�) � 2 P 16 12R05(r; t; �) � 2 P; r = 1; 3; t = 1; 5 12 16R05(1; t; �)� � 2 P; t = 3; 7 24 4R15(r; t; �)� � 2 P; r; t 2 f1; 5g or 12 16r = 1; 3 and t = 3; 7R25(r; t; �)� � 2 P; r = 1; 3; t = 1; 3; 5; 7 6 32R25(r; 1; �)1 � 62 P; r = 1; 3 12 4C3 
R25(r; 1; �)1 � 62 P; r = 1; 3 12 4For � > 5 there are the following irreducible representations (see Table 3.6f). Here� are always primitive characters and R��3� (r; t; ��1)1 is the unique irreducible level2� subrepresentation of R��3� (r; t; ��1) which has dimension 3 � 2��4.Table 3.6f: Irreducible representations of SL(2;Z2�) for � > 5type of rep.4 dim #D�(�) 3 � 2��1 2��3N�(�) 2��1 3 � 2��3R0�(1; 7; �) t = 3; 7 3 � 2��2 2��3R��(r; t; �) 8>>><>>>: r = 1; 3; t = 1; 5 for � = 0r; t 2 f1; 5g orr = 1; 3 and t = 3; 7 for � = 1r = 1; 3; t = 1; 3; 5; 7 for � = 2 3 � 2��3 5 � 2��2R��(r; t; �) � = 3; : : : ; �� 3; r; t 2 f1; 3; 5; 7g 3 � 2��4 4 �P��3�=3 2���R��2� (r; t; �) r = 1; 3; 5; 7; t = 1; 3 3 � 2��4 16R��3� (r; t; ��1)1 r = 1; 3; 5; 7; t = 1; 3 3 � 2��4 16
4For � = 6 one has to use representation of type R46(r; t; �1)1 and C2 
R46(r; t; �1)1 (r = 1; 3)instead of those of type R��3� (r; t; ��1)1. The representations R46(r; t; �1)1 are the unique level 6subrepresentations of R46(r; t; �1) with dimension 12.



38 3.7 Proof of the classi�cation of the strongly-modular fusion algebrasof dimension less than or equal to four.Proof of the main theorem 1 for dim(F) = 2.Let (F ; �) be a two dimensional strongly-modular fusion algebra. Lemma 4implies that � is irreducible. Therefore, we have to consider all irreducible twodimensional representations of � which factor through a congruence subgroup. ByLemma 7 we know that these representations can be obtained by taking the tensorproducts of all irreducible two dimensional level p� representations with all onedimensional representations of �.There are exactly 11 inequivalent irreducible two dimensional level p� represen-tations. Their explicit form is given in Appendix 7.1. We are interested in theclassi�cation of the two dimensional strongly-modular fusion algebras up to tensorproducts with one dimensional fusion algebras. Therefore, we can restrict our in-vestigation to one of the two dimensional representations of level 2, 23, 3 and thetwo representations of level 5 (see Appendix 7.1). For the remaining 5 two dimen-sional representations the eigenvalues of the image of T are nondegenerate. Hence,Lemma 2 implies that the corresponding matrix representations are unique up toconjugation with unitary diagonal matrices and permutation of the basis elements.One can easily apply Verlinde's formula and check whether the resulting coe�cientsNki;j have integer absolute values for the two possible choices of the basis element�0 corresponding to the vacuum (conjugation with a unitary diagonal matrix doesnot change the absolute value of Nki;j). In particular for the level 2 representationN1(�1) and the level 3 representation N1(�) we obtain for both possible choices ofthe distinguished basis elements �0 and �1jN11;1j = ( 2p3 ; for N1(�1); p = 21p2 ; for N1(�); p = 3:Since jN11;1j is not an integer we can exclude these two representations. For the level23 and 5 representations one obtains integer values for the Nki;j. Moreover, in allthree cases both possible choices of the distinguished basis elements �0 and �1 leadto isomorphic fusion algebras. We conclude that the representation of the modulargroup given by a two dimensional strongly-modular fusion algebra is isomorphicto the tensor product of a one dimensional representation and N3(�)+ (p� = 23)or R1(r; ��1) (r = 1; 2; p� = 5). Using that �(S2) should be a matrix consistingof nonnegative integers one can determine the one dimensional representation of �up to an even one dimensional representation. Therefore, (F ; �) is determined upto tensor products with one dimensional modular fusion algebras. The resultingrepresentations and fusion algebras are collected in Table 7.2a. �Proof of the main theorem 1 for dim(F) = 3.Let (F ; �) be a three dimensional strongly-modular fusion algebra. By Lemma7, � is either irreducible or isomorphic to a sum of a two dimensional and a onedimensional irreducible representation. We will now consider these two cases sepa-rately.Firstly, assume that � is irreducible. By Lemma 7, � is isomorphic to the tensorproduct of a one dimensional representation and one of the three dimensional ir-



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 39reducible level p� representations. There are exactly 33 inequivalent irreducible3 dimensional level p� representations. Their explicit form is given in Appendix7.1. We are interested in the classi�cation up to tensor products with one dimen-sional modular fusion algebras. Therefore, we can restrict our investigation to aset of irreducible representations which are not related via tensor products withone dimensional representations. This means that we have to consider one repre-sentation of level 3 and 22, two representations of level 5 and 7 and, �nally, fourrepresentations of level 24 (see Appendix 7.1).For these representations the eigenvalues of the image of T are nondegenerate sothat we can proceed now as in the proof of the main theorem 1.Using Verlinde's formula for the representation N1(1; �1) (p = 3) we obtainjN11;1j = 12 for all possible choices of the distinguished basis. In the same way one�nds for R1(r; �1) (r = 1; 2; p = 5) that8>>>>><>>>>>: jN21;1j = 1p2 for �(T ) = diag(1; e2�i r5 ; e2�i4r5 )or �(T ) = diag(1; e2�i4r5 ; e2�i r5 )jN11;1j = 1p2 for �(T ) = diag(e2�i r5 ; 1; e2�i4r5 )jN11;1j = 1p2 for �(T ) = diag(e2�i 4r5 ; 1; e2�ir5 ):Here the di�erent cases correspond to the di�erent possible choices of the distin-guished basis. We conclude that � cannot be isomorphic to a tensor product of aone dimensional representation and N1(1; �1) (p = 3) or R1(r; �1) (r = 1; 2; p = 5).An analogous calculation shows that for the representations of type R1(r; ��1)one has jNki;jj 2 N for all 3 possible choices of the distinguished basis. For theremaining representations one also has jNki;j j 2 N for the two possible choices ofthe distinguished basis (here the matrix �(S) contains a zero so that there are onlytwo possible choices of the distinguished basis).Hence, � is isomorphic to a tensor product of a one dimensional representationwith one of these 7 representations. Using that for a modular fusion algebra �(S2)i;jequals N0i;j one can determine the possible one dimensional representations. Thecorresponding strongly-modular fusion algebras are contained in Table 10 in thesecond and third row.Secondly, assume that � decomposes into a direct sum of two irreducible represen-tations � �= �1� �2 with dim(�j) = j. Then �2 is isomorphic to the tensor productof a one dimensional representation with one of the two dimensional irreduciblelevel p� representations contained in Table 7.1a.Using Lemma 1 we conclude that �(T ) has degenerate eigenvalues so that �2(T )must have an eigenvalue of the form e2�i n12 . Hence, �2 cannot be isomorphic to thetensor product of a one dimensional representation and one of the two dimensionalirreducible level 5 and 23 representations in Table 7.1a. Using once more that �(T )has degenerate eigenvalues we obtain that � is isomorphic to the tensor productof a one dimensional representation with either N1(�1) � Cj (j = 1; 2; p = 2) orN1(�)� Bj (j = 2; 3; p = 3). In order �nd out whether these four representationsare admissible we have to look for distinguished bases.



40 Let us �rst consider the case � �= C 
 (N1(�) � Bj) (j = 2; 3; p = 3) where Cis a one dimensional representation. Here �(S2) has two di�erent eigenvalues sinceN1(�) is odd and the representations Bj are even. Since the vacuum is selfconjugate,i.e. �(S2)00 = 1 the representation C has to be odd. Without loss of generality wechoose C = C4 for j = 2 and C = C3 for j = 3. Furthermore, the fact that �(S2)has two di�erent eigenvalues implies that we must have�(S2) = 0@ 1 0 00 0 10 1 01A :Using these two conditions it follows that in a basis in which �(S2) has this formand �(T ) is diagonal we must have�(S) = 1p3 0@ � � �� e2�i 13 e2�i 23� e2�i 23 e2�i 13 1A ; �2 = 1and �(T ) = ( diag(e2�i 512 ; e2�i 112 ; e2�i 112 ) ordiag(e2�i 712 ; e2�i 1112 ; e2�i 1112 )up to conjugation with a unitary diagonal matrix (the two possibilities for �(T )correspond to the two possible choices of the distinguished basis).Applying now Verlinde's formula leads to a modular fusion algebra i� � = 1 forboth choices of the distinguished basis. The corresponding fusion algebra, �(S) and�(T ) are listed in the third row of Table 7.2a.Finally, consider the case � �= C
(N1(�1)�Cj) (j = 1; 2). Since N1(�1) (p = 2)and Cj (j = 1; 2) are even � has to be even, too. Therefore, C is even and w.l.o.g.we choose C = C1 for j = 1 and C = C2 for j = 2. Since � is even one must have�(S2) = 1I and, therefore, �(S) is real (c.f. the second remark in x2.2). Pluggingthis in we �nd (up to permutation of the basis elements) that�(S) = 12 0@ 1 �p3a p3b�p3a 2� 3a2 3abp3b 3ab 3a2 � 11A ; �(T ) = (�1)j diag(1;�1;�1)where a; b 2 R and a2 + b2 = 1. Using Verlinde's formula we obtain as conditionsfor � to be admissible8<: (1�3a2)(3a2�2)p3a 2 N for �(T ) = (�1)j diag(1;�1;�1)1p3a(3a2�2) ; 3a2�1p3a(3a2�2) 2 N for �(T ) = (�1)j diag(�1;�1; 1):The �rst case implies that a2 = 13 or a2 = 23 and the second one a2 = 13 , respectively.Inserting these values of a in the explicit form of �(S) above we indeed obtainmodular fusion algebras if we choose the signs of a and b correctly. The resulting



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 41modular fusion algebras are contained in the �fth row of Table 7.1a. As fusionalgebras they are of type "(3; 4)", also called Ising fusion algebra.This completes the proof in the three dimensional case. �Proof of the main Theorem 1 for dim(F) = 4.Let (F ; �) be a strongly-modular fusion algebra. Then, by Lemma 4, we havethe following possibilities for �:(1) � is irreducible,(2) � �= �1 � �2 with dim(�1) = 3, dim(�2) = 1,(3) � �= �1 � �2 with dim(�1) = dim(�2) = 2,(4) � �= �1 � �2 � �3 with dim(�1) = 2, dim(�2) = dim(�3) = 1where �i (i = 1; 2; 3) are irreducible representations.(1) � is irreducibleAssume that � is irreducible. Then � is either isomorphic to the tensor productof 2 two dimensional representations of coprime levels or it is isomorphic to thetensor product of a one dimensional representation with a four dimensional irre-ducible level p� representation. In the �rst case we obviously have that � is onlyadmissible i� both two dimensional representations are admissible (look at Table7.1a). In this case the corresponding modular fusion algebra is a tensor productof two modular fusion algebras contained in Table 7.2a. Let us now consider theother case, namely that � �= C 
 �1 where C is a one dimensional representationand �1 is a four dimensional irreducible level p� representation. In this case �1is given by one of the 9 representations in Table 7.1c. Note that for all of theserepresentations the eigenvalues of the image of T are nondegenerate so that we canuse the argumentation used in the proof of the main theorem 1 for dim(F) = 2.For the representation N1(�) (�3 6� 1; p = 5) we �nd by Verlinde's formulajN11;1j = p3; for �(T ) = diag(e2�in5 ; e2�i3n5 ; e2�i 2n5 ; e2�i 4n5 ) (n = 1; : : : ; 4)where again the di�erent possibilities for �(T ) correspond to the di�erent possibledistinguished basis. This shows that �1 cannot be isomorphic to this representation.Since the representation N1(�) (�3 � 1; p = 5) is isomorphic to the tensor prod-uct of the two di�erent level 5 representations in Table 7.1a it is clear that thisrepresentation is admissible. Since the image of T under this representation hasnondegenerate eigenvalues the corresponding modular fusion algebras are isomor-phic to the tensor product of 2 two dimensional modular fusion algebras (as fusionalgebras they are of type "(2; 5)").Consider now the representations R1(r; �1) (r = 1; 2; p = 7). Here Verlinde'sformula implies thatjN11;1j = 1p2 for �(T ) = diag(e2�in7 ; 1; �; �) (n = 1; : : :6)and jN21;1j = 1p2 for �(T ) = ( diag(1; e2�i27 ; e2�i 47 ; e2�i17 ) ordiag(1; e2�i57 ; e2�i 37 ; e2�i67 ):



42As above this removes these representations from the list of candidates leading tomodular fusion algebras.For the representation N3(�) (�3 6� 1; p = 23) one hasjN11;1j =r43 for �(T ) = diag(e2�i 2n+18 ; e2�i2n+58 ; �; �) (n = 1; : : : ; 4)so that this representation is also excluded.Consider now the representations R12(r; 1; �) (r = 1; 2;�3 6� 1; p = 32). Here onehas jN11;1j = 1p3 for �(T ) = diag(e2�i rn29 ; e2�i r3 ; �; �) (n = 1; 2; 3):The basis element in the representation space corresponding to the �(T ) eigenvalueof order three cannot correspond to �0 since in the corresponding row of �(S)contains a zero.Finally, the only remaining four dimensional irreducible level p� representa-tions that might lead to modular fusion algebras are those of type R12(r; 1; �)(r = 1; 2;�3 � 1; p� = 32). Indeed, these representations lead to modular fu-sion algebras. To be more precise one has to consider the tensor product of an oddone dimensional representation with them because the R12(r; 1; �) (�3 � 1) are oddthemselves. The corresponding fusion algebras are of type "(2; 9)" and the explicitform is given in Table 7.2b. The di�erent modular fusion algebras result from thetwo di�erent representations and the fact that the distinguished basis can be chosenin di�erent ways.� �= �1 � �2 with dim(�1) = 3, dim(�2) = 1Assume that � is isomorphic to the direct sum of a one dimensional and an irre-ducible three dimensional representation. Then one has � �= C 
 (�1�D) where Cand D are one dimensional representations and �1 is one of the three dimensionalirreducible level p� representations in Table 7.1b. By Lemma 1 we know that �(T )has degenerate eigenvalues. Therefore, �1 is of type N1(�1) (p = 3), R1(r; �1)(r = 1; 2; p = 5), D2(�)+ (p� = 22) or R03(1; 3)� (p� = 23).Consider �rst the representation N1(�1) (p = 3). In this case we can haveD = Bj (j = 1; 2; 3). Since Bj and N1(�1) are even we can choose without loss ofgenerality C = C1. Using Verlinde's formula we �nd thatjN11;1j = 12 for �(T ) = diag(e2�i j+13 ; e2�i j+23 ; e2�i j3 ; e2�i j3 )giving a contradiction for these choices of the distinguished basis. For �(T ) =diag(e2�i j3 ; e2�i j3 ; e2�i j+13 ; e2�i j+23 ) the line of reasoning is a little bit more involved.Here N0i;j = �(S2)i;j = �i;j implies that �(S) is given by�(S) = 13 0B@ 4b2 � 1 4ab 2a 2a4ab 3� 4b2 �2b �2b2a �2b �1 22a �2b 2 �1 1CA



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 43up to conjugation with an orthogonal diagonal matrix, with a; b 2 R and a2+b2 = 1.With the explicit form of �(S) we �nd as conditions for � to be admissibleN11;1 = 12a(3� 4a2) 2 Z; N21;1 = 2a2 � 12a(3� 4a2) 2 Z:However, the only solutions that satisfy these two conditions are those a whichequal 12m for an integer m and satisfy m3 � 0 mod 3m2 � 1. It follows that m �0 mod 3m2�1 which gives a contradiction. Therefore, the representations N1(�1)�Bj (p = 3) do not lead to modular fusion algebras.Next we consider the representations R1(r; �1) (r = 1; 2; p = 5). In this casethe one dimensional representation D has to be the trivial one. Since these tworepresentations are even we can choose without loss of generality C = C1, too.Using that N0i;j = �i;j we �nd that the matrix which describes the basis in the twodimensional eigenspace corresponding to the eigenvalue 1 of �(T ) is orthogonal.Furthermore, by looking at suitable Nki;j we �nd that there are only two possibilitiesfor this matrix. In the corresponding basis we indeed �nd modular fusion algebragiven by the tensor product of two modular fusion algebras of type "(2; 5)". That �is admissible can also be interfered from the equality R1(r; �1)�C �= R1(r; ��1)
R1(r; ��1) (r = 1; 2; p = 5).Finally, we have to consider D2(�)+ (p� = 22) and R03(1; 3; �)� (p� = 23).The corresponding possibilities for � are C3 
 D2(�)+ � Cj (j = 1; 3; 4), C4 
R03(1; 3; �)+ � C3 or C3 
 R03(1; 3; �)� � C4. For the case � �= C3 
 D2(�)+ � C1we obtain a modular fusion algebra given by the tensor product of two Z2 fusionalgebras. This can also be seen by looking at the identityC3 
D2(�)+ � C1 �= D2(�)+ 
D2(�)+:For C4
R03(1; 3; �)+�C3 or C3
R03(1; 3; �)��C4 we obtain Z4 type fusion algebras(see Table 7.2b). The other two representations (C3 
D2(�)+ �Cj (j = 3; 4)) arenot admissible as one can easily check by applying Verlinde's formula.� �= �1 � �2 with dim(�1) = dim(�2) = 2Assume that � decomposes into a direct sum of 2 two dimensional irreducible rep-resentations. In this case we have � = C 
 (�1 �D 
 �2) where C and D are onedimensional representations and �1; �2 are some level p� representations containedin Table 7.1a. Since � is reducible we know that �(T ) has degenerate eigenvalues.This together with the parity of the representations in Table 7.1a implies that �equals (up to a tensor product with an even one dimensional representation) oneof the following representations:N1(�1)�N1(�1)C3 
 (N1(�)�Bi 
N1(�)) (i = 1; 2)C4 
 (R1(r; ��1)�R1(r; ��1)) (r = 1; 2)C4 
 (N3(�)+ �N3(�)+):In all cases we have that �(S) is conjugate to a matrix of block diagonal form.More precisely, this matrix consists of two identical two by two matrices. A simple



44calculation shows now that conjugation of �(S) with a matrix which leaves �(T )diagonal leads to a matrix which has at least one zero element in every row. Thisis a contradiction since we have assumed that � is admissible and one can applyVerlinde's formula.� �= �1 � �2 � �3 with dim(�1) = 2, dim(�2) = dim(�3) = 1Assume that � decomposes into a direct sum of an irreducible two dimensional and2 one dimensional representations. Then, again by Lemma 1, �(T ) has degenerateeigenvalues and a simple parity argument shows that the only possibilities for � are(up to a tensor product with an even one dimensional representation):N1(�1)� C1 � C1 or N1(�1)� C1 � C2where N1(�1) is the level 2 representation in Table A1. We have to consider thesetwo cases separately.Firstly, let � be conjugate to N1(�1) � C1 � C1. Then the requirements that�(S) has to be symmetric and real and that �(T ) has to be diagonal imply that (upto permutation of the basis elements and conjugation with an orthogonal diagonalmatrix): �(S) = �12 0B@ �1 p3a p3b p3cp3a 3a2 � 2 3ab 3acp3b 3ab 3b2 � 2 3bcp3c 3ac 3bc 3c2 � 21CAwhere a; b; c 2 R with a2 + b2 + c2 = 1 and �(T ) = diag(�1; 1; 1; 1).Fixing the distinguished basis such that �0 corresponds to the eigenvector of�(T ) with eigenvalue �1 we obtainN111 = (2� 3a2)(1� 3a2)p3a ; N222 = (2� 3b2)(1� 3b2)p3b ; N333 = (2� 3c2)(1� 3c2)p3cN211 = p3(3a2 � 1)b; N311 = p3(3a2 � 1)cN122 = p3(3b2 � 1)a; N322 = p3(3b2 � 1)c:This implies that a2 = b2 = c2 = 13 . The resulting structure constants indeed de�nea fusion algebra, namely the tensor product of two fusion algebras of type Z2. As amodular fusion algebra this fusion algebra is simple, i.e. it is not a tensor productof two nontrivial modular fusion algebras. The resulting modular fusion algebra iscontained in Table 7.2b.For the other choice of the distinguished basis where �0 corresponds to an eigen-vector �(T ) with eigenvalue 1 we �ndN133 = (3a2 � 1)ba(3a2 � 2) ; N233 = (3a2 � 1)ca(3a2 � 2) ;N333 = 3a2 � 1p3a(3a2 � 2) ; N322 = 1� 3b2p3a(3a2 � 2)



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 45where the basis was chosen such that �(T ) = diag(1; 1; 1;�1). Let now n :=(N133)2+(N233)2 and m := (N333)2. It is now easy to verify that n and m satisfy theequation m3 + (1� 5n)m2 + (4n2 + 7n)m+ 4n2 � 3n3 = 0:By Lemma 10 in x3.8 below the only nonnegative integer solution of this equationwithm being a square is given by n = m = 0. Therefore, we �nd as the only possiblesolution a2 = b2 = c2 = 13 . The resulting structure constants de�ne a fusion algebraisomorphic to the tensor product of two Z2 fusion algebras. However, analogousto the case of the other distinguished basis discussed above this modular fusionalgebra is simple and contained in Table 7.2b.Secondly, assume that � is conjugate to N1(�1)�C1 �C2. Requiring that �(S)is a symmetric real matrix and that �(T ) is diagonal implies (up to a permutationof the basis elements and conjugation with an orthogonal diagonal matrix)�(S) = 12 0B@ 3b2 � 1 �3ab �p3ac p3ad�3ab 3a2 � 1 �p3bc p3bd�p3ac �p3bc 3c2 � 2 �3cdp3ad p3bd �3cd 3d2 � 21CAwhere a; b; c; d 2 R and a2+b2 = 1; c2+d2 = 1 and �(T ) = diag(1; 1;�1;�1). UsingVerlinde's formula we obtain for the choice of the distinguished basis in which �0corresponds to the eigenvector of �(T ) with eigenvalue 1(N111)2 = (3a� 1)2(6a� 5)29a2(1� a2)(3a� 2)2 ; (N211)2 = c23a2(3a2 � 2) ; (N311)2 = d23a2(3a2 � 2) :For the other choice of the distinguished basis (�0 corresponding to eigenvalue �1)one �nds the same expressions with a and c exchanged.Let n := (N211)2 + (N311)2 and let m := (N111)2. It is easy to verify that thefollowing equation for n and m holds true(1� 3n)m3 + (12� 37n+ 31n2)m2 + (48� 152n+ 155n2 � 53n3)m+ 64� 208n+ 249n2 � 130n3 + 25n4 = 0:By Lemma 10 in x3.8 below the only nonnegative integer solution of this equationwith m being a square is given by m = 0; n = 1. This is a contradiction to theexplicit form of n and m in terms of a above. Hence the representation N1(�1)�C1 � C2 is not admissible.This proves the main theorem 1. �



46 3.8 Proof of a Lemma on diophantic equations.Lemma 105. Let n be a nonnegative integer, m a square of an integer and n;msolutions of(1) m3 + (1� 5n)m2 + (4n+ 7n2)m+ 4n2 � 3n3 = 0 or(2) (1� 3n)m3 + (12� 37n+ 31n2)m2+ (48� 152n+ 155n2 � 53n3)m +64�208n+ 249n2 � 130n3 + 25n4 = 0Then either n = m = 0 for (1) or m = 0; n = 1 for (2).Proof. Firstly, consider the equation (1). It can be written in the form(3n�m)(m� n)2 = (m+ 2n)2:If n = m then m = n = 0. Otherwise, set t = m+2nm�n implyingm = (t+ 2)t22t� 5 ; n = (t� 1)t22t� 5 :If m and n are integral then also t has to be integral (any prime factor of thedenominator of t would divide the denominator of m and n). Then N = 2t � 5divides (t� 1)t2 = 18 (N +5)2(N +3) so that N divides 3 � 52. None of the resulting12 possibilities leads to a nonnegative integer solution of n;m where m 6= n and mis a square.Secondly, consider the equation (2). Set k = m�n+4, then (2) is equivalent tok3 + 2k2n� 3k3n+ 125n2 � 92kn2 + 22k2n2 � 11n3 = 0:If k = 0 then n = 0 and m = �4 is not a square. Otherwise, (2) is equivalent to(�3t+ 22t2)k2 + (1 + 2t� 92t2 � 11t3)k + 125t2 = 0; k 6= 0where t = nk . This equation has discriminant (1+ 18t+ t2)(1� 7t+11t2)2 and thismust be a square. Setting pq := (1� t� (1 + 18t+ t2)1=2)=(10t) 2 Q (with coprimep; q and q > 0) we get t = q(p+ q)p(5p+ q) :Hence, using the quadratic equation in k we �nally havem = (2p+ q)2(p� q)2p2(2q � p)2(p+ q) ; n = q3p2(2q � p) :The parameterization of n implies that p = �1 and, furthermore, that q3 � 0 mod(2q � p). Therefore, we have p3 � 0 mod (2q � p) so that 2q � p = �1. From theresulting four possibilities only p = q = 1 satis�es the desired properties and leadsto m = 0; n = 1. �Remark. Note that the proof of Lemma 10 relies essentially on the fact thatthe curves de�ned by the two above equations are rational.5I would like to thank D. Zagier for discussion on this lemma [Za]



3. ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS 473.9 Proof of the classi�cation of the nondegenerate strongly-modularfusion algebras of dimension less than 24.Proof of the main theorem 2.Let (F ; �) be a simple nondegenerate strongly-modular fusion algebra of dimen-sion less than 24. Lemma 1 implies that � is irreducible. Furthermore, since (F ; �)is strongly-modular we have to consider all irreducible representations of SL(2;ZN )of dimension less than 24. Since (F ; �) is simple and nondegenerate simple Lemma7 shows that we can restrict our investigation to irreducible representations ofSL(2;Zp�). Once again, since (F ; �) is nondegenerate we can follow the line ofreasoning in the proof of the main theorem 1 for the two dimensional case.Therefore, we can directly apply Verlinde's formula to any such matrix represen-tation �̂ and look whether the resulting coe�cients Nki;j have integer absolute valuesfor the di�erent choices of the basis element corresponding to �0. If the resultingnumbers Nki;j do not have integer absolute values we can conclude that there existsno nondegenerate strongly-modular fusion algebra (F ; �) where � is conjugate tothe tensor product of a one dimensional representation of � and �̂. We have inves-tigated this for all irreducible representations of SL(2;Zp�) of dimension less than24 by constructing them explicitly6.The proof of the theorem will consist of three separate cases: We consider rep-resentations of SL(2;Zp) and SL(2;Zp�) and SL(2;Z2�) separately.Firstly, let � be isomorphic to a tensor product of a one dimensional representationand an irreducible representation �̂ of SL(2;Zp) (p 6= 2). Note that this case wasalready discussed in [E2].For the representations of typeD1(�) the matrix �(T ) has degenerate eigenvaluesso that we can leave out this type of representation.For the representations of type N1(�) we �nd modular fusion algebras only forp = 5; 11; 17 and 23 and �3 � 1. For p = 5 the modular fusion algebra is notsimple but equals the tensor product of two modular fusion algebras where thecorresponding fusion algebras are of type "(2; 5)" (cf. also the proof of the maintheorem 3). The modular fusion algebras corresponding to p = 11; 17; 23 are con-tained in the last three rows of Table 7.3. As was already mentioned in [E2] thesefour representations are probably the only admissible ones of type N1(�). However,we do not have a proof of this statement but numerical checks show that there isno other admissible representation of this type for p < 167 [E2].The representations of type R1(r; �1) and N1(�1) do not lead to modular fusionalgebras [E2].For all �̂ of type R1(r; ��1) we obtain modular fusion algebras. Here � �=(C4) p+12 
 R1(r; ��1) is admissible for all odd primes p. The corresponding mod-ular fusion algebras are of type "(2; p)". They are contained in the third row ofTable 7.3.Secondly, let � be isomorphic to a tensor product of a one dimensional representa-tion and a irreducible representation �̂ of SL(2;Zp�) (p 6= 2; � > 1).6Here we have used the computer algebra system PARI-GP [GP].



48 For the representations of typeD�(�) the matrix �(T ) has degenerate eigenvaluesexcluding these representations from our investigation.The only representations of type N�(�) which have dimension less than 24 arethose corresponding to (p = 3;� = 2; 3) and (p = 5;� = 2). A calculation showsthat exactly one of these representations leads to a modular fusion algebra. Thisis the representation with (p = 3;� = 2) and �3 � 1. The corresponding strongly-modular fusion algebra is contained in Table 7.3.Only those representations of type R��(r; t; �) and R�(r; ��1)1 with (p = 3;� =2; 3) or (p = 5;� = 2) have dimension less than 24. The representations R12(r; 1; �)(p� = 32;�3 � 1) lead to nondegenerate modular fusion algebras (cf. the proof ofthe main theorem 3). From the other representations only those with p� = 33; r =1; 2;�3 � 1 lead to modular fusion algebras (see Table 7.3).Thirdly, consider the irreducible representations of SL(2;Z2�). All irreducible rep-resentations of dimension less than or equal to 4 have been considered in the maintheorems 1 to 3. The corresponding admissible representations with nondegenerateeigenvalues of �(T ) are contained in Table 7.3.For � = 1; 2 all irreducible representations have dimension less than or equalto 3.For � = 3 we have to consider the representations of type R03(1; 3; �1)1 andD3(�)�. The former representation does not lead to a modular fusion algebra butthe representations D3(�)� lead to modular fusion algebras of type Z2 
 "(3; 4)".The corresponding modular fusion algebras are composite and therefore not con-tained in Table 7.3.For � = 4 only the irreducible representations of type R04(r; t; �)�, R24(r; 3; �1)1and R24(r; t; �) lead to modular fusion algebras. The �rst one leads to a fusionalgebra of type "(3; 4)" (see main theorem 2). The other two representations leadto composite modular fusion algebras. These fusion algebras are of type Z2
"(3; 4)"and are not contained in Table 7.3.For � = 5; 6 there are no irreducible representations of dimension less than24 leading to modular fusion algebras (some of them correspond to `fermionic fu-sion algebras' of N = 1-Super-Virasoro minimal models which we do not discusshere). �



4. UNIQUENESS OF CONFORMAL CHARACTERS 494. Uniqueness of conformal charactersIn this section we show that given the central charge and the �nite set of con-formal dimensions of certain rational models the conformal characters are alreadyuniquely determined. More precisely, we shall state a few general and simple ax-ioms which are satis�ed by the conformal characters of all known rational models ofW-algebras. These axioms state essentially not more than the SL(2;Z)-invarianceof the space of functions spanned by the conformal characters, the rationality oftheir Fourier coe�cients and an upper bound for the order of their poles. The onlydata of the underlying rational model occurring in these axioms are the centralcharge and the conformal dimensions, which give the upper bound for the poleorders and a certain restriction on the SL(2;Z)-invariance. We then prove that, forvarious sets of central charges and conformal dimensions, there is at most one setof modular functions which satis�es these axioms (cf. the main theorem 3 in x4.1).In this section we restrict our attention to rational models of W-algebras wherethe associated representation � turns out to be irreducible. This restriction ismainly of technical nature: It simpli�es the identi�cation of �. However, we believethat our main theorem on uniqueness of conformal characters can be generalized,i.e. that it can be extended to rational models with composite �, possibly with aslightly more restrictive set of axioms.We have organized x4 as follows: In x4.1 we state and comment on our mainresult: The theorem on uniqueness of conformal characters. The sections x4.2 andx4.3, where we develop the necessary tools needed for the proof of the main theorem3, may be of independent interest for those studying representations � arising fromconformal characters. Finally, in x4.4 we prove the main theorem 3.4.1 Results on the uniqueness of conformal characters of certain ra-tional models.Main theorem 3 (Uniqueness of conformal characters). Let c be anyof the central charges of Table 3.2b or 3.2c, let Hc denote the set of correspondingconformal dimensions, and let H be a subset of Hc containing 0. Assume that thereexist nonzero functions �c;h (h 2 H), holomorphic on the upper half plane, whichsatisfy the following conditions:(1) The functions �c;h are modular functions for some congruence subgroup of� = SL(2;Z).(2) The space of functions spanned by the �c;h (h 2 H) is invariant under �with respect to the action (A; �) 7! �(A�).(3) For each h 2 H one has �c;h = O(q�~c=24) as Im(�) tends to in�nity, where~c = c� 24minH.(4) For each h 2 H the function q�(h� c24 )�c;h is periodic with period 1.(5) The Fourier coe�cients of the �c;h are rational numbers.Then H = Hc, and, for each h 2 H, the function �c;h is unique up to multiplicationby a scalar.



50 Remarks.(1) The theorem only ensures the uniqueness of the functions �c;h not theirexistence. However, they do exist. For Table 3.2b the existence of the cor-responding functions is a well-known fact [CIZ,EFH2NV]: explicit formulasfor them can be given in terms of the Riemann-Jacobi theta seriesXx2Zx��mod2k exp(2�i�x2=4k):The existence of the functions �c;h related to Table 3.2c will be proved inx5.(2) The conformal characters �M of a rational model with H as set of conformaldimensions satisfy the properties listed under (2) { (5) by the very de�nitionof rational models and Zhu's theorem if we set �c;h = �M (h = conformaldimension of M). Property (1) is not part of this de�nition, and it is notclear whether it is implied by the axioms for rational models. However,there are indications that it always holds true (cf. the discussion below).(3) If we assume for a rational model corresponding to a row in Table 3.2b orTable 3.2c that its conformal characters satisfy (1) we can conclude fromour theorem that the corresponding set Hc is exactly the set of its conformaldimensions and that the properly normalized functions �c;h (h 2 Hc) are itsconformal characters.(4) For the proof of the theorem for the �ve models of Table 3.2c the assumption0 2 H is not needed, and it can possibly be dropped in all cases. However,we did not pursue this any further: From the physical point of view theassumption 0 2 H is natural since h = 0 corresponds to the vacuum repre-sentation of the underlying W-algebra, i.e. the representation given by theaction of the algebra on itself.For the �rst two cases of Table 3.2c the requirement that the �c;h are modularfunctions on some congruence subgroup is not necessary. Here we have theSupplement to the main theorem. For c = � 85 and c = 45 and with Hcas in Table 3.2c the equality H = Hc and the uniqueness of the �c;h (h 2 H) arealready implied by properties (2) to (5).For the other cases we do not know whether the statement about the uniquenessof H and the �c;h remains true if one also takes into account non-modular functionsor non-congruence subgroups.However, as already mentioned, it seems to be reasonable to expect that theconformal characters associated to rational models satisfy (1). Support for this isgiven by the following:There is no example of a conformal character of any rational model which is nota modular function on a congruence subgroup.As mentioned above the functions �c;h, whose uniqueness is ensured by the maintheorem, exist. As it turns out they can be normalized so that their Fourier co-e�cients are always nonnegative integers (for the case of Table 3.2c cf. x5). Thisgives further evidence that they are identical with the conformal characters of thecorresponding W-algebra models whence the latter therefore satisfy (1).



4. UNIQUENESS OF CONFORMAL CHARACTERS 51According to the main theorem 3, for each Hc of Table 3.2b and 3.2c the �-module spanned by the �c;h is uniquely determined. In particular the S-matrix(i.e. the matrix representing the action of S with respect to the basis given by the�c;h with the normalization indicated in the preceding remark) is unique. Closedformulas for the S-matrices corresponding to the �rst four rows of Table 3.2c willbe given in x5.2 (cf. [ES2]). They can be compared with the S-matrix of thecorresponding W(2; 4) rational model with c = � 44411 as numerically computed in[E1] using so-called direct calculations in the W-algebra. Both S-matrices coincidewithin the numerical precision.The last three rational models listed in Table 3.2c are minimal models of CasimirW-algebras for which formulas for the corresponding conformal characters havebeen obtained in [FKW] under the assumption of a certain conjecture. Once more,the conformal characters obtained in this way are modular functions on congruencesubgroups (cf. Appendix 7.4 and the discussion in x5.3).In the other subsections of x4 we prove our main theorem. To this end wewill develop some general tools dealing with modular representations, i.e. withrepresentations of � = SL(2;Z) on spaces of modular functions or forms. Thesemethods are introduced in the next two subsections. In x4.4 we conclude with theproof of the main theorem 3.4.2 A dimension formula for vector valued modular forms.In this section we state dimension formulas for spaces of vector valued modularforms on SL(2;Z). These formulas are one of the main tools in the proof of themain theorem. It is quite natural in the context of conformal characters, or moregenerally in the context of modular representations, to ask for such formulas: Thevector � whose entries are the conformal characters of a rational model, multipliedby a suitable power of �, is exactly what we shall call a vector valued modular form,and is as such an element of a �nite dimensional space. (The latter holds true atleast in the case where the characters are invariant under a subgroup of �nite indexin �; see the assumptions in the theorem below).Multiplying � by an odd power of � yields a vector valued modular form of half-integral weight. However, because of the ambiguity of the square root of c�+d (c; dbeing the lower entries of a matrix in �) we now do not deal with a vector valuedmodular form on SL(2;Z) but rather on a certain double cover D� = DSL(2;Z) ofthis group.We now make these notions precise.The double cover D� is de�ned as follows: the group elements are the pairs(A;w), where A is a matrix in � and w is a holomorphic function on H satisfyingw2(�) = c� + d with c; d the lower row of A. The multiplication of two such pairsis de�ned by (A;w(�)) � (A0; w0(�)) = (AA0; w(A0�) � w0(�)):For any k 2 Z we have an action of D� on functions f on H given by(f jk(A;w))(�) = f(A�)w(�)�2k:Note that for integral k this action factors to an action of �, which is nothing elsethan the usual `jk'-action of � given by (f jkA)(�) = f(A�)(c� + d)�k.



52 For a subgroup � of � we will denote by D� � D� the preimage of � withrespect to the natural projection D� ! � mapping elements to their �rst compo-nent.Special subgroups of D� which we have to consider below are the groups�(4m)] = f(A; j(A; �))jA 2 �(4m)g:Here, for A 2 �(4m), we use j(A; �) = #(A�)=#(�)where #(�) =Pn2Zqn2 . It is well-known that indeed j(A; �) = �(A)pc� + d wherec; d are the lower row of A and �(A) = �1. Explicit formulas for �(A) can be foundin the literature, e.g. [Sk].We can now de�ne the notion of a vector valued modular form on � or D�.Definition. For any representation �:D�! GL(n; C ) and any number k 2 12Zdenote by Mk(�) the space of all holomorphic maps F :H ! C n which satisfyF jk� = �(�)F for all � 2 D�, and which are bounded in any region Im(�) � r > 0.Denote by Sk(�) the subspace of all forms F (�) in Mk(�) which tend to 0 as Im(�)tends to in�nity.If � is a representation of � and k is integral we use Mk(�) for Mk(� � �),where � is the projection of D� onto the �rst component. Clearly, in this case thetransformation law for the functions F ofMk(�) is equivalent to F jkA = �(A)F forall A 2 �. In general, if k is integral, the group D� may be replaced by � in all ofthe following considerations.Finally, for a subgroup � of D� or � we use Mk(�) for the space of modularforms of weight k on � in the usual sense. In the case � � � the weight k hasof course to be integral. The reader may not mix the two kinds of spaces Mk(�)and Mk(�); it will always be clear from the context whether � and � refer to arepresentation or a group.Clearly, if the image of � is �nite, i.e. if the kernel of � is of �nite index in D� thenthe components of an F in Mk(�) are modular forms of weight k on this kernel. Inparticular, the space Mk(�) is then �nite dimensional. Formulas for the dimensionof these spaces can be obtained as follows: Let V be the complex vector space ofrow vectors of length n = dim �, equipped with the D�-right action (z; �) 7! z�(�),where ()t means transposition. The space Mk(�) can then be identi�ed with thespace HomD�(V;Mk(�)) of D�-homomorphisms from V to Mk(�), where � =ker �, via the correspondenceMk(�) 3 F 7! the map which associates z 2 V to z � F 2Mk(�):By orthogonality of group characters the dimension of HomD�(V;Mk(�)) can beexpressed in terms of the traces of the endomorphisms de�ned by the action ofelements of D� on Mk(�). These traces in turn can be explicitly computed usingthe Eichler-Selberg trace formula. This way one can derive the following theorem(cf. [Sk, pp. 100] for a complete proof):



4. UNIQUENESS OF CONFORMAL CHARACTERS 53Theorem (Dimension formula [Sk]). Let � : DSL(2;Z) ! GL(n; C ) be arepresentation with �nite image and such that �((�21I; �)) = ��2k1I for all fourthroots of unity �. and let k 2 12Z. Then the dimension of Mk(�) is given by thefollowing formuladimMk(�)� dimS2�k(�) =k � 112 � n+ 14 Re � e�ik=2 tr �((S;p�))�+ 23p3 Re � e�i(2k+1)=6 tr �((ST;p� + 1))�+ 12a(�)� nXj=1 B 1(�j):Here the �j (1 � j � n) are complex numbers such that e2�i�j runs through theeigenvalues of �(T ), we use a(�) for the number of j such that e2�i�j = 1, and weuse B 1(x) = x0 � 1=2 if x 2 x0 + Z with 0 < x0 < 1, and B 1(x) = 0 for x integral.Moreover, for � 2 H, we use p� and p� + 1 for those square roots which havepositive real parts.Remark. For k � 2 the theorem gives an explicit formula for dimMk(�) sincein this case dim(S2�k(�)) = 0 (the components of a vector valued modular formare ordinary modular forms on ker �, and there exist no nonzero modular forms ofnegative weight and no cusp forms of weight 0).For k = 1=2, 3=2 and ker(�) � �(4m)] it is still possible to give an explicitformula for Mk(�) [Sk]. However, we do not need those dimension formulas in fullgenerality but need only the following corollary:Supplement to the dimension formula [Sk]. Let � : DSL(2;Z)! GL(n; C )be an irreducible representation with �(4m)] � ker(�) for some integerm. Then onehas dim(M1=2(�)) = 0; 1: Furthermore, if dim(M1=2(�)) = 1 then the eigenvalues of�(T ) are of the form e2�i l24m with integers l.Remark. A complete list of all those representations � for which dim(Mk(�)) =1 can be found in [Sk].A proof of this supplement can be found in [Sk]. It uses a theorem of Serre-Starkdescribing explicitly the modular forms of weight 1=2 on congruence subgroups.4.3 Three basic lemmas on representations of SL(2;Z).In this section we will prove some lemmas which are useful for identifying agiven representation � of � if one has certain information about �, which can e.g.-for representations related to rational models- be easily computed from the centralcharge and the conformal dimensions.Assume that the conformal characters of a rational model are modular functionson some a priori unknown congruence subgroup. Then the �rst step for determiningthe representation �, given by the action of � on the conformal characters, consistsin �nding a positive integer N such that � factors through �(N). The next theoremtells us that the optimal choice of N is given by the order of �(T ).



54 Theorem (Factorization criterion). Let �: �! GL(n; C ) be a representa-tion, and let N > 0 be an integer. Assume that �(TN ) = 1, and, if N > 5, thatthe kernel of � is a congruence subgroup. Then � factors through a representationof �=�(N).Proof. The kernel �0 of � contains the normal hull in � of the subgroup gener-ated by TN . Call this normal hull �(N). By a result of [Wo] (but actually goingback to Fricke-Klein) one has �(N) = �(N) for N � 5. If N > 5 then by assump-tion we have �0 � �(N 0) for some integer N 0. Thus �0 contains �(N)�(NN 0),which, once more by [Wo], equals �(N).By the last theorem the determination of the representation � associated to arational model with modular functions as conformal characters is reduced to the in-vestigation of the �nite list of irreducible representations of �=�(N) � SL(2;Z=NZ)with some easily computable N . The following theorem, or rather its subsequentcorollary, allows to reduce this list dramatically.Theorem (K-Rationality of modular representations). Let k and N >0 be integers, let K = Q(e2�i=N ). Then the K-vector space MKk (�(N)) of allmodular forms on �(N) of weight k whose Fourier developments with respect toe2�i�=N have coe�cients in K is invariant under the action (f;A) 7! f jkA of �.Proof. Let j(�) denote the usual j-function, which has Fourier coe�cients inZ and satis�es j(A�) = j(�) for all A 2 �. Assume that k is even. Then the mapf 7! f=j0k=2 de�nes an injection of the K-vector space MKk (�(N)) into the �eldof all modular functions on �(N) whose Fourier expansions have coe�cients in K.It clearly su�ces to show that the latter �eld is invariant under �. A proof forthis can be found in [Sh, p. 140, Prop. 6.9 (1), equ. (6.1.3)]. The case k odd canbe reduced to the case k even by considering the squares of the modular forms inMKk (�(N)).Corollary. Let � : � ! GL(n; C ) be a representation whose kernel contains�(N) for some positive integer N , and let K = Q(e2�i=N). If, for some integer k,there exists a nonzero element in Mk(�) whose Fourier development has Fouriercoe�cients in Kn, then �(�) � GL(n;K).Proof. If F 2Mk(�) has Fourier coe�cients inKn then F jkA, by the precedingtheorem, has Fourier coe�cients in Kn too. Here A is any element in �. FromF jkA = �(A)F we deduce that �(A) has entries in K.Remark. If one assumes that a vector valued modular form is related to theconformal characters of a rational model which are modular functions of somecongruence subgroup then obviously all the Fourier coe�cients are rational so thatthe corollary applies.4.4 Proof of the theorem on uniqueness of conformal characters.We will now prove our main theorem stated in x4.1. Pick one of the centralcharges c in Table 3.2b or Table 3.2c. Assume that for some H � Hc containing0 there exist functions �c;h (h 2 H) which satisfy the properties (1) to (5) of themain theorem. Let � denote the vector whose components are the functions �c;hordered with increasing h. Note that the h-values are pairwise di�erent modulo 1.



4. UNIQUENESS OF CONFORMAL CHARACTERS 55By (4) the �c;h are thus linearly independent. Hence, we have a well-de�ned jHj-dimensional representation � of the modular group if we set �(A�) = �(A)�(�) forA 2 �. Finally, recall that the Dedekind eta function � is a modular form of weight1=2 for D�, more precisely, that there exists a one-dimensional representation � ofD� on the group of 24-th roots of unity such that � 2M 12 (�).For any half integer k 2 12Z such thatk � ~c=2we have F := �2k� 2 Mk(�
 �2k), as is as an immediate consequence of property(3) and the assumption that the �c;h are holomorphic in the upper half plane. Letk be the smallest possible half integer satisfying this inequality. The actual valueis given in Table 4.4 below.We shall show that by property (1) to (5) the representation � is uniquely de-termined (up to equivalence). Its precise description can be read o� from the lastcolumn of Table 3, respectively (notations will be explained below). In particular,� has dimension equal to the cardinality of Hc, and hence we conclude H = Hc.The h-values are pairwise incongruent modulo 1, i.e. �(T ) has pairwise di�erenteigenvalues. Since �(T ) is a diagonal matrix the representation � is thus unique upto conjugation by diagonal matrices.Finally, the kernel of � is a congruence subgroup by property (1). In particular,� 
 �2k has a �nite image. Thus we can apply the dimension formulas stated inx4.2. (For verifying the second assumption for the dimension formula note that �is even and that �((�21I; �)) = �j 12 (�21I; �)(�)=�(�) = ��1 for all �4 = 1.) It will turnout that Mk(� 
 �2k) is one-dimensional. Thus, if there actually exist functions�c;h satisfying (1) to (5) then Mk(� 
 �2k) = C � ��2k. Since � is unique up toconjugation by diagonal matrices we conclude that � is unique up to multiplicationby such matrices, and this proves the theorem. We now give the details.Determination of the representation �. We �rst determine the equivalenceclass of the representation �.For an integer k0 let l(k0) be the lowest common denominator of the numbersh� c=24 + k0=12 (h 2 Hc), i.e. letl(k0) = 12d= gcd(12d; : : : ; 12nj + k0d; : : : );where the nj=d denote the rational numbers h � c=24 (h 2 Hc) with integers nj ,d. Clearly, the order of (�
 �2k0)(T ) divides l(k0). Let k0 the smallest nonnegativeinteger such that l = l(k0) is minimal, and set e� = �
 �2k0 . The values of k0 and lare given in Table 4.4.Note that k0 integral implies that e� can be regarded as a representation of �(rather than DSL(2;Z)). By property (1) its kernel is a congruence subgroup.Thus we can apply the factorization criterion of x4.3 to conclude that this kernelcontains �(l). Note that here the assumption (1), namely that the �c;h are invariantunder a congruence subgroup is crucial if l > 5. For l � 5, this assumption is notnecessary, which explains the supplement to the main theorem.



56 We shall say that a representation of � has level N if its kernel contains �(N)(here N is not assumed to be minimal). Since any representation of level N factorsto a representation of �=�(N) � SL(2;Z=NZ);it has a unique decomposition as sum of irreducible level N representations. Fur-thermore, there are only �nitely many irreducible level N representation, and eachsuch representation � has a unique product decomposition� = Yp�kl�p�with irreducible level p� representations �p� . Here the product is to be taken overall prime powers dividing N and such that gcd(p�; N=p�) = 1. Finally, �p�(T ) hasorder dividing p�, i.e. its eigenvalues are p�-th roots of unity. Since any N -th rootof unity � has a unique decomposition as product of the p�-th roots of unity � Np� xpwith Np�xp � 1 mod p�, we conclude:Lemma. Let �j (1 � j � n = dim�) be the eigenvalues of �(T ). Then, for eachp�kN , the eigenvalues 6= 1 of �p�(T ) (counting multiplicities) are exactly thoseamong the numbers � Np� xpj (1 � j � n) which are not equal to 1.Table 4.4: Representations of � and weights related to certain rational modelsW-algebra c k k0 l e� = �
 �2k0W(2) 1� 6 (p�q)2pq 12 2 8pq Rp1(q; ��1)
Rq1(p; ��1)
Dpq8W(2; (m�1)(q�2)2 ) 1� 3 (2m�q)2mq 12 1�3mq2 mod 12 mq Rq1(2m;��1)
Rm1 (2q; �1)W(2; q � 3) 1� (12�q)22q 12 �1� q mod 3 16q Rq1(3; ��1)
Dq16W(2; q � 5) 1� (30�q)25q 12 1�5q2 mod 12 5q Rq1(30; ��1)
 R51(q; ��1)WG2(2; 114) � 85 2 4 5 �5WF4(2; 126) 45 3 10 5 �5W(2; 4) � 44411 1 6 11 �11W(2; 6) � 142017 1 2 17 �17W(2; 8) � 316423 1 10 23 �23Recall that in Table 4.4 the integers p; q and m are primes with q 6= p;m.The representation � in line 1 to 4 of Table 4.4. First, we consider therational models corresponding to the �rst 4 rows of Table 4.4. By assumption h = 0is in H, i.e. � = exp(2�i(�c=24 + k0=12)) is an eigenvalue of e�(T ). Let � be thatirreducible level l representation in the sum decomposition of e� such that �(T )has the eigenvalue �. Since � is irreducible it has a decomposition as product of



4. UNIQUENESS OF CONFORMAL CHARACTERS 57irreducible representations �p� as above. Since � is a primitive l-th root of unitythe lemma implies that the �p� are nontrivial.The minimal dimension of a nontrivial irreducible level p� representation is 2, 3or (p� 1)=2 accordingly if p� equals 8, 16 or is an odd prime p (cf. x3 or [NW, p.521�]). Hence we have the inequalitiesdim� � 8>>><>>>: (p� 1)(q � 1)=2 for row 1(m� 1)(q � 1)=4 for row 23(q � 1)=2 for row 3q � 1 for row 4 :For row 1, 3 and 4 the right hand side equals the cardinality of Hc respectively. Inthese cases we thus conclude that e� = � is irreducible, that it is equal to a productof nontrivial level p� representations with minimal dimensions, and, in particular,that H = Hc.For row 2 the right hand side is smaller than the cardinality of Hc. However,here we can sharpen the above inequality: First we note that the level p repre-sentations of dimension (p � 1)=2 have parity (�1)(p+1)=2, whence the product ofthe corresponding level m and q representations has parity (�1)(mq�1)=2. On theother hand any irreducible subrepresentation has the same parity e�, i.e. the parity(�1)k0 = (�1)(mq+1)=2. Hence � cannot equal a product of two nontrivial level mand q representations of minimal dimension. The dimension of the second small-est nontrivial irreducible level p representations is (p + 1)=2. Under each of theserepresentations T a�ords eigenvalue 1. Since T under e� a�ords no m-th root ofunity as eigenvalue, we conclude that � cannot be equal to a product of a (q+1)=2dimensional level q and a (m� 1)=2 dimensional level m representation. Thus,dim� � (m+ 1)(q � 1)=4:The right hand side equals jHcj, and we conclude as above that H = Hc, that �is irreducible, and that e� equals a product of an irreducible (q � 1)=2 dimensionallevel q and an irreducible (m+ 1)=2 dimensional level m representation.To identify � it thus remains to examine the nontrivial level p� representationswith small dimensions (cf. x3 or [NW, p. 521�]).Let p� = p be an odd prime. There exist exactly two irreducible level p repre-sentations with dimension (p � 1)=2. The image of T under these representationshas the eigenvalues exp(2�i"x2=p) (1 � x � (p � 1)=2) where for one of them "is a quadratic residue modulo p, and a quadratic non-residue for the other one.Call these representations accordingly Rp1("; ��1). Similarly there exist exactly 2irreducible level p representations with dimension (p+ 1)=2, denoted by Rp1("; �1)(with " being a quadratic residue or non-residue modulo p). The eigenvalues ofRp1("; �1) are exp(2�i"x2=p) (0 � x � (p� 1)=2).Let p� = 8. There exist exactly 4 irreducible two dimensional level 8 repre-sentations which we denote by Dx8 (x being an integer modulo 4). The eigenval-ues of the image of T under the representation Dx8 are exp(2�i(1 + 2x)=8) andexp(2�i(7 + 2x)=8).



58 Let p� = 16. There are 16 irreducible three dimensional level 16 representations.These can be distinguished by their eigenvalues of the image of T . In particular,there are four of these representations, denoted by Dx16 (x mod 4), where the imageof T has the eigenvalues exp(2�i(2x + 3)=8); exp(2�i(3x � 6)=16); exp(2�i(3x +2)=16).Summarizing we �nd e� = Rp1(nq; ��1) 
 Rq1(np; ��1) 
 Dn88 , = Rq1(nq; ��1) 
Rm1 (nm; �1), = Rp1(nq; ��1) 
 Dn1616 or = Rp1(nq; ��1) 
 R51(n5; ��1), respectively,with suitable numbers np; : : : . The latter can be easily determined using the Lemmaand the description of Hc in Table 1. The resulting values are given in Table 4.4.The representation � in line 5 to 9 of Table 4.4. We now consider therational models corresponding to row 5 to 9 of Table 3. Here the level of e� is aprime l, the dimension of � is � l � 1, and the eigenvalues of �(T ) are pairwisedi�erent primitive l-th roots of unity.We show that e� is irreducible with dimension l�1. Assume that e� is reducible orhas dimension < (l�1). The only irreducible level l representations with dimension< (l � 1) for which the image of T does not a�ord eigenvalue 1 are Rl1("; ��1).Thus there are only two possibilities: (a) e� = Rl1("; ��1) or (b) e� = Rl1("; ��1) 
Rl1("0; ��1). For l = 5; 17 the representations Rl1("; ��1) have parity �1, wherease� has parity +1, a contradiction. For l = 11; 23 we note that ��2 is an element ofM1(e�
 �2�2k0). We shall show in moment that the dimension of M1(Rl1("; ��1)
�2�2k0) is 0, which gives the desired contradiction (to recognize the contradictionin case (b) note that the `functor' � 7!Mk(�) respects direct sums).Since the dimension formula gives explicit dimensions only for k 6= 1 we cannotapply it directly for calculating the dimension of M = M1(Rl1("; ��1) 
 �2�2k0).For l = 11 we note that �2M is a subspace of M2(Rl1("; ��1) 
 �4�2k0). To thelatter we can apply the dimension formula, and �nd (using trRl1("; ��1)(S) = 0,trRl1("; ��1)(ST ) = �1) that its dimension is 0. For l = 23 and " = 1 we considerM3=2(Rl1(1; ��1)
 �3�2k0) which contains �M . We �nd that its dimension equalsdimS1=2(Rl1(�1; ��1)
 ��(3�2k0)) � dimM1=2(Rl1(�1; ��1)
 ��(3�2k0)) ;which equals 0 by the supplement in x4.2 (for applying the supplement note that(Rl1(�1; ��1)
 ��(3�2k0) has a kernel containing �(23 � 24)] and represents T witheigenvalues exp(2�i(�24x2 + 17 � 23)=23 � 24) ). Finally, by the dimension formulawe �nd dimM1(Rl1(�1; ��1)
 �2�2k0) = dimS1(Rl1(1; ��1)
 ��(2�2k0));and the right hand side equals 0 since dimS3=2(Rl1(1; ��1)
 ��(1�2k0)) = 0 by thesupplement.Thus, e� is irreducible of dimension l � 1, which implies in particular H = Hc.There exist exactly (l � 1)=2 irreducible level l representations of dimension l � 1(cf. Table 3.5a). We now use property (5) of the main theorem, which implies thatthe Fourier coe�cients of � � �2k0 are rational. Hence, by the corollary in x4.3 we�nd that e� takes values in GL(l�1; K) with K being the �eld of l-th roots of unity.There is exactly one irreducible level l representations of dimension l � 1 whosecharacter takes values in K (Lemma 8 in x3.5 or [Do, p. 228]); denote it by �l.Then e� = �l.



4. UNIQUENESS OF CONFORMAL CHARACTERS 59Computation of dimensions. It remains to show d = dimMk(e�
 �2k�2k0) �1. For the �rst 4 rows of Table 4.4 this follows from the supplement in x4.2 andthe irreducibility of � (in fact it can be shown that d = 1 [Sk]). For row 5 and6 we �nd d = 1 by the dimension formula and using tr �l(S) = 0, tr �l(ST ) = 1(valid for arbitrary primes l). For the remaining cases (where k = 1) we multiplyM1(e�
�2�2k0) by � for obtaining d0 = dimM3=2(e�
�3�2k0) as upper bound. Again,using the dimension formula and its supplement we �nd d0 = 1.This concludes the proof of the main theorem 3. �



60 5. Construction of conformal charactersIn x4 we formulated a list of �ve axioms which are satis�ed for all known setsof conformal characters of rational models of W-algebras. The only data from anunderlying rational model which occurs in these axioms is its central charge and itsconformal dimensions. We showed that, for several rational models, these axiomsuniquely determine the conformal characters belonging to a given central chargeand set of conformal dimensions.Thus, once the central charge and conformal dimensions of a rational model areknown, the computation of its conformal characters can be viewed as a problemwhich is completely independent from the theory of W-algebras, i.e. for this com-putation one is left with a construction problem, namely, the problem of �nding,by whatever means, a set of functions ful�lling the indicated list of axioms.The purpose of this section is to describe such a mean which can solve in manycases this construction problem. In particular, we shall apply our method to thecase of �ve special rational models related to Table 3.2c. The reason for the choiceof these models is that the representation theory of the SL(2;Z)-representation ontheir conformal characters can be treated homogeneously in some generality, andthat the conformal characters of one of these models (of type W(2; 8) with centralcharge c = � 316423 ) could not be computed explicitly by the so far known methods.This section is organized as follows: In section 5.1 we describe a general procedurefor the construction of vector valued modular forms transforming under a givenmatrix representation of SL(2;Z) (main theorem 4 on realization by theta series).As already mentioned, this procedure is useful in general for �nding explicit andeasily computable formulas for conformal characters. In x5.2 we apply this generalsetup to the case of the �ve special rational models, and we derive explicit formulasfor their conformal characters (main theorem 5 on theta formulas for conformalcharacters). Finally, in x5.3 we compare our results with those formulas for theconformal characters of the �ve models which can be obtained (assuming certainconjectures) from the representation theory of Casimir W-algebras.5.1 The general construction: Realization of modular representationsby theta series.In this section we show how one can, under certain hypothesis, construct system-atically vector valued modular forms in Mk(�) for a given matrix representation �of � and given weight k.The �rst step is a realization of � as subrepresentation of a Weil representation.Recall from section 3.4 that one has the following theorem.Theorem [NW]. Each irreducible right-representation of � whose kernel con-tains a principal congruence subgroup is isomorphic to a subrepresentation of asuitable Weil representation.We call two quadratic modules (M;Q) and (M 0;Q0) isomorphic if there exists anisomorphism (of abelian groups) �:M !M 0 such that Q0 � � = Q, and we denotesuch an isomorphism by �: (M;Q)�!(M 0;Q0):It is easy to show that isomorphic quadratic modules yield isomorphic Weil repre-sentations: an isomorphism of (projective or proper) �-representations is given by



5. CONSTRUCTION OF CONFORMAL CHARACTERS 61the map ��: CM 0 ! CM ; f 7! ��f = f � �:As the next step for constructing elements of spaces Mk(�) we connect Weil rep-resentations and theta series by lifting quadratic modules to lattices and quadraticforms on them.More precisely, let (M;Q) be a quadratic module. Assume that L is a completelattice in some rational �nite-dimensional vector space V and Q a positive de�nitenon-degenerate quadratic form on V which takes on integral values on L, and suchthat there exists an isomorphism of quadratic modules�: (L]=L; eQ) �!(M;Q):Here we use L] for the dual lattice of L with respect to Q, i.e. L] is the set of ally 2 V such that B(L; y) � Z with B(x; y) = Q(x+ y)� Q(x)�Q(y); and we useeQ for the induced quadratic formeQ : L]=L! Q=Z ; x+ L 7! Q(x) + Z:We shall call such a pair (L;Q) a lift of the quadratic module (M;Q).Let p a homogeneous spherical polynomial on V with respect to Q of degree �,i.e. if we choose a basis bj of V , then p (P bj�j) becomes a complex homogeneouspolynomial in the variables �j of degree � satisfyingrG�1r0 p�Xj bj�j� = 0;where r = ( @@�1 ; : : : ) and G = (B(bj; bk))j;k is the Gram matrix of B.Finally, for f 2 CM , set�f = Xx2L](��f)(x) p(x) qQ(x):Here we view ��f as function on L] which is periodic with period lattice L.We assume that V has even dimension 2r. Then the Weil representation ! =!(M;Q) is proper as shown in ref. [ES2]. One hasTheorem (Representation by theta series). The map CM 3 f 7! �f hasthe property �f jr+�A = �f j!(A) for all A 2 �, i.e. it de�nes a homomorphism of�-modules.This is, in various di�erent formulations, a well-known theorem. For the reader'sconvenience we shall sketch the proof in the Appendix at the end of this subsection.Let now �: � ! GL(n; C ) be a congruence matrix representation, and assumethat we have determined a quadratic module (M;Q) such that the associated Weilrepresentation is proper and contains a subrepresentation which is isomorphic tothe (right-)representation C n � � 3 (z; A) 7! z�(A)0, where the prime denotes



62transposition. The existence of such an (M;Q) is guaranteed by the �rst theorem.Thus, there exists a �-invariant subspace of CM with basis fj such that�j!(A) = �(A)� (A 2 �);where � denotes the column vector build from the fj . Assume furthermore thatthere exists a lift (L;Q) of (M;Q), i.e. an isomorphism�: (L]=L; eQ)�!(M;Q)with a lattice L of even rank 2r. Let p be a homogeneous spherical polynomial w.r.t.Q of degree �. From the last theorem it is then clear that we have the followingMain theorem 4 (Realization by theta series). The function� = Xx2L]�(�(x)) p(x) qQ(x)is an element of Mr+�(�).Appendix. We proof the theorem on representation by theta series. It is con-sequence of the followingLemma (Basic transformation formula). Let L be a lattice in a rationalvector space V of dimension 2r, let Q be a positive de�nite quadratic form on Vwhich takes on integral values on L, let L] and B be de�ned as above, let w 2 V 
Cwith Q(w) = 0, let � a non-negative integer, and let z 2 V . Then one has��r��Xx2L[B(w; x+ z)]� e(�Q(x+ z)=�)= i�rp[L] : L] Xy2L][B(w; y)]� e(�Q(y)t �B(y; z));where � is a variable in the complex upper half plane.The lemma is a well-known consequence of the Poisson summation formula; fora proof cf. [Scho, p. 206]. (For verifying that our formula is equivalent to the onegiven loc. cit. identify L with Z2r by choosing a Z-basis bj of L, and note that thenL] = G�1Z2r and det(G) = [L] : L] where G = (B(bj; bk)) is the Gram matrix ofL. Moreover, the transformation formula loc. cit. is only stated for � = it (t real);the general formula follows by analytic continuation.)Proof of the theorem on representation by theta series. Since anyhomogeneous spherical polynomial of degree � can be written as linear combinationof the special ones B(x;w)� (where w 2 C , Q(w) = 0) we can assume that p is ofthis special form. Since S and T generate � it su�ces to prove the asserted formulafor these elements. For A = T the formula is obvious. For proving the case A = Slet in the basic transformation formula z be an element of L], multiply by f(z) andsum over a set of representatives z for L]=L. UsingXx2L]=L e(Q(x)) = irq[L] : L](Milgram's theorem, e.g. [MH, p. 127]) we realize the claimed formula. �



5. CONSTRUCTION OF CONFORMAL CHARACTERS 635.2 An example (I): Theta series associated to quaternion algebrasand the conformal characters of the �ve special models.We shall use the notation introduced in x4 and construct the conformal charactersrelated to the rational models in Table 3.2c. To this end we follow the procedureoutlined in the foregoing section to construct elements of Mk(�l) where l denotesan odd prime l � �1 mod 3 and �l is the matrix representation introduced in x4.4,i.e. �l is the (up to equivalence) unique irreducible representation whose kernelcontains �(l), and it takes its values in GL(l � 1;Q(e2�i=l)). We shall give anexplicit description of �l below.From property (3) in the main theorem 3 on uniqueness of conformal characterswe have �2k�c = O(q�) for q ! 0, where � = �~c + k=12, and, in particular, that�2k�c is an element of Mk(�l) (here �c is the vector whose components are thefunctions �c;h ordered with increasing h). The dimensions of these spaces can becomputed using the dimension formula in x4.2. The resulting dimensions and thevalues of � are listed in Table 5.2.Let M (�)k (�l) be the subspace of all F 2 Mk(�l) satisfying F = O(q�). In x4.4it was shown that this subspace is one-dimensional, which, by obvious arguments,implies that �c is unique up to multiplication by diagonal matrices. (Actually, itwas shown that Mh(�l 
 �2h�2k) is one-dimensional, where �2(A) = (�2j1A)=�2.However, this latter space is obviously isomorphic toM (�)k (�l) via multiplication by�2k�2h.) Table 5.2: Certain data related to �ve rational modelsW-algebra c l k � dimMk(�l)WG2(2; 114) � 85 5 4 15 1WF4(2; 126) 45 5 10 35 3W(2; 4) � 44411 11 6 511 5W(2; 6) � 142017 17 2 217 2W(2; 8) � 316423 23 10 1823 17We �rst describe how to obtain �l from a proper Weil representation. Let ! bethe Weil representation associated to the quadratic module (F(l2); n(x)=l). HereF(l2) is the �eld with l2 elements, and n(x) = x � x with x 7! x = xl denoting thenon-trivial automorphism of F(l2). Note that tr(xy)=l where tr(x) = x + x is thebilinear form associated to n(x)=l. The Weil representation ! associated is thus a(right-)representation of � on the space of functions f : F(l2) ! C , and it is givenby f j!(T )(x) = e(n(x)=l) f(x); f j!(S)(x) = �1l Xy2F(l2) e(� tr(xy)=l) f(y):Here we used Xx2F(l2) e(n(x)=l) = �l;



64as follows for instance from Milgram's theorem and the considerations below wherewe shall obtain F(l2) = L]=L with a lattice of rank 4. Note that this identity impliesin particular that ! is a proper representation (cf. the discussion in section 3.4).Let � be one of the two characters of order 3 of the multiplicative group ofnonzero elements in F(l2), and let G be the subgroup of elements with n(x) = 1.Note that the existence of � follows from the assumption l � �1 mod 3. Let X(�)be the subspace of all � 2 X which satisfy �(gx) = �(g)�(x) for all g 2 G. It iseasily checked that X(�) is a �-submodule of X. In fact, it is even an irreducibleone [NW, Satz 2]. As basis for X(�) we may pick the functions �r (1 � r � l � 1)which are de�ned by �r(x) = �(x) if n(x) = r and �r(x) = 0 otherwise. Let�� be the complex column vector valued function on F(l2) whose r-th componentequals �r. We then have ��jA = �(A)�� with a unique matrix representation�: �! GL(l � 1; C ). It is an easy exercise to verify the identities�(T ) = diag(e2�i1=l; � � � ; e2�i(l�1)=l); �(S) = (�(rs))1�r;s�l�1 ;where we use �(r) = �1l Xx2F(l2)n(x)=r �(x) e(tr(x)=l):(In the identity n(x) = r the r has to be viewed as an element of F(l2).)Note that �(r) does not depend on the choice of �, as is easily deduced byreplacing in its de�ning sum x by x and by using �(x) = �(x) and tr(x) = tr(x).The independence of the choice of � implies that �(r), for any r, is contained inthe �eld of l-th roots of unities (actually, �(r) is even real as follows from theeasily proved facts that �(S) is unitary, symmetric and satis�es �(S)2 = 1.) Thus �satis�es the properties listed at the begin of the section, and hence is equivalent to�l. Indeed, by permuting the components of the vector valued function �c occurringin the de�nition of �l and by multiplying by a suitable diagonal matrix we can evenassume that � = �l.We now set � = �� + ��. The independence of the matrices �(A) (A 2 �) ofthe choice of � then implies that the subspace spanned by the components of � isinvariant under �, and that �j!(A) = �l(A)� for all A 2 �. It is easily veri�edthat for all x 2 F(l2) one has�(x) 2 f0;�1; 2gl�1; (r-th entry of �(x)) mod l = � tr(x(l2�1)=3) if n(x) = r;0 otherwise;where r runs from 1 to l� 1.Next we describe lifts of (F(l2); n(x)=l). Let V be the quaternion algebra over Qrami�ed at l and1. If we setK = Q (p�l) then V can be described as V = K+Ku,where u2 = �1=3 and �u = u� for all � 2 K. The map c = �+ �u 7! c := �� u�de�nes an anti-involution of V . The reduced norm n(c) and reduced trace tr(c) ofa c 2 V are given byn(c) = cc = j�j2 + 13 j�j2; tr(c) = c+ c = �+ �:



5. CONSTRUCTION OF CONFORMAL CHARACTERS 65Let o be the ring of integers in K. Note that the rational prime 3 splits in Ksince l � �1 mod 3. i.e. 3 = pp with a prime ideal p in K. (Indeed, one can takep = 3o+ (1 +p�l)o.) We setO = o+ pv; v = � u for l � 3 mod 41+u2 for l � 1 mod 4 :It can be easily checked that O is an order in V (i.e. a subring which, viewed as Z-module, is free of rank 4). In fact, O is even a maximal order since the determinantof the Gram matrix (tr(ejek)), for any Z-basis ej of O, equals l2 (cf. [Vi, Chap. III,Corollaire 5.3].).We now haveLemma. (1) The dual lattice of p�lO w.r.t. the quadratic form n(c)=l is O.The quotient ring O=p�lO is the �eld with l2 elements, and the anti-involutionc 7! c on O induces the Frobenius automorphism x 7! xl on O=p�lO.(2) Let I � O be an O-left ideal, and let n = n(I) be the reduced norm of I (i.e.the g.c.d. of the integers n(x) where x runs through I). Then the dual lattice of p�lIwith respect to n(c)=ln is I. There exists a c0 2 I such that n(c0)=n � 1 mod l, andfor any such c0 the map c 7! c0 � c de�nes an isomorphism of quadratic modules(O=p�lO; n(x)=l)�!(I=p�lI; n(x)=ln).Here, for convenience, we use the same symbols n(x)=nl for the quadratic form onI as well as for the quadratic form induced by it on I=p�lI. The Lemma followseasily from standard facts in the theory of quaternion algebras; for the reader'sconvenience we sketch the proof in the Appendix to this section.The Lemma provides us with lifts (I; n(x)=nl) of (F(l2); n(x)=l), and we now canwrite down explicitly elements of Mk(�l).To this end let �: F(l2) = O=p�lO ! f�1; 0; 2gl�1 be de�ned as above. Let Ibe an O-left ideal, choose c0 as in the Lemma, and let� : I ! O=p�lO; �(c) = �+p�lO with c � �c0 mod p�lO:Finally, let p be a homogeneous spherical polynomial function on V . If we writepolynomial functions on V as polynomials p in �, �, �, �, then it is spherical of de-gree � (with respect to any nonzero multiple of n(c)) if and only if p is homogeneousof degree � and satis�es � @2@�@� + 3 @2@�@� �p = 0:Set �(� ; I; p) =Xc2I �(�(c)) p(c) qn(c)=n(I)l:We suppress the dependence of this function on c0 since a di�erent choice resultsonly in multiplying �(� ; I; p) by a scalar. By the theorem on realization by thetaseries we then have �(� ; I; p) 2M2+deg(p)(�l):It is easy to compute these functions using a computer. In fact, by a computercalculation we found



66 Theorem. Let l, k be as in Table 5.2. Then the space Mk(�l) is spanned by theseries �(� ; I; p), where I = O for l 6= 17, and I = O;Op for l = 17, and where pruns through the homogeneous polynomial functions on the quaternion algebra V ofdegree k � 2 which are spherical with respect to the quadratic form n(c).It is an open question whether the spaces Mk(�l), for arbitrary k or primes l(� �1 mod l), are always spanned by theta series of the form �(� ; I; p), or, moregenerally, which spaces Mk(�) of vector valued modular forms at all can be gener-ated by theta series.As explained above we are especially interested in the one-dimensional subspaceM (�)k (�l) of functions in Mk(�l) which are O(q�) with � as in Table 5.2. Here wehaveMain theorem 5 (Theta formulas for conformal characters).(1) Let c, l, k and � be as in Table 5.2, and let I = O for l 6= 17 and I = Op forl = 17. Then there exists a homogeneous spherical polynomial function p of degreek � 2 such that the �(� ; I; p) is nonzero and satis�es �(� ; I; p) = O(q�).(2) Moreover, for any p with this property, there exists a nonzero constant � suchthat the components of the Fourier coe�cients of ��(� ; I; p) are rational integers.In particular, the components of ��(�)�2k�(� ; I; p) satisfy the properties (1) to (5)in the main theorem 3 on the uniqueness of conformal characters in x4.1.Proof. (1) The existence of a p with Fourier development starting at q� fol-lows from the preceding theorem and the fact that the subspace M (�)k (�l) containsnonzero elements. For the latter cf. the discussion at the beginning of x5.2; ofcourse, it can also be checked by a straight forward calculation using the �(� ; I; p)that M (�)k (�l) is one-dimensional.(2) This last fact also shows that for proving the second statement of the theorem,it su�ces to prove that, for at least one p satisfying the condition �(� ; I; p) = O(q�),the function �(� ; I; p) has rational Fourier coe�cients.For proving this let P�(F ) be the set of spherical homogeneous functions p onV of degree � which are de�ned over the sub�eld F � C . By the latter we meanthat the coe�cients of p(c), when written as polynomial in the coe�cients of c withrespect to a �xed basis of V , are in F . Note that this property does not depend onthe choice of the Q -basis of V . Since P�(F ) is the kernel of a di�erential operatorwhich has constant rational coe�cients, when written with respect to any Q -basisof V , it is clear that P�(C ) = P�(Q) 
 C , i.e. we can �nd a basis of P�(C ) whichis contained in P�(Q). But then we deduce, using the preceding theorem, thatMk(�l) has a basis �j (1 � j � d) whose Fourier coe�cients a�j (r) (r = 1; 2; : : : )are elements of Q l�1 . For deducing this note that �(� ; I; p) for p 2 P�(Q) hasrational Fourier coe�cients since �(x) is rational. The elements of M (�)k (�l) arenow the linear combinations Pj cj�j such that Pj cja�j (r) = 0 for all 1 � r < l�.Since the latter system of linear equations is de�ned over Q and has a nonzerosolution by part (1) we conclude the existence of rational nonzero solution, i.e. theexistence of a linear combination of the �j with Fourier coe�cients in Q . �If we pick a p as described in the theorem, and if we denote by �c;h the r-thcomponent of ��2k�(� ; I; p), where rl � k12 � h � c24 mod Z then it is clear that



5. CONSTRUCTION OF CONFORMAL CHARACTERS 67these functions satisfy properties (1) to (5) in the main theorem 3 in x4.1 (aftermultiplied by a constant, if necessary). Hence, by the uniqueness result proven insection 4.1, they are up to a constant the conformal characters of the W-algebrasintroduced in the same section. In fact, the �c;h (l 6= 5) have interesting productexpansions, which we shall discuss elsewhere; from these product expansions it canimmediately read o� that they can be normalized such that their Fourier coe�cientsare even non-negative integers, as its should be for conformal characters.Appendix.Proof of the Lemma. (1) Let l � �1 mod 4. For c = �+ u� 2 V we havetr(cOp�l)=l = tr(� o=p�l) + tr(� p=3p�l):Thus the left hand side is in Z if and only if each of the two terms on the right arein Z. The latter is easily checked to be equivalent to � 2 o and � 2 p, i.e. to c 2 O.The case l � 1 mod 4 can be treated similarly, and is left to the reader.It is clear that O=p�lO is a ring of characteristic l with l2 elements. Hence itis isomorphic to a ring extension of F(l) = Z=lZ with l2 elements. Moreover, itcontains a root of X2+ 3, namely 3u+p�lO. Since �3 is not a quadratic residuemodulo l the polynomial X2 + 3 is irreducible over F(l), hence O=p�lO is a �eld.The anti-involution c 7! c induces an automorphism of the �eld O=p�lO which isnontrivial since it maps u to �u, and which hence is the Frobenius automorphism.(2) If I is an O-left ideal then I� = I �O�= n(I), where, for any left ideal I, weuse I� = fc 2 V j tr(Ic) 2 Zg:(We were not able to �nd a reference for this basic formula: it can easily be provedusing adelic methods. However, we shall need it only for I = O or I = Op(cf. the two theorems of the preceding section), and here it can be easily veri-�ed by direct computation. We omit the details for the general case.) Thus we �ndtr(p�lIc)= n(I)l 2 Z if and only if c 2 I �O�p�l. Using O� = O=p�l, as followsfrom part (1), we �nd that the latter statement is indeed equivalent to c 2 I.Left-multiplication in the quaternion algebra induces on I=p�lI a structure of aone-dimensional O=p�lO-vector space. Let c0+p�lI be a basis element. Clearlyn(c0)= n(I) is not divisible by l since otherwise n(c)= n(I) would be divisible by lfor any c 2 I contradicting the de�nition of n(I) as g.c.d. of all n(c) (c 2 I). Thuswe can choose a � 2 O with n(�) n(c0)= n(I) mod l. Replacing c0 by �c0 it is thenclear that c 7! cc0 induces the isomorphism claimed to exist. �5.3 An example (II): Comparison to formulas derivable from the rep-resentation theory of Kac-Moody and Casimir W-algebras.In this section we compare our explicit formulas for the conformal characters withthe ones obtained from the representation theory of Casimir W-algebras [FKW],the Virasoro algebra [RC] and Kac-Moody algebras [Ka].The last three rational models related to Table 5.2 are minimal models of so-called CasimirW-algebras. For this kind of algebras the minimal models have beendetermined (assuming a certain conjecture) in [FKW]. The representation theory



68of the two composite rational models (WG2(2; 114) and WF4(2; 126)) is well-known[RC,Ka].In order to give the explicit formulas for the conformal characters of the minimalmodels of the Casimir W-algebras, the Virasoro algebra and Kac-Moody algebraswe have to �x some notation �rst.Let K be a simple complex Lie algebra of rank l and dimension n, h (h_) its(dual) Coxeter number, � (�_) the sum of its (dual) fundamental weights, W theWeyl group and � (�_) the (dual) weight lattice of K. For � 2 � denote by �� thehighest weight representation with highest weight �.Firstly, consider the case of the three rational models of the CasimirW-algebras.Formulas for the central charge, the conformal dimensions and the conformal char-acters of rational models of Casimir W-algebras have been derived assuming acertain conjecture [FKW, p. 320] and are collected in Appendix 8.4.Using these formulas for B2 with c(p; q) = c(11; 6) = � 44411 and for G2 withc(p; q) = c(17; 12) = � 142017 for W(2; 4) and W(2; 6), respectively, one obtains theconformal characters given in the last section (as can be checked by simply com-paring a su�cient number of Fourier coe�cients). The last rational model, of typeW(2; 8), is a rational model of WE7 with c(p; q) = c(18; 23). However, in this casethe above formula for the corresponding conformal characters contains a sum overa rank 7 lattice (the dual weight lattice) and a sum over the Weyl group of E7which has order 2:903:040. Therefore, this formula is of no practical use for explicitcalculations in this case. However, our formula in the foregoing section involvesonly a sum over a rank 4 lattice which is easy to implement on a computer.Secondly, consider the rational models WG2(2; 114) and WF4(2; 126). These ra-tional models are `tensor products' of the Virasoro minimal model with c = � 225and the rational model associated to the level 1 Kac-Moody algebra of G2 or F4,respectively. The two conformal characters of the Virasoro minimal model withcentral charge c = � 225 are given by [RC]�V ir0 (q) = q 1160 Yn��2mod5(1� qn)�1; �V ir�1=5(q) = q� 160 Yn��1mod5(1� qn)�1:The characters of rational models associated to the level 1 Kac-Moody algebrasare well known from the Kac-Weyl formula [Ka, p. 173]. The rational model asso-ciated to the level k Kac-Moody algebra of K has the following central charge andconformal dimensionscK(k) = 12kh_(h_ + k)�2; hK� = (�+ �)2 � �22(h_ + k) ((�;  ) � k)where  is the highest root of K. The corresponding characters read�K;�(q) = �(q)�nq n�cK(k)24 Xt2�_ dim(��+�+(h_+k)t)q (�+�+(h_+k)t)2��22(h_+k) :The two conformal characters associated to the level 1 Kac-Moody algebras of G2and F4 are given by: �K0 = �K;0 �Kh = �K;�1



5. CONSTRUCTION OF CONFORMAL CHARACTERS 69where h = hK�1 = 2=5 or 3=5 and �1 is the fundamental weight of G2 or F4 withdim(��) = 7 or 26, respectively.Using these formulas one obtains exactly the four conformal characters of themodels WG2(2; 114) and WF4(2; 126):�0 = �V ir0 � �K0 ; ��1=5 = �V ir�1=5 � �K0 ; �h = �V ir0 � �Kh ; �h�1=5 = �V ir�1=5 � �Khwith K = G2;F4 and h = 2=5; 3=5 respectively. The product formulas for theVirasoro characters and the formula for the conformal characters associated to theKac-Moody algebras show that the Fourier coe�cients of the two rational modelsare positive integers. Indeed, as one can show by comparing a su�cient number ofFourier coe�cients, these conformal characters are equal to the ones computed inthe last section.



70 6. Conclusion and outlookFinally, we summarize and comment on the main results in this thesis.Firstly, we have classi�ed all strongly-modular fusion algebras of dimension lessthan or equal to four and all nondegenerate strongly-modular fusion algebras ofdimension less than 24. In order to obtain our results we have used the classi�cationof the irreducible representations of the groups SL(2;Zp�). Not all modular fusionalgebras in our classi�cation show up in known RCFTs. However, all correspondingfusion algebras are realized in known RCFTs apart from the fusion algebra of typeB9. This fusion algebra can formally be related to the Casimir W-algebra WB2 atc = �24 and seems to be an analogue of the fusion algebra formally associated tothe Virasoro algebra with central charge c = c(3; 9).Unfortunately, the methods used in this thesis seem to be not su�cient for ob-taining a complete classi�cation of strongly-modular fusion algebras. For thosestrongly-modular fusion algebras which are degenerate the corresponding represen-tation of the modular group is in general reducible and therefore there are a lotof possible choices of the distinguished basis in the representation space. In theproof of the main theorem 1 on the classi�cation of the strongly-modular fusionalgebras of dimension less than or equal to four we have shown how one can dealwith this problem in the case of two, three and four dimensional fusion algebras.However, we do not know a general method to overcome this problem for arbitrarydimension.We would like to stress that the main assumption for obtaining our classi�cations,namely that fusion algebras are induced by representations of SL(2;ZN ), is valid forall known examples of rational conformal �eld theories. Nevertheless, the questionwhether all fusion algebras associated to RCFTs are strongly-modular is not yetanswered (cf. the conjecture at the end of section 2.2).Secondly, we have shown that the conformal characters of certain rational modelsare uniquely determined by the central charge and the set of conformal dimensionsof the model.This result has several implications. It shows that the simple constraints im-posed on modular functions by the �ve axioms stated in the main theorem 3 aresurprisingly restrictive. Apart from giving an aesthetical satisfaction this observa-tion gives further evidence that conformal characters are modular functions of arather special nature, which may deserve further studies, even independent fromthe theory of W-algebras.Furthermore, it implies that, in the case of the rational models considered inx4, the conformal characters a priori do not encode more information about theunderlying rational model than the central charge and the conformal dimensions.This is in perfect accordance with the more general belief that these data alreadydetermine completely the rational models of W-algebras which do not contain cur-rents (currents are nonzero elements of dimension 1). In general one expects thata unique characterization of rational models can be obtained if one takes into ac-count certain additional quantum numbers which can be de�ned in terms of thezero modes of the currents.Finally, our result has a useful practical consequence for the computation ofconformal characters. Apart from several well-understood rational models where



6. CONCLUSION AND OUTLOOK 71one has simple closed formulas for the conformal characters, it is in general di�cultto compute them directly. Any attempt to obtain the �rst few Fourier coe�cientsby the so-called direct calculations in theW-algebra, the so far only known methodin the case where no closed formulas are available, requires considerable computerpower. Our result indicates a way to avoid the direct calculations: Once the centralcharge and conformal dimensions are determined, the computation of the conformalcharacters can be viewed as a problem which belongs solely to the theory of modularforms, i.e. a problem whose solution a�ords no further data of the rational modelin question.Of course, one of the important open questions is whether a uniqueness resultlike the main theorem 3 holds for more or even for all rational models. For ratio-nal models with e�ective central charge less than 26 there is at least some hopethat the central charge and the set of conformal dimensions already determine theconformal characters: Looking at the dimension formula in x4.2 we see that `main'contribution to the dimension of the space of vector valued modular forms of weightk transforming under a representation � is given by k�112 dim(�). For rational mod-els with ~c < 26 this contribution is less than the number of conformal dimensionsof the rational model. Therefore, one might hope that the dim(�) conditions onthe pole orders of the conformal characters at i1 imposed by �xing the centralcharge and the conformal dimensions already determine the conformal charactersuniquely. Note, however, that these dim(�) conditions will in general not be inde-pendent and that one also has to take into account the `correction' terms in thedimension formula.. To obtain more general results one would like to have a di-mension formula for vector valued modular forms having a prescribed vanishingorder at i1. One might speculate that such a formula should be related to theAtiyah-Singer index theorem since the dimension formula in x4.2 is related to theRiemann-Roch theorem.Thirdly, we have shown that one can reconstruct the conformal characters of certainrational models merely from the knowledge of the central charge and the set ofconformal dimensions of the model by using theta series, and, in particular, how oneobtains in this way explicit closed formulas for the conformal characters of certainnontrivial rational models which could not be computed using known methods.The main unsolved question concerning the construction procedure described insection 5 is whether all spaces of vector valued modular forms transforming undera congruence representation are generated by theta series.Finally, I would like to stress that the methods and results developed in this thesishave lead to a better understanding of the structure of RCFTs. However, theclassi�cation program of rational conformal �eld theories is still a fascinating openproblem and deserves future e�ort.I would like to end with the following quote [M]:\ ... Our general approach follows the philosophy of nahmism (called \nahmsense"by its detractors) in which one begins with modular forms and then proceeds totry to deduce some interesting physics from them. We will show that some of theinteresting forms do indeed arise in physical theories. ..."
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7. APPENDIX 737. Appendix7.1 The irreducible level p� representations of dimension � 4.Using the results in x3 one obtains as a complete list of two dimensional irre-ducible level p� representationsp� = 21; N1(�1)p� = 31; N1(�1)
 Bip� = 51; R1(1; ��1); R1(2; ��1)p� = 22; N1(�1)
 C3p� = 23; N3(�)+ 
 Cjwhere i = 1; 2; 3; j = 1; : : : ; 4:The explicit form of the representations which are not related by tensor productswith Bi or Cj is given in Table 7.1a.Table 7.1a: Two dimensional irreducible level p� representationslevel type of rep. �(S) 12�i log(�(T ))2 N1(�1) 12 � �1 �p3�p3 1 � diag(0; 12 )3 N1(�) � ip3 � 1 p2p2 �1� diag( 13 ; 23 )5 R1(1; ��1) 2ip5 �� sin(�5 ) sin( 2�5 )sin( 2�5 ) sin(�5 ) � diag( 15 ; 45 )R1(2; ��1) 2ip5 �� sin( 2�5 ) � sin(�5 )� sin(�5 ) sin( 2�5 ) � diag( 25 ; 35 )23 N3(�)+ ip2 ��1 �1�1 1 � diag( 38 ; 58 )Similarly, one obtains as a complete list of three dimensional irreducible level p�representations p� = 31; N1(�1)p� = 51; R1(1; �1); R1(2; �1)p� = 71; R1(1; ��1); R1(2; ��1)p� = 22; D2(�)+ 
 Cjp� = 23; R03(1; 3; �)+ 
 Cj ; R03(1; 3; �)� 
 Cjp� = 24; R04(1; 1; �)+ 
 Cj ; R04(1; 1; �)� 
 Cj ;R04(3; 1; �)+ 
 Cj ; R04(3; 1; �)� 
 Cjwhere j = 1; : : : ; 4:The explicit form of the representations which are not related by tensor productswith Cj is given in Table 7.1b.



74 Table 7.1b: Three dimensional irreducible level p� representationslevel type of rep. �(S) 12�i log(�(T ))3 N1(1; �1) 13 0@�1 2 22 �1 22 2 �11A diag( 13 ; 23 ; 0)5 R1(1; �1) 2p5 0B@ 12 1p2 1p21p2 �s1 s21p2 s2 �s11CA diag(0; 15 ; 45)R1(2; �1) 2p5 0B@ �12 � 1p2 � 1p2� 1p2 �s2 s1� 1p2 s1 �s2 1CA diag(0; 25 ; 35)sj = cos( j�5 )7 R1(1; ��1) 2p7 0@ s1 s2 s3s2 �s3 s1s3 s1 �s21A diag( 27 ; 17 ; 47)R1(2; ��1) �� "�� diag( 57 ; 67 ; 37)sj = sin( j�7 )22 D2(�)+ i2 0@ 0 p2 p2p2 �1 1p2 1 �11A diag( 14 ; 12 ; 0)23 R03(1; 3; �)+ i2 0@ 0 p2 p2p2 1 �1p2 �1 1 1A diag( 12 ; 58 ; 18)R03(1; 3; �)� (�1) � (�� "��) diag( 12 ; 78 ; 38)24 R04(1; 1; �)+ i2 0@ 0 p2 p2p2 1 �1p2 �1 1 1A diag( 58 ; 116 ; 916)R04(1; 1; �)� �� "�� diag( 18 ; 516 ; 138 )R04(3; 1; �)+ i2 0@ 0 p2 p2p2 �1 1p2 1 �11A diag( 78 ; 316 ; 1116)R04(3; 1; �)� �� "�� diag( 38 ; 1516 ; 716)



7. APPENDIX 75Table 7.1c: Four dimensional irreducible level p� representationslevel type of rep. �(S) 12�i log(�(T ))5 N1(�); �3 6� 1 2i5 0BB@ �� p3s2 �+ p3s4p3s2 ��+ p3s4 ���+ p3s4 ��� �p3s2p3s4 �� �p3s2 �+ 1CCA diag( 35 ; 45 ; 25 ; 15 )sj = sin( j�5 ); �� = s2 � s4N1(�); �3 � 1 � 25 0B@ �1 ��2 �1 ��3��2 ��1 �3 �1�1 �3 �1 �2��3 �1 �2 ��11CA diag( 35 ; 45 ; 25 ; 15 )rj = cos( j�5 ); �1 = r1 � r4 � 12 ;�2 = 3r2 + 2r4; �3 = 2r2 + 3r47 R1(1; �1) q27 i0BB@� 1p2 �1 �1 �1�1 �1 �2 �3�1 �2 �3 �1�1 �3 �1 �2 1CCA diag(0; 17 ; 47 ; 27 )R1(2; �1) (�1) � (�� "��) diag(0; 67 ; 37 ; 57 )sj =q27 sin( j�7 );�1 = 2s2 � s4; �2 = 2s4 + s6�2 = 2s4 + s6; �3 = �2s6 � s223 N3(�); �3 6� 1 ip8 0B@ 1 1 p3i �s1p3i1 �1 �p3i �s1p3i�p3i p3i 1 s1s2p3i s2p3i s2 �1 1CA diag( 38 ; 58 ; 18 ; 78 )sj = e2�i j332 R12(1; 1; �); �3 � 1 2i3 0B@�s8 �s4 �s2 �s6�s4 s2 �s8 s6�s2 �s8 s4 s6�s6 s6 s6 0 1CA diag( 49 ; 19 ; 79 ; 13 )R12(2; 1; �); �3 � 1 (�1) � (�� "��) diag( 29 ; 59 ; 89 ; 23 )R12(1; 1; �); �3 6� 1 23 0B@ s1 s5 s7 s6s5 �s7 �s1 s6s7 �s1 s5 �s6s6 s6 �s6 0 1CA diag( 49 ; 19 ; 79 ; 13 )R12(2; 1; �); �3 6� 1 �� "�� diag( 59 ; 89 ; 29 ; 23 )sj = sin(�j18 )



76 Finally, one obtains as a complete list of four dimensional irreducible level p�representations p� = 51; N1(�) (�3 6� 1); N1(�) (�3 � 1);p� = 71; R1(1; �1); R1(2; �1)p� = 23; N3(�); C4 
N3(�)p� = 32; Bi 
 R12(1; 1; �); Bi 
 R12(2; 1; �)where i = 1; 2; 3 and for p� = 32 the character � is a primitive character of order 3or 6 (so there are 12 four dimensional irreducible level 32 representations).The explicit form of the representations which are not related by tensor productswith Cj or Bi is given in Table 7.1c.



7. APPENDIX 777.2 The strongly-modular fusion algebras of dimension � 4.In this appendix we give complete lists the simple strongly-modular fusion alge-bras of dimension less than or equal to four.Table 7.2a: Two and three dimensional strongly-modular fusion algebrasF �(S) 12�i log(�(T )) mod Z�1 � �1 = �0 1p2 ��1 �1�1 1 � � diag( 18 ; 38 )diag( 78 ; 58 )( Z2 )�1 ��1 = �0 +�1 2p5 � � sin(�5 ) � sin( 2�5 )� sin( 2�5 ) sin(�5 ) � � diag( 1920 ; 1120)diag( 120 ; 920)( "(2; 5)" ) 2p5 �� sin( 2�5 ) sin(�5 )sin(�5 ) sin( 2�5 )� � diag( 320 ; 720)diag( 1720 ; 1320)�1 � �1 = �2�1 � �2 = �0 1p3 0@ 1 1 11 e2�i 13 e2�i 231 e2�i 23 e2�i 13 1A diag( 14 ; 712 ; 712 )�2 � �2 = �1( Z3 )�1 ��1 = �0 +�2 2p7 0@�s2 �s1 s3�s1 �s3 �s2s3 �s2 s1 1A � diag( 47 ; 17 ; 27 )diag( 37 ; 67 ; 57 )�1 ��2 = �1 +�2 2p7 0@�s3 �s1 s2�s1 �s2 �s3s2 �s3 s1 1A � diag( 17 ; 47 ; 27 )diag( 67 ; 37 ; 57 )�2 � �2 = �0 +�1 + �2 2p7 0@ s1 s2 s3s2 �s3 s1s3 s1 �s21A � diag( 27 ; 17 ; 47 )diag( 57 ; 67 ; 37 )( "(2; 7)" ) sj = sin( j�7 )�1 � �1 = �0�1 � �2 = �2 12 0@ 1 1 p21 1 �p2p2 �p2 0 1A 8><>: diag( 8�n16 ; 16�n16 ; n8 )diag( 16�n16 ; 8�n16 ; n8 )n = 0; : : : ; 7�2 ��2 = �0 +�1( "(3; 4)" )



78 Table 7.2b: Four dimensional simple strongly-modular fusion algebrasF �(S) 12�i log(�(T )) mod Z�21 = �2; �1 ��2 = �3;�22 = �0; �1 ��3 = �0; 12 0B@ 1 1 1 11 i �1 �i1 �1 �1 �11 �i �1 i 1CA � diag( 78 ; 14 ; 38 ; 14 )diag( 38 ; 14 ; 78 ; 14 )�23 = �2; �2 ��3 = �1;( Z4 ) 12 0B@ 1 1 1 11 �i �1 i1 �1 �1 �11 i �1 �i1CA � diag( 58 ; 34 ; 18 ; 34 )diag( 18 ; 34 ; 58 ; 34 )�21 = �0; �1 ��2 = �3;�22 = �0; �1 ��3 = �2;�23 = �0; �2 � �3 = �1 12 0B@ 1 �1 �1 �1�1 1 �1 �1�1 �1 1 �1�1 �1 �1 1 1CA � diag(0; 0; 0; 12)diag( 12 ; 0; 0; 0)( Z2 
 Z2 )�21 = �0 +�2�1 � �2 = �1 + �3 23 0B@�s4 s1 s3 �s2s1 s2 s3 s4s3 s3 0 �s3�s2 s4 �s3 s1 1CA � diag( 736 ; 1936 ; 112 ; 3136)diag( 2936 ; 1736 ; 1112 ; 536)�1 � �3 = �2 + �3�22 = �0 + �2 +�3 23 0B@ s1 s2 s3 s4s2 �s4 s3 �s1s3 s3 0 �s3s4 �s1 �s3 s2 1CA � diag( 3136 ; 736 ; 112 ; 1936)diag( 536 ; 2936 ; 1112 ; 1736)�2 ��3 = �1 +�2 + �3�23 = �0 + �1 +�2 + �3 23 0B@ s2 �s4 s3 �s1�s4 s1 s3 �s2s3 s3 0 �s3�s1 �s2 �s3 �s41CA � diag( 1936 ; 3136 ; 112 ; 736)diag( 1736 ; 536 ; 1112 ; 2912)( "(2; 9)" ) sj = sin( j�9 )



7. APPENDIX 797.3 The strongly-modular fusion algebras of dimension less than 24:Representations �, fusion matrices and graphs.In this appendix we present the representations � of the modular group, the fu-sion matrices and the fusion graphs related to the nondegenerate strongly-modularfusion algebras of dimension less than 24.Table 7.3: Simple nondegenerate strongly-modular fusion of dimension less than 24(q is a prime satisfying q < 47)fusion dim �Z2 2 C4 
N3(�)�; (p� = 23)"c(3; 4)" 3 C4 
D2(�)+; (p� = 22)C4 
 R03(1; 3; �)�; (p� = 23)Ising C4 
R04(r; 3; �)�; (r = 1; 2; p� = 24)"(2; q)" 12 (q � 1) C q+124 
 R1(r; ��1); (� rp� = �1; p� = q)"(2; 9)" 4 C4 
 R12(r; 1; �); (r = 1; 2;�3 � 1; p� = 32)B9 6 N2(�); (�3 � 1; p� = 32)B11 10 N1(�); (�3 � 1; p� = 11)G9 12 C4 
 R13(r; 1; �); (r = 1; 2;�3 � 1; p� = 33)G17 16 N1(�); (�3 � 1; p� = 17)E23 22 N1(�); (�3 � 1; p� = 23)The fusion matrices N1 which de�ne the distinguished basis of the simple non-degenerate strongly-modular fusion algebras of dimension less than 24 are givenby: Z2 : N1 = � 0 11 0�"(3; 4)" : N1 = 0@ 0 0 10 0 11 1 01A"(2; q)" : N1 = 0BBB@ 0 11 . . . . . .. . . 0 11 1
1CCCA9>>>=>>>; q�12

B9 : N1 = 0BBBBB@ 0 1 01 0 1 10 1 0 0 11 0 1 1 01 1 1 10 1 1
1CCCCCA
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B11 : N1 = 0BBBBBBBB@

0 1 0 01 0 1 0 00 1 0 0 1 00 1 0 0 1 0 10 1 1 0 1 0 10 0 1 0 0 0 11 0 0 0 1 0 01 0 1 1 1 01 0 1 1 10 0 1 1
1CCCCCCCCA

G9 : N1 =
0BBBBBBBBBBB@

0 1 0 0 01 1 1 1 0 00 1 1 1 1 1 00 1 1 0 0 1 0 00 0 1 0 1 1 1 1 00 1 1 1 1 0 1 1 00 0 1 0 1 1 0 1 10 1 1 1 1 1 0 1 10 1 0 1 0 0 0 10 1 0 0 1 1 01 1 0 1 1 11 1 0 1 1
1CCCCCCCCCCCA

G17 : N1 =
0BBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 01 1 0 1 1 0 0 0 0 00 0 0 0 0 1 0 0 0 1 00 1 0 0 1 0 0 0 0 0 1 00 1 0 1 1 0 0 0 0 0 1 1 00 0 1 0 0 0 0 0 0 1 0 0 0 10 0 0 0 0 0 0 0 1 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1 0 0 1 0 10 0 0 0 0 0 1 0 1 0 0 0 1 0 1 00 1 0 0 1 1 0 0 1 0 0 0 1 1 00 1 1 0 0 1 0 0 1 1 0 0 0 10 1 0 0 0 0 0 1 1 1 0 0 10 0 0 0 1 0 0 1 1 0 1 11 0 1 0 1 0 0 0 1 1 11 0 1 1 0 0 1 1 1 11 0 0 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCA
E23 : N1 =

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 0 0 0 0 0 01 0 1 1 0 0 1 0 0 0 0 0 0 0 0 00 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 00 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 00 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 00 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 00 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 10 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 00 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 00 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 00 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 10 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 1 00 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 10 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 11 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 10 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 10 0 1 0 0 1 1 0 1 0 1 1 1 1 1 11 0 0 1 0 0 1 0 1 1 1 1 1 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCA
:

The corresponding fusion graphs can be found on the next page.



7. APPENDIX 81We have omitted the fusion graph of the fusion algebra of type E23 since it isnot possible to draw it without intersections in a plane.
 = vacuum ("0"), = all other fields ("j", j=0,...,n-1)

Z 2

"(3,4)"

"(2,q)"

B 9

B 11

G9

G17



82 7.4 Minimal models of Casimir W-algebras.In this last appendix we give some data related to the rational models of CasimirW-algebras.Let K be a simple Lie algebra of rank l over C . Then the rational models of theCasimir W-algebra related to this Lie algebra have central chargecK(p; q) = l � 12pq (q �� p �_)2 p; q coprime; h_ � p h � qwhere p and q have to be chosen minimal, h (h_) denotes the (dual) Coxeter numberof K and � (�_) denotes the sum of its (dual) fundamental weights �i (�_i ). Theconformal dimensions and conformal characters of the minimal model are given by[FKW]: h�;�_ = 12pq �(q�� p�_)2 � (q�� p�_)2���;�_(q) = �(q)�l Xw2W Xt2�_ �(w)q 12pq (qw(�+�)�p(�_+�_)+pqt)2where � (�_) lies in the (dual) weight lattice so that � = Pli=1 li�i and �_ =Pli=1 l_i �_i : � and �_ have to satisfyPli=1 limi � p� 1; Pli=1 l_i m_i � q� 1 wheremi are the normalized components of the highest root  in the directions of thesimple roots �i, i.e.   2 = Pli=1mi �i�2i . m_i is given by m_i = 2�2imi. Note thatthe set of conformal dimensions given by this condition has a symmetry so thatall conformal dimensions of the minimal model occur with the same multiplicityin it (in the nonsimply laced cases the multiplicity is just 2). For more details see[FKW,B,GO,FL].Table 7.4: Values of mi;m_i for all simple Lie algebras [GO].Lie algebra (mi) (m_i )Al (1; : : : ; 1) (1; : : : ; 1)Bl (1; 2; : : : ; 2; 1) (1; 2; : : : ; 2)Cl (1; : : : ; 1) (2; : : : ; 2; 1)Dl (1; 2; : : : ; 2; 1; 1) (1; 2; : : : ; 2; 1; 1)E6 (1; 2; 2; 3; 2; 1) (1; 2; 2; 3; 2; 1)E7 (2; 2; 3; 4; 3; 2; 1) (2; 2; 3; 4; 3; 2; 1)E8 (2; 3; 4; 6; 5; 4; 3; 2) (2; 3; 4; 6; 5; 4; 3; 2)F4 (1; 2; 3; 2) (2; 4; 3; 2)G2 (2; 1) (2; 3)
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