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Abstract

Traditional instance-based learning methods
base their predictions directly on (training)
data that has been stored in the memory. The
predictions are based on weighting the contri-
butions of the individual stored instances by
a distance function implementing a domain-
dependent similarity metrics. This basic ap-
proach suffers from three drawbacks: com-
putationally expensive prediction when the
database grows large, overfitting in the pres-
ence of noisy data, and sensitivity to the se-
lection of a proper distance function. We ad-
dress all these issues by giving a probabil-
istic interpretation to instance-based learn-
ing, where the goal is to approximate pre-
dictive distributions of the aftributes of in-
terest. In this probabilistic view the instances
are not individual data items but probability
distributions, and we perform Bayesian in-
ference with a mixture of such prototype dis-
tributions. We demonstrate the feasibility of
the method empirically for a wide variety of
public domain classification data sets.

1 Introduction

Traditional instance-based learning methods (Stanfill
and Waltz, 1986; Moore, 1990; Aha, 1990; Atkeson,
1992) are a family of learning algorithms which base
their predictions directly on (training) data that has

been stored in the memory'. TIn their basic form

1 .

For this reason they are also known as “memory-based”
methods and in more structured domains as “case-based”
methods.
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instance-based methods store all the training data in
the memory during the learning phase, and at predic-
tion phase use a distance function to determine which
The predic-
tions of the individual items are then combined, for

data items are relevant for prediction.

example by using averaging. This type of algorithms
are often called “lazy” as they defer all the essential
computation until the prediction phase. Examples of
instance-based learning methods are k-nearest neigh-
bor (Cover and Hart, 1967), kernel regression (Franke,
1982) and locally weighted regression (for a recent
survey see (Atkeson et al.; 1995)). Some neural net-
work approaches can also be viewed as instance-based
methods, e.g., the family of Radial Basis Function net-
works (Moody and Darken, 1989) and Probabilistic
networks (Specht, 1990).

This basic approach of storing all the data items af the
learning phase suffers from several drawbacks. First,
the run-time computational costs for such algorithms
are high when the size of the data set grows large.
Second, saving all the data items leads easily in over-
fitting 1n the prediction phase. Finally, the perform-
ance of the instance-based method 1s sensitive to the
selection of a proper, possibly varying, distance func-
tion (Friedman, 1994; Atkeson et al., 1995). The high
run-time costs due to storing of all the data has lead to
methods that attempt to find a smaller set of “proto-
types” (Aha, 1990) that represent the data set without
sacrificing prediction accuracy. This “reference selec-
tion problem” has been addressed by pruning (i.e.,
storing typical instances) (Zhang, 1992), by exploiting
domain knowledge (Kurtzberg, 1987) and by stochastic
techniques that perform search in the space of sets of
prototypes (Skalak, 1994). A somewhat different. ap-
proach is presented in (Deng and Moore, 1995) where
the data items are grouped by using kd-trees thus al-
lowing predictions with costs proportional to the num-
ber of groups instead of the number of individual ele-



ments. Attempts to avoid overfitting have been based
on pruning reference items that cause misclassifications
and by storing abstractions of instances (Aha, 1990).
The problem of proper selection of a distance function
is extensively studied in (Friedman, 1994).

The approach presented in this paper is based on the
probabilistic viewpoint, where the attributes A; are in-
terpreted as random variables, and the given set of
training instances 1s used to approximate the under-
lying joint probability distribution of the attributes.
Adopting this point of view allows the following prob-
abilistic interpretation to the prediction phase proced-
ures used in instance-based learning: Given an at-
tribute vector with some unknown attributes, the pre-
dictive distributions for these attributes are construc-
ted by summing the predictions of individual instances
weighted by the distance function. Tn this view each in-
stance can be seen as a component distribution, which
contributes to the joint distribution, i.e., the joint dis-
tribution is represented as a mixture of “instance dis-
tributions”. Therefore the basic instance-based ap-
proach in probabilistic terms can be understood as
a form of kernel density estimators (see e.g., (Scott,
1992)), and is thus similar to Radial Basis Function
network based estimation.

In practice a case where all the instance distributions
are needed for a good approximation is very extreme
as the instance set usually exhibits some cluster struc-
ture. Therefore usually the joint distribution can be
approximated by a simpler mixture of distributions by
giving a weighted sum of “cluster distributions”, each
of which gives the marginal attribute probability dis-
In fact,
construction of prototypes by averaging (Aha, 1990)

tributions conditioned by the cluster index.

can be understood as coarse grain approximations for
such simpler mixture structures. Thus in the general
case the reference selection problem can be understood
in probabilistic terms as the statistical problem of find-
ing a finite mixture model (Everitt and Hand, 1981;
Titterington et al., 1985) for the data (in our case in
a discrete domain). This probabilistic viewpoint has
been the starting point of our work.

There are several advantages of using the above prob-
abilistic interpretation of instance-based learning. If a
good approximative representation of the problem do-
main distribution can be found, a minimum risk Bayes
decision rule can be used in the prediction phase (Gel-
man et al., 1995). Tt should also be observed that
although we present here experimental results only
for classification tasks, the predictive distributions can
also be used directly for regression tasks, since in the
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learning phase all attributes (including the class at-
tribute) are treated equally. Thus with a probabilistic
approach, both the classification and regression tasks
can be treated uniformly. Tn addition, such a predic-
tion computation can be performed efficiently (Myl-
lymaki and Tirr, 1995; Myllymaki and Tirri, 1994;
Myllymaki and Tirri, 1993).

For learning the component distributions from the in-
stance set, we have adopted the Bayesian approach
(see e.g., (Gelman et al.; 1995)) which allows us to
make a tradeoff between the complexity of our distri-
bution structure and fit to the data thus resolving the
overfitting problem of the traditional instance-based
approaches. This combination of finite mixtures with
Bayesian model selection is akin to the approach adop-
ted in the Autoclass system (Cheeseman et al., 1988)
with the notable difference in our focus to prediction
rather than latent class analysis.

The use of component distributions as prototypes im-
plies that a given instance matches to several proto-
types simultaneously with different probabilities, and
thus the predictive distributions are computed as a
weighted estimate from the marginal probability dis-
tributions for the attribute in question given by the
prototypes. In the case of classification tasks this
easily leads to confusion between the class structure
and the mixture structure. Sometimes these struc-
tures coincide, but in the general case the number of
components does not need to match the number of
values of the class attribute, a difference that distin-
guishes our approach from the Naive Bayes classifier

(see e.g., (Kononenko, 1993)) in classification tasks.

In this paper we describe a methodology for probabil-
istic instance-based learning for discrete domains. The
methodology addresses all the three drawbacks dis-
cussed above: it provides for a computationally effi-
cient prediction algorithm, avoids overfitting by using
Bayesian model selection and uses directly probabil-
ities as measures of similarity. The methodology de-
scribed has been implemented in the D-SIDE software
package. We present empirical results of the method’s
classification prediction performance for a set of public
domain data sets (including data sets from the StatT.og
project (Michie et al.; 1994)), and compare the results
to the performance of various other machine learning
and neural network methods for the same data sets.
Our results clearly demonstrate that the probabilistic
approach is highly competitive for a wide spectrum of
natural data sets.



2 The finite mixture model for the
instance space

In this work we confine ourselves to discrete data and
discretize continuous attributes by quantization. The
problem domain is modeled by m discrete attributes
A, ...

variables. An instance d 1s a vector of attribute-value

, Am, which are regarded as discrete random

combinations, d = (A4; = ay,...

a; € {aji,. .., ain,}.
ture to model the instance set, we assume that the in-

v Am = ag,), where
As we will use a finite mix-

stance space is partitioned into a set of K data clusters
e1, ..., cx, and the attributes are assumed to be inde-
pendent within each cluster. The probability distribu-

tion on the instantiation space is approximated as a
weighted sum of mixture distributions:

m—z( )

where the value of the discrete clustering random vari-

P(C = cx) [T P(A: = ailC = ex)

i=1

able C' denotes the cluster of the given instance. Con-
sequently, a finite mixture model can be defined by first
fixing K, the model class (the number of the component,
distributions), and then by determining the values of
ok, Qi Qk),

the model parameters © = (aq, ..
where a = P(C = ¢g) and

Qi = (%117---

s Jkmn, m)v where

yGkingy - -y kmi, - - -

qrit = P(Ai = ap|C =cx) k=1, Ki=1,...m,

]:177777

3 Constructing models from instances
Let D = {d,, ..., dx} denote a database of N instances
used as training data. In our probabilistic interpret-
ation, instance set D 1s viewed as a random sample
from the instance space probability distribution P. By
model construction we mean here the problem of con-
structing a single finite mixture model M(®) which
represents the probability distribution P as accurately
as possible. The model construction task can be di-
vided into two separate phases. In the first phase, we
determine the optimal number of component clusters
by evaluating the posterior probability for each model
class My, (i.e., all the k cluster models), given the data:

P(Mg|D) x P(DIMg)P(My), k=1,..., N,

where the normalizing constant P(D) can be omitted
since we only need to compare different model classes.
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The number of clusters can safely be assumed to be
bounded by the size of the instance set N, otherwise
the sample size 1s too small for model construction.

Assuming equal priors for the model classes, they can
be ranked by evaluating the evidence P(D|My) for
each model class,

P(D|My) = / P(D|O, M) P(O|M,,) dO,

where the integration goes over the whole parameter
As discussed in (Rissanen, 1989), the evid-
ence can also be understood as an information theoretic

space.

measure called stochastic complerity. This evidence in-
tegral 1s hard to evaluate due to the very large dimen-
sionality of the parameter space, but the evidence can
be approximated by using e.g., Laplace’s method (Kass
and Raftery, 1994). Tn the experimental results presen-
ted in Section b this automatic model class selection
has not yet been used, instead in the search process
the model classes were selected by manual search in
the model class space. For more discussion on es-
timating the evidence in the finite mixture context,
see (Kontkanen et al., 1996a).

In the second phase of the model construction process,
we wish to find the optimal set of parameters for the
selected model class My, by maximizing the posterior
probability P(©|D). We assume that both the prior
distribution for the cluster random variable P(C') and
the intra-class conditional distributions P(A4;|C = ¢g)
are multinomial, and hence use the Dirichlet distri-
bution as the prior for the parameters ©2. The priors
are nomnformative, i.e., before seeing any instances no
single model is assumed to be more probable than oth-
ers. Furthermore, assuming parameter independence,
we get,

1 1
P(©|D) =Dirichlet(— + hy,..., — + hg)
K K
AR 1 1
T T Pirichlet(— + fuir, -, — + frin.)
k=11=1 i i

where hy is the size of the cluster ¢; and fi; is the
number of instantiations in cluster ¢, with attribute A;
having value a;;.

From the properties of Dirichlet density and the in-
dependence assumptions it follows that the maximal
probability values for the parameters © can be ob-

2For the justification of Dirichlet distributions as priors
see e.g., (Heckerman et al., 1995).

)



tained by setting

hk—|—1—*1

P(C=cp)= —F —
(C=cx) NTl R
Frir 4+ — — 1

PlA; = a;|C = ¢p) = ——— 22—
(4 = ail ) hy +1—n;

Naturally, the parameters hy and fg;; are not known,
but they can be regarded as missing data and we estim-
ate them by using the EM algorithm (Dempster et al.,
1977). The EM algorithm is an iterative algorithm,
which monotonically increases the expected value of
the posterior corresponding to incomplete data. The
derivation of the update formulas in our mixture case
can be found in (Kontkanen et al.; 1996b).

4 Bayesian inference with the mixture
model

Let us assume that the mixture model M(0O) for the
instance space has been constructed by the method
described above. Furthermore let T = {iy,... i:}
be the set of instantiated attribute indices, A =
{A;,,..., A;,} the set of instantiated attributes and
A, = ainy, .-, Ay, = a1, the query (attribute value
assignment) presented to the inference algorithm.
Since we assume that attributes are conditionally in-
dependent given the cluster variable (', for all i ¢ T,
A;’s predictive distribution P(A; = a;].A) can be com-
puted as follows:

P(Ai = (171|./4)

)=

(P(C' = ex|A)P(A; = a|C = ¢, A))

k=1
K ,
_ o qria P(A|C =) Z OV qril Hiﬂ Gri.l,
= = I 7 :
k=1 P(A) k=1 > ey @ [Ty Grin,

The predictive distribution can be computed efficiently
as the summation is over the number of clusters K.
Only in the very extreme case where the number of
component distributions is N the computing cost ap-
proaches that of traditional instance-based learning.
However, such a degenerate case would indicate that
the instance space has no nontrivial cluster structure,
a situation which seems to be very rare with natural
data sets. Typically the number of clusters K is one
or several orders of magnitude smaller than the size of
the instance set N (see Table 2).
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5 Empirical results

The above probabilistic instance-based approach has
been implemented in the D-STDE software package
consisting of a model construction module and a pre-
diction module. We have used this software to evaluate
the feasibility of our approach, and compared it to al-
ternative methods. Tnstead of using artificial data we
were especially interested in the prediction perform-
ance for natural data sets. We readily admit the prob-
lems of using real data, especially for comparison pur-
poses (underlying causes for performance differences
are hard to identify, high variance in the observed per-
formance differences etc.). However, the main advant-
age of using natural data sets is that it “keeps one hon-
est”, 1.e., it is produced without any knowledge of the
particular procedures that it will be used to test. Tn
addition with artificial data there is always the danger
that they do not correspond to situations that are likely
to occur in practice.

We have done extensive experimentation with our
probabilistic instance-based method wusing publicly
available data sets for classification problems. We have
also collected performance results for alternative meth-
The

list, of the results of alternative algorithms tries by no

ods for these same data sets from the hiterature.

means to be exhaustive, however for each data set we
have included the best results we have found in the lit-
erature. The data sets were partly selected on the basis
of their reported use, i.e., we have preferred data sets
that have been used for testing many different methods
over data with only isolated results. Many of the res-
ults are from the StatLog project (Michie et al., 1994),
but we have also included more recent results. The de-
scriptions of the data sets, our testing procedures, and
the best model classes (the number of clusters) found
The default

value denotes the success rate of a simple classifier,

for each data set are given in Table 1.

which classifies all the instances to the most common
class.

Tt should be observed that with the exception of the
DNA data set, all our results are crossvalidated, and
that for the Statlog data sets we have used the same
crossvalidation scheme as described in (Michie et al.,
1994). The same does not hold for many of the results
for the other methods, as in many cases the testing pro-
cedure either was not reported, or the best result with
a single test set was given. The actual performance
results (measured as classification success percentage)
for individual data sets are presented as barcharts in
Figures 1 and 2.
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Figure 1: Experimental results on the Australian, Diabetes, Primary tumor, Hepatitis and (Glass datasets. The
references in the barcharts are as follows: (1) = (Michie et al., 1994), (2) = (John and Langley, 1995), (3) = (Aha
et al., 1991), (4) = (Cestnik and Bratko, 1991), (5) = (Kononenko and Bratko, 1991), (6) = (Kononenko, 1993),
(7) = (Holte, 1993), (8) = (Skalak, 1994), (9) = (Friedman and Goldszmidt, 1996a), (10) = (Friedman and

Goldszmidt, 1996b) and (11) = (Quinlan, 1996).

511



DNA

[-sThE 97.0]
[REF in (1) 95.9]
[DTPOT.92 in (1) 95.2]
[AT.T.OCRO in (1) 94.3
[linear discr.in (1) 94.1 BREAST CANCER.
[@nadratic discr.in (1) 94.1 M(12) in (4 20.0]
[Logistic discr.in (1) 93.9] [Naive Bayes in (6) 79.2]
[Naive Bayes in (1) 93.2] [Successive Bayes in (6) 78.4]
WLF‘;M (1) 92.8 Assistant in (7) 78.0]
[FdCART in (1) 92.7 CART in (7) 77.1]
C4.5in (1) 92.4] [D-sTDE 76.6]
[carTin 91.5] [D3in (1) 76.2]
Ea‘ckprop in (1) 91.2] [cN2in (7) 73.0]
F%a‘yes tree in (1) 90.5 MCT i (8) 72.9]
[CN2n (1) 90.5 TRw in (7) 72.7]
AC2 in (1) 90.0 RMHC PFT in (8) 72.3]
[NewTD in (1) 90.0 [C45n (7)) 72.0]
|SMAR”-F in (1) 88.5] [Linear discr_in (7-) 71.6]
|(ia‘]5 in (1) 26.9] F%a‘ckprop in (7) _ 71.5]
[Trule in (1) 86.5] Quadratic discr. in (7) 65.6]
[K-NN in (1) 85.4] [K-NN in (7-) 65.3]
|SO7\/[ in (1) 66A1| mnma‘n expert in (5) 64A0|
50 55 60 65 7% 20 33 90 9% 50 55 60 6% 70 75 2o
Snccess rate (% correct) Snccess rate (% correct)
HEART DISEASE
IRIS [D-sTDE 34.8]
[p-sThE _ 98.0 ma‘ive Bayes in (2) 83.3
[Linear discr.in (7) 98.0 [TAN in (9) 33.3
[@nadratic discr.in (7) 97.3] Min (9) 83.0]
[Backprop. in (7) 96.7] WC—P in (8) 82.3]
[Naive Bayes in (2) 96.0 BNG in (9) 82.2]
[K-NN 0 (7) 96.0 NBCFSS in (9) 31.9]
[Rw in (7) 96.0 [C4.57n (9) 21.1]
C4.5 in (2) 95.3 Mciin (8) 20.7]
W in (2) 95.3 Ea‘ckpropA in (7) 30.6]
[Flexible Bayes in (2) 95.3 &Xih]e Bayes in (2) 20.0]
Wﬁ n (8) 94.7] K-NN in (7) 79.2]
D370 (7) 94.4] (BT (3) 73.0]
[MCTin (]) [TRw in (7) 76.6]
20 9% 70 75 ] B
Snccess rate (% correct) Snccess rate (% correct)
LYMPHOGRAPHY
[D-STOE 36.6]
Na‘ive Rayes in (7-) 85.1]
[TAN in () 85.0]
[CN2Tn (7) 82.0]
[MSG in (9) 80.4]
lissista‘nt_in (7) 79.0]
D3 in (7) 78.4]
[NECFSS in (9) 77.7)
[M{©) i (4) 77.5]
€45 (1D 77.0]
[BNGin (9) 75.0]
[K-NN in (7) 72.9]
65 70 7 o &3

Snccess rate (% correct)

Figure 2: Experimental results on the DNA, Breast cancer, Tris, Heart disease and Lymphography databases.
The references in the barcharts are as follows: (1) = (Michie et al., 1994), (2) = (John and Langley, 1995), (3)
= (Ahaet al., 1991), (4) = (Cestnik and Bratko, 1991), (5) = (Kononenko and Bratko, 1991), (6) = (Kononenko,
1993), (7) = (Holte, 1993), (8) = (Skalak, 1994), (9) A 4Friedman and Goldszmidt, 1996a), (10) = (Friedman

and Goldszmidt, 1996b) and (11) = (Quinlan, 1996).



Table 1: The datasets and testing methods used in our experiments.

| name | size | Fattrs | Fclasses | Fclusters | test, method | default |

Australian 690 15 2 17 10-fold CV 56.0
Breast cancer 286 10 2 21 11-fold CV 70.3
Diabetes 768 9 2 20 12-fold CV 65.0
DNA 3186 181 3 13 train& test 50.8
Glass 214 10 6 30 7-fold CV 40.7
Heart disease 270 14 2 8 9-fold CV 79.4
Hepatitis 150 20 2 9 h-fold CV 55.6
Tris 150 5H 3 4 h-fold CV 33.3
Lymphography | 148 19 4 19 h-fold CV 4.7
Primary tumor | 339 18 21 21 10-fold CV 24.8

Although this experimentation is still ongoing, the
empirical results clearly show that the probabilistic
instance-based approach performs favorably not only
when compared to traditional instance-based meth-
ods (K-NN, TB3, ALLOCS80), but also with respect
to decision tree methods and common neural net-
work approaches such as backpropagation. An inter-
esting observation is that the probabilistic instance-
based method outperforms also all other Bayesian ap-
proaches present in the StatLog comparison as well
as more recent Naive Bayes related algorithms TAN
(Tree Augmented Naive Bayes) and NBC™ intro-
duced in (Friedman and Goldszmidt, 1996a). This
supports the common hypothesis that many real data
distributions can be naturally modeled as a sum of sev-
eral component distributions. Table 2 summarizes the
performance of those methods for which we could find
results 1n 4 or more data sets. By performance index
we mean here the relative success percentage of a given
method, when compared to the best method in the cur-
rent classification task (e.g., the performance index of
90.0 of means that the method has achieved a success
rate which is 90% of the success rate of the best method
in the task in question). Tt should be noted that this
comparison favors methods which are tested on fewer
(easier) datasets. Nevertheless, the results confirm the
observation that the probabilistic instance-based ap-
proach offers the most consistent, performance over the
various data sefs.

6 Conclusion

We have presented a methodology for probabil-
istic instance-based learning which addresses all the
three common drawbacks of traditional instance-based

learning: computational efficiency of prediction, over-
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fitting and sensitivity to distance functions. We also
presented empirical results of the method’s classifica-
tion prediction performance for a set of public domain
data sets, and compared the results to the performance
of various other machine learning and neural network
methods. Our results clearly demonstrated that our
probabilistic approach is highly competitive and offers
a very consistent performance over different types of

data.

Although the discussion on this paper is confined to
discrete data, the approach extends also to the case
where attributes are real-valued. However, some lim-
ited experimentation indicates that moving from dis-
crete to continuous values does not necessarily improve
the prediction performance of the model due to the ad-
ditional assumptions of the distribution form. This
extension is a natural topic for future research.
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