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AbstractTraditional instance-based learning methodsbase their predictions directly on (training)data that has been stored in the memory. Thepredictions are based on weighting the contri-butions of the individual stored instances bya distance function implementing a domain-dependent similarity metrics. This basic ap-proach su�ers from three drawbacks: com-putationally expensive prediction when thedatabase grows large, over�tting in the pres-ence of noisy data, and sensitivity to the se-lection of a proper distance function. We ad-dress all these issues by giving a probabil-istic interpretation to instance-based learn-ing, where the goal is to approximate pre-dictive distributions of the attributes of in-terest. In this probabilistic view the instancesare not individual data items but probabilitydistributions, and we perform Bayesian in-ference with a mixture of such prototype dis-tributions. We demonstrate the feasibility ofthe method empirically for a wide variety ofpublic domain classi�cation data sets.1 IntroductionTraditional instance-based learning methods (Stan�lland Waltz, 1986; Moore, 1990; Aha, 1990; Atkeson,1992) are a family of learning algorithms which basetheir predictions directly on (training) data that hasbeen stored in the memory1. In their basic form1For this reason they are also known as \memory-based"methods and in more structured domains as \case-based"methods.

instance-based methods store all the training data inthe memory during the learning phase, and at predic-tion phase use a distance function to determine whichdata items are relevant for prediction. The predic-tions of the individual items are then combined, forexample by using averaging. This type of algorithmsare often called \lazy" as they defer all the essentialcomputation until the prediction phase. Examples ofinstance-based learning methods are k-nearest neigh-bor (Cover and Hart, 1967), kernel regression (Franke,1982) and locally weighted regression (for a recentsurvey see (Atkeson et al., 1995)). Some neural net-work approaches can also be viewed as instance-basedmethods, e.g., the family of Radial Basis Function net-works (Moody and Darken, 1989) and Probabilisticnetworks (Specht, 1990).This basic approach of storing all the data items at thelearning phase su�ers from several drawbacks. First,the run-time computational costs for such algorithmsare high when the size of the data set grows large.Second, saving all the data items leads easily in over-�tting in the prediction phase. Finally, the perform-ance of the instance-based method is sensitive to theselection of a proper, possibly varying, distance func-tion (Friedman, 1994; Atkeson et al., 1995). The highrun-time costs due to storing of all the data has lead tomethods that attempt to �nd a smaller set of \proto-types" (Aha, 1990) that represent the data set withoutsacri�cing prediction accuracy. This \reference selec-tion problem" has been addressed by pruning (i.e.,storing typical instances) (Zhang, 1992), by exploitingdomain knowledge (Kurtzberg, 1987) and by stochastictechniques that perform search in the space of sets ofprototypes (Skalak, 1994). A somewhat di�erent ap-proach is presented in (Deng and Moore, 1995) wherethe data items are grouped by using kd-trees thus al-lowing predictions with costs proportional to the num-ber of groups instead of the number of individual ele-507



ments. Attempts to avoid over�tting have been basedon pruning reference items that cause misclassi�cationsand by storing abstractions of instances (Aha, 1990).The problem of proper selection of a distance functionis extensively studied in (Friedman, 1994).The approach presented in this paper is based on theprobabilistic viewpoint, where the attributes Ai are in-terpreted as random variables, and the given set oftraining instances is used to approximate the under-lying joint probability distribution of the attributes.Adopting this point of view allows the following prob-abilistic interpretation to the prediction phase proced-ures used in instance-based learning: Given an at-tribute vector with some unknown attributes, the pre-dictive distributions for these attributes are construc-ted by summing the predictions of individual instancesweighted by the distance function. In this view each in-stance can be seen as a component distribution, whichcontributes to the joint distribution, i.e., the joint dis-tribution is represented as a mixture of \instance dis-tributions". Therefore the basic instance-based ap-proach in probabilistic terms can be understood asa form of kernel density estimators (see e.g., (Scott,1992)), and is thus similar to Radial Basis Functionnetwork based estimation.In practice a case where all the instance distributionsare needed for a good approximation is very extremeas the instance set usually exhibits some cluster struc-ture. Therefore usually the joint distribution can beapproximated by a simpler mixture of distributions bygiving a weighted sum of \cluster distributions", eachof which gives the marginal attribute probability dis-tributions conditioned by the cluster index. In fact,construction of prototypes by averaging (Aha, 1990)can be understood as coarse grain approximations forsuch simpler mixture structures. Thus in the generalcase the reference selection problem can be understoodin probabilistic terms as the statistical problem of �nd-ing a �nite mixture model (Everitt and Hand, 1981;Titterington et al., 1985) for the data (in our case ina discrete domain). This probabilistic viewpoint hasbeen the starting point of our work.There are several advantages of using the above prob-abilistic interpretation of instance-based learning. If agood approximative representation of the problem do-main distribution can be found, a minimum risk Bayesdecision rule can be used in the prediction phase (Gel-man et al., 1995). It should also be observed thatalthough we present here experimental results onlyfor classi�cation tasks, the predictive distributions canalso be used directly for regression tasks, since in the

learning phase all attributes (including the class at-tribute) are treated equally. Thus with a probabilisticapproach, both the classi�cation and regression taskscan be treated uniformly. In addition, such a predic-tion computation can be performed e�ciently (Myl-lym�aki and Tirri, 1995; Myllym�aki and Tirri, 1994;Myllym�aki and Tirri, 1993).For learning the component distributions from the in-stance set, we have adopted the Bayesian approach(see e.g., (Gelman et al., 1995)) which allows us tomake a tradeo� between the complexity of our distri-bution structure and �t to the data thus resolving theover�tting problem of the traditional instance-basedapproaches. This combination of �nite mixtures withBayesian model selection is akin to the approach adop-ted in the Autoclass system (Cheeseman et al., 1988)with the notable di�erence in our focus to predictionrather than latent class analysis.The use of component distributions as prototypes im-plies that a given instance matches to several proto-types simultaneously with di�erent probabilities, andthus the predictive distributions are computed as aweighted estimate from the marginal probability dis-tributions for the attribute in question given by theprototypes. In the case of classi�cation tasks thiseasily leads to confusion between the class structureand the mixture structure. Sometimes these struc-tures coincide, but in the general case the number ofcomponents does not need to match the number ofvalues of the class attribute, a di�erence that distin-guishes our approach from the Naive Bayes classi�er(see e.g., (Kononenko, 1993)) in classi�cation tasks.In this paper we describe a methodology for probabil-istic instance-based learning for discrete domains. Themethodology addresses all the three drawbacks dis-cussed above: it provides for a computationally e�-cient prediction algorithm, avoids over�tting by usingBayesian model selection and uses directly probabil-ities as measures of similarity. The methodology de-scribed has been implemented in the D-SIDE softwarepackage. We present empirical results of the method'sclassi�cation prediction performance for a set of publicdomain data sets (including data sets from the StatLogproject (Michie et al., 1994)), and compare the resultsto the performance of various other machine learningand neural network methods for the same data sets.Our results clearly demonstrate that the probabilisticapproach is highly competitive for a wide spectrum ofnatural data sets.508



2 The �nite mixture model for theinstance spaceIn this work we con�ne ourselves to discrete data anddiscretize continuous attributes by quantization. Theproblem domain is modeled by m discrete attributesA1; : : : ; Am, which are regarded as discrete randomvariables. An instance ~d is a vector of attribute-valuecombinations, ~d = (A1 = a1; : : : ; Am = am), whereai 2 fai1; : : : ; ainig. As we will use a �nite mix-ture to model the instance set, we assume that the in-stance space is partitioned into a set of K data clustersc1; : : : ; cK , and the attributes are assumed to be inde-pendent within each cluster. The probability distribu-tion on the instantiation space is approximated as aweighted sum of mixture distributions:P (~d) = KXk=1 P (C = ck) mYi=1P (Ai = aijC = ck)! ;where the value of the discrete clustering random vari-able C denotes the cluster of the given instance. Con-sequently, a �nite mixture model can be de�ned by �rst�xingK, the model class (the number of the componentdistributions), and then by determining the values ofthe model parameters � = (�1; : : : ; �K; Q1; : : : ; QK);where �k = P (C = ck) andQk = (qk11; : : : ; qk1n1; : : : ; qkm1; : : : ; qkmnm);whereqkil = P (Ai = ailjC = ck);k = 1; : : : ;K; i = 1; : : : ;m;l = 1; : : : ; ni:3 Constructing models from instancesLet D = f~d1; : : : ; ~dNg denote a database ofN instancesused as training data. In our probabilistic interpret-ation, instance set D is viewed as a random samplefrom the instance space probability distribution P. Bymodel construction we mean here the problem of con-structing a single �nite mixture model M (�) whichrepresents the probability distribution P as accuratelyas possible. The model construction task can be di-vided into two separate phases. In the �rst phase, wedetermine the optimal number of component clustersby evaluating the posterior probability for each modelclassMk (i.e., all the k cluster models), given the data:P (MkjD) / P (DjMk)P (Mk); k = 1; : : : ; N;where the normalizing constant P (D) can be omittedsince we only need to compare di�erent model classes.

The number of clusters can safely be assumed to bebounded by the size of the instance set N , otherwisethe sample size is too small for model construction.Assuming equal priors for the model classes, they canbe ranked by evaluating the evidence P (DjMk) foreach model class,P (DjMk) = Z P (Dj�;Mk)P (�jMk) d�;where the integration goes over the whole parameterspace. As discussed in (Rissanen, 1989), the evid-ence can also be understood as an information theoreticmeasure called stochastic complexity. This evidence in-tegral is hard to evaluate due to the very large dimen-sionality of the parameter space, but the evidence canbe approximated by using e.g., Laplace's method (Kassand Raftery, 1994). In the experimental results presen-ted in Section 5 this automatic model class selectionhas not yet been used, instead in the search processthe model classes were selected by manual search inthe model class space. For more discussion on es-timating the evidence in the �nite mixture context,see (Kontkanen et al., 1996a).In the second phase of the model construction process,we wish to �nd the optimal set of parameters for theselected model class Mk by maximizing the posteriorprobability P (�jD). We assume that both the priordistribution for the cluster random variable P (C) andthe intra-class conditional distributions P (AijC = ck)are multinomial, and hence use the Dirichlet distri-bution as the prior for the parameters �2. The priorsare noninformative, i.e., before seeing any instances nosingle model is assumed to be more probable than oth-ers. Furthermore, assuming parameter independence,we getP (�jD) =Dirichlet( 1K + h1; : : : ; 1K + hK)� KYk=1 mYi=1Dirichlet( 1ni + fki1; : : : ; 1ni + fkini);where hk is the size of the cluster ck and fkil is thenumber of instantiations in cluster ck with attribute Aihaving value ail.From the properties of Dirichlet density and the in-dependence assumptions it follows that the maximalprobability values for the parameters � can be ob-2For the justi�cation of Dirichlet distributions as priorssee e.g., (Heckerman et al., 1995).509



tained by setting P (C = ck) = hk + 1K � 1N + 1�KP (Ai = ailjC = ck) = fkil + 1ni � 1hk + 1� ni :Naturally, the parameters hk and fkil are not known,but they can be regarded as missing data and we estim-ate them by using the EM algorithm (Dempster et al.,1977). The EM algorithm is an iterative algorithm,which monotonically increases the expected value ofthe posterior corresponding to incomplete data. Thederivation of the update formulas in our mixture casecan be found in (Kontkanen et al., 1996b).4 Bayesian inference with the mixturemodelLet us assume that the mixture model M(�) for theinstance space has been constructed by the methoddescribed above. Furthermore let I = fi1; : : : ; itgbe the set of instantiated attribute indices, A =fAi1 ; : : : ; Aitg the set of instantiated attributes andAi1 = ai1l1 ; : : : ; Ait = aitlt the query (attribute valueassignment) presented to the inference algorithm.Since we assume that attributes are conditionally in-dependent given the cluster variable C, for all i =2 I,Ai's predictive distribution P (Ai = ailjA) can be com-puted as follows:P (Ai = ailjA)= KXk=1 (P (C = ckjA)P (Ai = ailjC = ck;A))= KXk=1 �kqkilP (AjC = ck)P (A) = KXk=1 �kqkilQts=1 qkislsPKr=1 �rQts=1 qrisls :The predictive distribution can be computed e�cientlyas the summation is over the number of clusters K.Only in the very extreme case where the number ofcomponent distributions is N the computing cost ap-proaches that of traditional instance-based learning.However, such a degenerate case would indicate thatthe instance space has no nontrivial cluster structure,a situation which seems to be very rare with naturaldata sets. Typically the number of clusters K is oneor several orders of magnitude smaller than the size ofthe instance set N (see Table 2).

5 Empirical resultsThe above probabilistic instance-based approach hasbeen implemented in the D-SIDE software packageconsisting of a model construction module and a pre-diction module. We have used this software to evaluatethe feasibility of our approach, and compared it to al-ternative methods. Instead of using arti�cial data wewere especially interested in the prediction perform-ance for natural data sets. We readily admit the prob-lems of using real data, especially for comparison pur-poses (underlying causes for performance di�erencesare hard to identify, high variance in the observed per-formance di�erences etc.). However, the main advant-age of using natural data sets is that it \keeps one hon-est", i.e., it is produced without any knowledge of theparticular procedures that it will be used to test. Inaddition with arti�cial data there is always the dangerthat they do not correspond to situations that are likelyto occur in practice.We have done extensive experimentation with ourprobabilistic instance-based method using publiclyavailable data sets for classi�cation problems. We havealso collected performance results for alternative meth-ods for these same data sets from the literature. Thelist of the results of alternative algorithms tries by nomeans to be exhaustive, however for each data set wehave included the best results we have found in the lit-erature. The data sets were partly selected on the basisof their reported use, i.e., we have preferred data setsthat have been used for testing many di�erent methodsover data with only isolated results. Many of the res-ults are from the StatLog project (Michie et al., 1994),but we have also included more recent results. The de-scriptions of the data sets, our testing procedures, andthe best model classes (the number of clusters) foundfor each data set are given in Table 1. The defaultvalue denotes the success rate of a simple classi�er,which classi�es all the instances to the most commonclass.It should be observed that with the exception of theDNA data set, all our results are crossvalidated, andthat for the StatLog data sets we have used the samecrossvalidation scheme as described in (Michie et al.,1994). The same does not hold for many of the resultsfor the other methods, as in many cases the testing pro-cedure either was not reported, or the best result witha single test set was given. The actual performanceresults (measured as classi�cation success percentage)for individual data sets are presented as barcharts inFigures 1 and 2.510
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Figure 2: Experimental results on the DNA, Breast cancer, Iris, Heart disease and Lymphography databases.The references in the barcharts are as follows: (1) = (Michie et al., 1994), (2) = (John and Langley, 1995), (3)= (Aha et al., 1991), (4) = (Cestnik and Bratko, 1991), (5) = (Kononenko and Bratko, 1991), (6) = (Kononenko,1993), (7) = (Holte, 1993), (8) = (Skalak, 1994), (9) = (Friedman and Goldszmidt, 1996a), (10) = (Friedmanand Goldszmidt, 1996b) and (11) = (Quinlan, 1996). 512



Table 1: The datasets and testing methods used in our experiments.name size #attrs #classes #clusters test method defaultAustralian 690 15 2 17 10-fold CV 56.0Breast cancer 286 10 2 21 11-fold CV 70.3Diabetes 768 9 2 20 12-fold CV 65.0DNA 3186 181 3 13 train&test 50.8Glass 214 10 6 30 7-fold CV 40.7Heart disease 270 14 2 8 9-fold CV 79.4Hepatitis 150 20 2 9 5-fold CV 55.6Iris 150 5 3 4 5-fold CV 33.3Lymphography 148 19 4 19 5-fold CV 54.7Primary tumor 339 18 21 21 10-fold CV 24.8Although this experimentation is still ongoing, theempirical results clearly show that the probabilisticinstance-based approach performs favorably not onlywhen compared to traditional instance-based meth-ods (K-NN, IB3, ALLOC80), but also with respectto decision tree methods and common neural net-work approaches such as backpropagation. An inter-esting observation is that the probabilistic instance-based method outperforms also all other Bayesian ap-proaches present in the StatLog comparison as wellas more recent Naive Bayes related algorithms TAN(Tree Augmented Naive Bayes) and NBCFSS intro-duced in (Friedman and Goldszmidt, 1996a). Thissupports the common hypothesis that many real datadistributions can be naturally modeled as a sum of sev-eral component distributions. Table 2 summarizes theperformance of those methods for which we could �ndresults in 4 or more data sets. By performance indexwe mean here the relative success percentage of a givenmethod, when compared to the best method in the cur-rent classi�cation task (e.g., the performance index of90.0 of means that the method has achieved a successrate which is 90% of the success rate of the best methodin the task in question). It should be noted that thiscomparison favors methods which are tested on fewer(easier) datasets. Nevertheless, the results con�rm theobservation that the probabilistic instance-based ap-proach o�ers the most consistent performance over thevarious data sets.6 ConclusionWe have presented a methodology for probabil-istic instance-based learning which addresses all thethree common drawbacks of traditional instance-basedlearning: computational e�ciency of prediction, over-

�tting and sensitivity to distance functions. We alsopresented empirical results of the method's classi�ca-tion prediction performance for a set of public domaindata sets, and compared the results to the performanceof various other machine learning and neural networkmethods. Our results clearly demonstrated that ourprobabilistic approach is highly competitive and o�ersa very consistent performance over di�erent types ofdata.Although the discussion on this paper is con�ned todiscrete data, the approach extends also to the casewhere attributes are real-valued. However, some lim-ited experimentation indicates that moving from dis-crete to continuous values does not necessarily improvethe prediction performance of the model due to the ad-ditional assumptions of the distribution form. Thisextension is a natural topic for future research.AcknowledgementsThis research has been supported by the TechnologyDevelopment Center (TEKES). The primary tumor,the breast cancer and the lymphography domains wereobtained from the University Medical Centre, Insti-tute of Oncology, Ljubljana, Yugoslavia. Thanks go toM. Zwitter and M. Sokli�c for providing the data.ReferencesAha, D. (1990). A Study of Instance-Based Algorithmsfor Supervised Learning Tasks: Mathematical,Empirical, an Psychological Observations. PhDthesis, University of California, Irvine.Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms. Machine Learning,6:37{66.513



Table 2: Performance indexes of some of the most commonly used methods for the ten datasets used in ourexperiments. method mean variance min max #datasetsD-SIDE 99.27 1.94 95.75 100.00 10TAN 97.85 0.12 97.43 98.23 4Linear discriminant 96.95 15.01 89.50 100.00 5MSG 96.86 6.12 92.84 99.54 4CART 96.38 1.60 94.33 98.05 5Naive Bayes 96.15 24.10 81.81 99.00 10NBCFSS 95.89 13.68 89.72 99.43 4Backpropagation 95.15 8.87 89.38 98.67 6BNG 94.86 23.29 86.61 98.85 4C4.5 93.42 28.00 81.92 98.62 8Quadratic discriminant 92.84 36.93 82.00 99.29 5CN2 92.18 1.83 91.02 94.69 6Assistant 92.04 20.94 85.11 97.50 4Flexible Bayes 90.45 59.94 75.74 97.24 5K-NN 89.45 29.28 81.62 97.96 71Rw 88.96 75.90 71.17 97.96 6Atkeson, C. (1992). Memory based approaches to ap-proximating continuous functions. In Casdagli, M.and Eubank, S., editors, Nonlinear Modeling andForecasting. Proceedings Volume XII in the SantaFe Institute Studies in the Sciences of Complexity.Addison Wesley, New York, NY.Atkeson, C., Moore, A., and Schaal, S. (1995). Locallyweighted learning. AI Review to appear.Cestnik, B. and Bratko, I. (1991). On estimating prob-abilities in tree pruning. In Kodrato�, Y., ed-itor,Machine Learning EWSL-91, pages 138{150.Springer-Verlag.Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor,W., and Freeman, D. (1988). Autoclass: ABayesian classi�cation system. In Proceedings ofthe Fifth International Conference on MachineLearning, pages 54{64, Ann Arbor.Cover, T. and Hart, P. (1967). Nearest neighbor pat-tern classi�cation. IEEE Transactions on Inform-ation Theory, 13:21{27.Dempster, A., Laird, N., and Rubin, D. (1977). Max-imum likelihood from incomplete data via the EMalgorithm. Journal of the Royal Statistical Soci-ety, Series B, 39(1):1{38.Deng, K. and Moore, A. (1995). Multiresolutioninstance-based learning. In International Joint
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