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tGaussian pro
esses (GPs) are natural generalisations of multivariate Gaussian ran-dom variables to in�nite (
ountably or 
ontinuous) index sets. GPs have been applied ina large number of �elds to a diverse range of ends, and very many deep theoreti
al anal-yses of various properties are available. This paper gives an introdu
tion to Gaussianpro
esses on a fairly elementary level with spe
ial emphasis on 
hara
teristi
s relevantin ma
hine learning. It draws expli
it 
onne
tions to bran
hes su
h as spline smoothingmodels and support ve
tor ma
hines in whi
h similar ideas have been investigated.Gaussian pro
ess models are routinely used to solve hard ma
hine learning problems. Theyare attra
tive be
ause of their 
exible non-parametri
 nature and 
omputational simpli
ity.Treated within a Bayesian framework, very powerful statisti
al methods 
an be implementedwhi
h o�er valid estimates of un
ertainties in our predi
tions and generi
 model sele
tionpro
edures 
ast as nonlinear optimization problems. Their main drawba
k of heavy 
om-putational s
aling has re
ently been alleviated by the introdu
tion of generi
 sparse ap-proximations [13, 78, 31℄. The mathemati
al literature on GPs is large and often uses deep
on
epts whi
h are not required to fully understand most ma
hine learning appli
ations. Inthis tutorial paper, we aim to present 
hara
teristi
s of GPs relevant to ma
hine learningand to show up pre
ise 
onne
tions to other \kernel ma
hines" popular in the 
ommunity.Our fo
us is on a simple presentation, but referen
es to more detailed sour
es are provided.1 Introdu
tion and Overview: Gaussian Pro
esses in a Nut-shellIn this se
tion, we introdu
e the basi
 reasoning behind non-parametri
 random �eld andGaussian pro
ess models. Readers who have been exposed to these 
on
epts may jump tothe end of the se
tion where an overview of the remaining se
tions is given.In most ma
hine learning problems, we aim to generalise from a �nite set of observed data,in the sense that our ability to predi
t un
ertain aspe
ts of a problem improves after making�Previously at: Institute for Adaptive and Neural Computation, University of Edinburgh, UK.1



the observations. This is possible only if we postulate a priori a relationship between thevariables we will observe and the ones we wish to predi
t. This relationship is un
ertainitself, making generalisation a non-trivial problem. For example, in spatial statisti
s weobserve the values of a fun
tion at 
ertain lo
ations and want to predi
t them at otherones. In temporal statisti
s, we might want to predi
t future values of a time series fromits past. In the situations we are interested in here, the postulated relationship 
an berepresented by an ensemble (or a distribution) of fun
tions. It is helpful to imagine theobserved data being \generated" by pi
king a fun
tion from the ensemble whi
h gives riseto the sample (typi
ally, observations themselves are imperfe
t or \noisy"). It is importantto stress that this generative view 
an well be a 
rude abstra
tion of the me
hanism we reallyhold 
apable of simulating the phenomenon, as long as its probabilisti
 inversion leads tosatisfying predi
tions. This inversion is obtained by 
onditioning the generative ensembleon the observed data, whi
h leads to a new adapted ensemble pinned down at observationpoints but still variable elsewhere.In parametri
 statisti
s, we agree on a fun
tion 
lass indexed by a �nite number of param-eters. A distribution over these parameters indu
es an ensemble over fun
tions. Learningfrom observations means to modify this distribution so to adapt the ensemble to the data.If our a priori postulate is a very informed one (e.g. if the fun
tion 
lass is motivated bya physi
al theory of the phenomenon), the parametri
 approa
h is the method of 
hoi
e,but if many aspe
ts of the phenomenon are unknown or hard to des
ribe expli
itly, non-parametri
 modelling 
an be more versatile and powerful. It is important to stress that ouraim is solely to obtain a

urate predi
tions together with valid estimates of un
ertainty,not to \explain" the inner workings of the true generative pro
ess. In the latter 
ase, non-parametri
 modelling is less appli
able.In non-parametri
 statisti
s, regularities of the relationship are postulated without requiringthe ensemble to be 
on
entrated on a easily des
ribable 
lass. For example, we may assumethe ensemble to be stationary or isotropi
 (see Se
tion 2), whi
h allows us to infer propertiesof the generative ensemble even though our observations 
ome from a single realisationthereof. We might also postulate smoothness so that nearby points (in spa
e or time) havesimilar values with high probability, periodi
ity, boundary 
onditions, et
. In 
ontrast to theparametri
 
ase, it is less 
lear how we 
an represent su
h a generative ensemble expli
itly.A random �eld is a mapping from an input spa
e to real-valued random variables1, anatural generalisation of a joint distribution to an in�nite index set. Like a joint distribution,we 
an try to des
ribe the �eld by its low-order 
umulants su
h as mean and 
ovarian
efun
tion, the latter being a bivariate form satisfying a positive semide�niteness propertyakin to a 
ovarian
e matrix of a joint distribution. If all 
umulants above se
ond ordervanish, the random �eld is Gaussian: a Gaussian pro
ess. Importantly, properties su
h asstationarity, isotropy, smoothness, periodi
ity, et
. 
an be enfor
ed via the 
hoi
e of the
ovarian
e fun
tion. Furthermore, all �nite-dimensional marginal distributions of the �eldare jointly Gaussian, and inferen
e and predi
tion require little more than numeri
al linearalgebra.With this brief introdu
tion, we hope to have motivated the reader to browse through themore detailed se
tions to follow. Se
tion 2 de�nes Gaussian pro
esses, introdu
es the im-portant sub
lasses of stationary and isotropi
 GPs and develops two di�erent views on GPs1The extension to 
omplex-valued random �elds is straightforward. Sin
e most ma
hine learning appli-
ations require real-valued �elds only, we 
on
entrate on this 
ase for simpli
ity.



prominent in ma
hine learning. Some elementary GP models are introdu
ed in Se
tion 3.Approximate inferen
e te
hniques for su
h models are dis
ussed in Se
tion 4 using a generi
framework. Theoreti
al aspe
ts of GPs 
an be understood by asso
iating them with re-produ
ing kernel Hilbert spa
es (RKHS), as shown in Se
tion 5. Traditionally, GP modelshave been used in the 
ontext of penalised maximum likelihood and spline smoothing whi
hare motivated in Se
tion 6. A variant of spline smoothing, the support ve
tor ma
hine hasgained large popularity in the ma
hine learning 
ommunity, its relationship to Bayesian GPte
hniques is given in Se
tion 7. GP models have been used extensively in spatial statisti
s,using an estimation pro
edure 
alled kriging, as des
ribed in Se
tion 8. The �nal Se
tion 9deals with the 
hoi
e of the 
ovarian
e fun
tion whi
h is of 
entral importan
e in GP mod-elling. We des
ribe 
lasses of standard kernels and their properties, show how kernels 
anbe 
onstru
ted from elementary parts, dis
uss methods for learning aspe
ts of the kerneland �nally illustrate 
lasses of 
ovarian
e fun
tions over dis
rete index sets.Readers more interested in pra
ti
al ma
hine learning aspe
ts may want to skip over Se
-tions 5 and 6 whi
h 
ontain more theoreti
al material not required to understand GP appli-
ations. We use notational 
onventions familiar to probability theorists whi
h is introdu
edin Se
tion A.1, but are 
areful to motivate the formalism in the more applied se
tions.2 Gaussian Pro
esses: The Pro
ess and the Weight Spa
eViewGaussian pro
ess (GP) models are 
onstru
ted from 
lassi
al statisti
al models by repla
inglatent fun
tions of parametri
 form (e.g. linear fun
tions, trun
ated Fourier or Wavelet ex-pansions, multi-layer per
eptrons) by random pro
esses with Gaussian prior. In this se
tion,we will introdu
e GPs and highlight some aspe
ts whi
h are relevant to ma
hine learning.We develop two simple views on GPs, pointing out similarities and key di�eren
es to distri-butions indu
ed by parametri
 models. We follow [2℄, Chap. 1,2. A good introdu
tion intothe 
on
epts required to study GP predi
tion is given in [74℄, Chap. 2. For 
on
epts andvo
abulary from general probability theory, we refer to [19, 6, 9℄.Let X be an non-empty index set. For the main parts of this paper, X 
an be arbitrary, buthere we assume that X is at least a group2 (and sometimes we assume it to be Rg ). In anutshell, a random pro
ess X ! R is a 
olle
tion of random variables (one for ea
h x 2 X )over a 
ommon probability spa
e. The measure-theoreti
 de�nition is awkward, but basi
allythe same as for a single variable. It 
an also be viewed as a fun
tion from the probabilityspa
e and X into the reals. The fun
tions X ! R obtained for a �xed atomi
 event are 
alledsample paths, and a random pro
ess 
an also be seen as the 
orresponding distribution oversample paths. If X � X is �nite, we obtain a random variable 2 RjXj by evaluating thepro
ess at the points X, its distribution is 
alled �nite-dimensional distribution (f.d.d.). Ifwe assume that a random pro
ess exists and 
onsider the system of all f.d.d.'s, it is 
learthat it has to be symmetri
 and 
onsistent: a permutation of the 
omponents of X mustresult in the distribution of an equally permuted random ve
tor, and if X1 \X2 6= ;, themarginal distributions on the interse
tion starting from the ones for X1 and X2 must beidenti
al. Formally, for every n 2 N>0 ; x1; : : : ;xn 2 X , Borel sets B1; : : : ; Bn and every2Has an addition +, an origin 0 and a negation �.



permutation � of f1; : : : ; ng we must have�x�(1);:::;x�(n)(B�(1) � � � � �B�(n)) = �x1;:::;xn(B1 � � � � �Bn) and�x1;:::;xn(B1 � � � � �Bn�1 � R) = �x1;:::;xn�1(B1 � � � � �Bn�1):Importantly, Kolmogorov [28℄ proved that symmetry and 
onsisten
y are also suÆ
ient
onditions for su
h a spe
i�
ation to guarantee the existen
e of a random pro
ess (in the
on
rete measure-theoreti
 sense) with these f.d.d.'s. The question about uniqueness of ran-dom pro
esses is tri
ky, be
ause two pro
esses 
an be equivalent (u(x) = v(x) almost surelyfor every x; equivalent pro
esses are 
alled versions of ea
h other), yet di�er signi�
antlyw.r.t. almost sure properties of their sample paths. For example, one 
an 
onstru
t a ver-sion of a smooth pro
ess whose sample paths are not di�erentiable at a �nite number ofpoints almost surely. In the 
ontext of ma
hine learning appli
ations we are interested here,sample path properties su
h as di�erentiability are of lesser importan
e, and we will fo
uson m.s. properties (to be introdu
ed shortly) whi
h 
an be 
hara
terised more dire
tly andare invariant under 
hange of version. In other words, we will in general identify a pro
esswith the equivalen
e 
lass of all its versions or with a parti
ularly \ni
e" member of this
lass,3 and the simple nature of the appli
ations we are interested in here guarantees theadmissability of this pra
ti
e. We will see that global sample path properties of a pro
ess (inthis sense) su
h as smoothness and average variability are dire
tly related to 
orrespondingm.s. properties. See Adler [2℄ for methods of studying sample path properties.Let fXng be a sequen
e of real-valued random variables, and re
all that Xn ! X (n!1)in quadrati
 mean (or in mean square (m.s.)) if E[jXn�Xj2℄! 0. M.s. 
onvergen
e is weakerthan almost sure (a.s.) 
onvergen
e, but turns out to be the most useful mode for dis
ussingGP aspe
ts we require here. In general, X and Y are m.s. equivalent if E[jX�Y j2℄ = 0. In anutshell, for a property whi
h is traditionally de�ned in terms of limits (su
h as 
ontinuity,di�erentiability, et
.) within R we 
an typi
ally de�ne the 
orresponding m.s. property fors
alar random variables by substituting normal for m.s. 
onvergen
e.Suppose that u(x) is a random pro
ess. The �rst and se
ond-order statisti
s of u(x) are itsmean fun
tion m(x) = E[u(x)℄ and 
ovarian
e fun
tionK(x;x0) = E �(u(x)�m(x))(u(x0)�m(x0))� :Obviously, both depend on the f.d.d.'s of the pro
ess only. The 
ovarian
e fun
tion is 
en-tral to studying 
hara
teristi
s of the pro
ess in the mean square sense. It is a positivesemide�nite4 fun
tion in the sense that for every n 2 N, x1; : : : ;xn 2 X ; z1; : : : ; zn 2 R:nXi;j=1 zizjK(xi;xj) � 0: (1)This is 
lear be
ause for X =Pi zi(u(xi)�m(xi)) we have E[jXj2℄ � 0. Positive semidef-initeness means that for every �nite set X � X the symmetri
 matrix K(X;X) 2 RjXj;jXjobtained by evaluating K on X � X is positive semide�nite. Note that this implies thatK(x;x) � 0 for all x. K is 
alled positive de�nite if (1) holds with > whenever z 6= 0.3As an example, a Wiener pro
ess (see Se
tion 2.3) always has a version with 
ontinuous sample paths.4This term is not uniquely used in the literature, it is sometimes repla
ed by non-negative de�nite oreven positive de�nite (whi
h has a di�erent meaning here).



The positive semide�niteness of K leads to an important spe
tral de
omposition whi
h isdis
ussed in Se
tion 5. A positive semide�nite K will also be referred to as kernel, pointingout its role as kernel for a linear integral operator (see Se
tion 5).2.1 Stationary Pro
essesIn many situations, the behaviour of the pro
ess does not depend on the lo
ation of theobserver, and under this restri
tion a ri
h theory 
an be developed, linking lo
al m.s. prop-erties of the pro
ess to the behaviour of K 
lose to the origin. A pro
ess is 
alled stri
tlyhomogeneous (or stri
tly stationary) if its f.d.d.'s are invariant under simultaneous trans-lation of their variables. This implies that m(x) is 
onstant and K(x;x0) is a fun
tion ofx�x0 (we write K(x;x0) = K(x�x0) in this 
ase). A pro
ess ful�lling the latter two 
on-ditions is 
alled (weakly) homogeneous (or (weakly) stationary). For a stationary pro
ess,the 
hoi
e of the origin is not re
e
ted in the statisti
s up to se
ond order. If K(0) > 0,�(x) = K(x)K(0)is 
alled 
orrelation fun
tion. A stationary pro
ess has a spe
tral representation as a sto
has-ti
 Fourier integral (e.g., [2℄, Chap. 2; [19℄, Chap. 9; [88℄), based on Bo
hner's theorem whi
h(for X = Rg ) asserts that �(x) is positive semide�nite, furthermore uniformly 
ontinuouswith �(0) = 1; j�(x)j � 1 i� it is the 
hara
teristi
 fun
tion of a variable !, i.e.�(x) = Z eixT!dF (!) (2)for a probability distribution fun
tion F (!). If F (!) has a density f(!) (w.r.t. Lebesguemeasure), f is 
alled spe
tral density. This theorem allows to prove positive semide�nitenessof K by 
omputing its Fourier transform and 
he
king that it is non-negative. If so, it mustbe proportional to the spe
tral density. Note that sin
e �(x) is an even fun
tion, the spe
traldistribution is symmetri
 around 0, and if f(!) exists it is even as well.The f.d.d.'s of a pro
ess determine its mean square properties, while this is not true ingeneral for almost sure properties (su
h as 
ontinuity or di�erentiability of sample paths).Even stronger, for a zero-mean pro
ess, m.s. properties are usually determined entirelyby the 
ovarian
e fun
tion K(x;x0). For stationary pro
esses, it is merely the behaviourof K(x) at the origin whi
h 
ounts: the m.s. derivative5 Dxu(x) exists everywhere i�DxDxK(x) exists at x = 0. Thus, the smoothness of the pro
ess in the m.s. sense growswith the degree of di�erentiability at 0. For example, a pro
ess with the RBF (Gaussian)
ovarian
e fun
tion K (27) is m.s. analyti
, be
ause K is analyti
 (di�erentiable up to anyorder) at 0.2.2 Isotropi
 Pro
essesA stationary pro
ess is 
alled isotropi
 if its 
ovarian
e fun
tion K(x) depends on kxkonly. In this 
ase, the spe
tral distribution F is invariant under isotropi
 isomorphisms(e.g., rotations). Loosely speaking, se
ond-order 
hara
teristi
s of an isotropi
 pro
ess are5Here, Dx denotes a di�erential fun
tional, su
h as �2=(�x1�x2).



the same from whatever position and dire
tion they are observed. It is mu
h simpler to
hara
terise isotropi
 
orrelation fun
tions than stationary ones in general. Let �(�) = �(x)for � = kxk. The spe
tral de
omposition (2) simpli�es to�(�) = Z �g=2�1(� !)dF (!) (3)where F (!) = R Ifk!k�!g dF (!) is a distribution fun
tion for ! � 0 and��(z) = �(� + 1)(z=2)� J�(z);where J�(z) is a Bessel fun
tion of the �rst kind (see [2℄, Se
t. 2.5). Re
all that g is the di-mensionality of the input spa
e X = Rg . The right hand side in (3) is the Hankel transformof order g=2� 1 of F (see [74℄, Se
t. 2.10). Alternatively, if the spe
tral density f(!) existsand f(!) = f(!) for ! = k!k, then dF (!) = Ag�1!g�1f(!) d!,6 so we 
an easily 
onvertto the spe
tral representation in terms of f(!). Denote the set of �(�) 
orresponding toisotropi
 
orrelation fun
tions in Rg by Dg. Note that (3) 
hara
terises Dg (by Bo
hner'stheorem). It is 
lear that Dg+1 � Dg, sin
e an isotropi
 
orrelation fun
tion in Rg+1 re-stri
ted to a g-dimensional subspa
e is in Dg. Beware that both F (!) and f(!) dependon the dimension g for whi
h �(�) is used to indu
e a 
orrelation fun
tion (see (3)). LetD1 = Tg�1Dg. Sin
e �g=2�1 �(2g)1=2x�! e�x2 (g !1);one 
an show that �(�) 2 D1 i� �(�) = R exp(��2!2) dF (!) (this result is due to S
hoen-berg).Note that the assumption of isotropy puts strong 
onstraints on the 
orrelation fun
tion,espe
ially for large g. For example, �(�) � infx �g=2�1(x) � �1=g so large negative 
orrela-tions are ruled out. If �(�) 2 D1, it must be non-negative. Furthermore, for large g �(�) issmooth on (0;1) while it may have a jump at 0 (additive white noise). If �(�) 2 Dg andB 2 Rg;g is nonsingular, then �B (x) = �(kBxk)is a 
orrelation fun
tion as well, 
alled anisotropi
. Examples of (an)isotropi
 
ovarian
efun
tions are given in Se
tion 9.2.3 Two Views on Gaussian Pro
essesA Gaussian pro
ess (GP) is a pro
ess whose f.d.d.'s are Gaussian. Sin
e a Gaussian isdetermined by its �rst and se
ond-order 
umulants and these involve pairwise intera
tionsonly, its f.d.d.'s are 
ompletely determined by mean and 
ovarian
e fun
tion. This meansthat for GPs, strong and weak stationarity are the same 
on
ept. GPs are by far the mosta

essible and well-understood pro
esses (on un
ountable index sets). It is 
lear that forevery positive semide�nite fun
tion K there exists a zero-mean GP with K as 
ovarian
efun
tion (by Kolmogorov's theorem), so GPs as modelling tool are very 
exible. Importantly,by 
hoosing K properly we 
an en
ode properties of the fun
tion distribution impli
itly aswe desired in Se
tion 1.6Ag�1 = 2�g=2=�(g=2) is the surfa
e area of the unit sphere in Rg .



In 
onjun
tion with latent variable modelling te
hniques, a wide variety of non-parametri
models 
an be 
onstru
ted (see Se
tion 3). The fa
t that all f.d.d.'s are Gaussian with
ovarian
e matri
es indu
ed by K(x;x0) 
an be used to obtain approximations to Bayesianinferen
e fairly straightforwardly (see Se
tion 4), and these approximations often turn outto be mu
h more a

urate than for parametri
 models of equal 
exibility (su
h as multi-layer per
eptrons). It is interesting to note that m.s. derivatives Dxu(x) of a GP are GPsagain (if they exist), andE hD(1)x u(x)D(2)x0 u(x0)i = D(1)x D(2)x0 K(x;x0);thus derivative observations 
an be in
orporated into a model in the same way as fun
tionvalue observations (for appli
ations, see [46, 71℄). Chara
teristi
s su
h as m.s. di�erentia-bility up to a given order 
an be 
ontrolled via the 
ovarian
e fun
tion (see Se
tion 2.1), anexample is given in Se
tion 9.One of the most thoroughly studied GPs is theWiener pro
ess (or Brownian motion, or 
on-tinuous random walk) with 
ovarian
e fun
tion K(x; x0) = �2minfx; x0g (here, X = R�0 ;for multivariate generalisations to Brownian sheets, see [2℄, Chap. 8). It is 
hara
terised byu(0) = 0 a.s., E[ju(x + h) � u(x)j2℄ = �2h; h � 0, and by having orthogonal7 in
rements:E[(u(x1)�u(x2))(u(x3)�u(x4))℄ = 0; x1 � x2 � x3 � x4. Note that u(x) is not stationary,a stationary version with orthogonal in
rements is the Ornstein-Uhlenbe
k pro
ess (see Se
-tion 9.1). The Wiener pro
ess is an example for a di�usion pro
ess. It has a large number ofappli
ations in mathemati
s, physi
s and mathemati
al �nan
e. The property of orthogonalin
rements allows to de�ne sto
hasti
 integrals (e.g., [19℄, Chap. 13) with a Wiener pro
essas (random) measure. u(x) is m.s. 
ontinuous everywhere, but not m.s. di�erentiable atany point. In fa
t, a version of the Wiener pro
ess 
an be 
onstru
ted whi
h has 
ontinuoussample paths, but for every version sample paths are nowhere di�erentiable with probability1. The Wiener pro
ess 
an be used to expli
itly 
onstru
t other GPs by means of sto
hasti
integrals, the pro
edure is sket
hed in Se
tion 6.We now develop two elementary views on Gaussian pro
esses, the pro
ess and the weightspa
e view. While the former is usually mu
h simpler to work with, the latter allows usto relate GP models to parametri
 linear models rather dire
tly. We follow [85℄.8 The pro-
ess view on a zero-mean GP u(x) with 
ovarian
e fun
tion K is in the spirit of the GPde�nition given above. u(x) is de�ned impli
itly, in that for any �nite subset X � X itindu
es a f.d.d. N(0;K (X)) over the ve
tor u = u(X) of pro
ess values at the points X.Here, K (X) = K (X;X) = (K(xi;xj))i;j where X = fx1; : : : ;xng. Kolmogorov's theoremguarantees the existen
e of a GP with this family of f.d.d.'s.9 In pra
ti
e, many modellingproblems involving an unknown fun
tional relationship u(x) 
an be formulated su
h thatonly ever a �nite number of linear 
hara
teristi
s of u(x) (e.g., evaluations or derivativesof u(x)) are linked to observations or predi
tive queries, and in su
h 
ases the pro
essview boils down to dealing with the \proje
tion" of the GP onto a multivariate Gaussiandistribution, thus to simple linear algebra of quadrati
 forms.107Orthogonality implies independen
e sin
e the pro
ess is Gaussian.8We use the term \pro
ess view" instead of \fun
tion spa
e view" employed in [85℄. The relationshipbetween GPs and asso
iated spa
es of smooth fun
tions is a bit subtle and introdu
ed only below in Se
tion 5.9If K is 
ontinuous everywhere, a version exists with 
ontinuous sample paths, but we do not require thishere.10In pra
ti
e, some knowledge of numeri
al mathemati
s is required to avoid numeri
ally instable pro
e-



GPs 
an also be seen from a weight spa
e viewpoint, relating them to the linear model. Inthe Bayesian 
ontext this view was �rst suggested by O'Hagan [45℄ as a \lo
alised regressionmodel" (the weight spa
e is �nite-dimensional there) while the generalisation to arbitraryGP priors developed there uses the pro
ess view. This paper is among the �rst to address GPregression in a rigorous Bayesian 
ontext, while the equivalen
e between spline smoothingand Bayesian estimation of pro
esses was noti
ed earlier by Kimeldorf and Wahba [27℄ (seeSe
tion 6). Re
all the linear model y = �(x)T� + "; (4)where �(x) is a feature map from the 
ovariate x and " is independent Gaussian noise.Every GP whose 
ovarian
e fun
tion satis�es weak 
onstraints 
an be written as (4), albeitwith possibly in�nite-dimensional weight spa
e. To develop this view, we use some fa
tswhi
h are dis
ussed in detail below in Se
tion 5. Under mild 
onditions on the 
ovarian
efun
tion K(x;x0) of u(x), we 
an 
onstru
t a sequen
ekX�=1 ���1=2� ��(x);whi
h 
onverges to u(x) in quadrati
 mean (k ! 1).11 Here, �� are i.i.d. N(0; 1) vari-ables. �� are orthonormal eigenfun
tions of the operator indu
ed by K with 
orrespondingeigenvalues �1 � �2 � � � � � 0; P��1 �2� < 1, in a sense made pre
ise in Se
tion 5.Thus, if � = (��)� and �(x) = (�1=2� ��(x))� , then u(x) = �(x)T� in quadrati
 mean,and �(x)T�(x0) = K(x;x0). This is the weight spa
e view on GPs and allows to view anon-parametri
 regression model y = u(x) + "as dire
t in�nite-dimensional generalisation of the linear model (4) with spheri
al Gaussianprior on �. We say that �(x) maps into a feature spa
e whi
h is typi
ally (
ountably)in�nite-dimensional. It is important to note that in this 
onstru
tion of the feature map�(x) the individual 
omponents �1=2� ��(x) do not have the same s
aling, in the sense thattheir norm in L2(�) (the Hilbert spa
e they are drawn from and that K operates on) is�1=2� ! 0 (� ! 1). They are 
omparable in a di�erent (RKHS) norm whi
h s
ales withthe \roughness" of a fun
tion. Intuitively, as � !1, the graph of �� be
omes rougher andin
reasingly 
ompli
ated, see Se
tion 5 for details.For all inferen
e purposes whi
h are 
on
erned with f.d.d.'s of u(x) and its derivatives (orother linear fun
tionals) only, the pro
ess and the weight spa
e view are equivalent: they leadto identi
al results. However, we feel that often the pro
ess view is mu
h simpler to workwith, avoiding spurious in�nities12 and relying on familiar Gaussian manipulations only.On the other hand, the weight spa
e view is more frequently used at least in the ma
hinelearning literature, and its pe
uliarities may be a reason behind the per
eption that GPmodels are diÆ
ult to interpret. There is also the danger that false intuitions or 
on
lusionsdures. Sin
e most matri
es to be dealt with are positive semide�nite, this is not too hard. Some reliablete
hniques are mentioned in Se
tion 4.11We only need pointwise m.s. 
onvergen
e, although mu
h stronger statements are possible under mildassumptions, e.g. [2℄, Se
t. 3.3.12Whi
h seem to 
an
el out almost \magi
ally" in the end from the weight spa
e viewpoint, while in�nitiesdo not o

ur in the pro
ess view in the �rst pla
e.



are developed from interpolating geometri
al arguments from low-dimensional Eu
lideanspa
e to the feature spa
e.13 We should also note that a weight spa
e representation of aGP in terms of a feature map � is of 
ourse not unique. The route via eigenfun
tions of the
ovarian
e operator is only one way to establish su
h.14 About the only invariant is that wealways have �(x)T�(x0) = K(x;x0).2.4 Gaussian Pro
esses as Limit Priors of Parametri
 ModelsWe 
on
lude this se
tion by mentioning that one of the prime reasons for fo
using 
urrentma
hine learning interest on GP models was a highly original di�erent way of establishinga weight spa
e view proposed in [42℄. Consider a modelf(x) = HXj=1 vjh(x;u(j))whi
h 
ould be a multi-layer per
eptron (MLP) with hidden layer fun
tions h, weightsu(j) and output layer weights v. Suppose that u(j) have independent identi
al priors s.t.the resulting h(x;u(j)) are bounded almost surely over a 
ompa
t region of interest. Also,vj � N(0; !2=H) independently. Then, for H !1, f(x) 
onverges in quadrati
 mean to azero-mean GP with 
ovarian
e fun
tion !2Eu [h(x;u)h(x0;u)℄. Stronger 
onditions wouldassure almost sure 
onvergen
e uniformly over a 
ompa
t region. The bottom line is thatif we take a 
onventional parametri
 model whi
h linearly 
ombines the outputs of a largenumber of feature dete
tors, and if we s
ale the outputs s.t. ea
h of them in isolation hasonly a negligible 
ontribution to the response, we might just as well use the 
orrespondingGaussian pro
ess model. Neal [42℄ also shows that if a non-zero number of the non-Gaussianfeature outputs have a signi�
ant impa
t on the response with non-zero probability, thenthe limit pro
ess is typi
ally not Gaussian.To 
on
lude, the weight spa
e view seems to relate non-parametri
 GP models with para-metri
 linear models fairly dire
tly. However, there are important di�eren
es in general.Neal showed that GPs are obtained as limit distributions of large linear 
ombinations offeatures if ea
h feature's 
ontribution be
omes negligible, while the output distributions ofar
hite
tures whi
h �t at least a few strong feature dete
tors are typi
ally not Gaussian.Predi
tions from a GP model are smoothed versions of the data (in a sense made 
on-
rete in Se
tion 6), i.e. interpolate by minimising general smoothness 
onstraints en
odedin the GP prior, as opposed to parametri
 models whi
h predi
t by fo
using on these fun
-tions (within the family) whi
h are most 
onsistent with the data. O'Hagan [45℄ dis
ussesdi�eren
es w.r.t. optimal design.13Steinwart [75℄ gives the following example. For a universal 
ovarian
e fun
tion (most kernels dis
ussedhere have this property), any two �nite disjoint subsets of X 
an be separated by a hyperplane in featurespa
e, and the distan
es of all points to the plane 
an be made to lie in an interval of arbitrarily small size.Steinwart 
on
ludes that \any �nite dimensional interpretation of the geometri
 situation in a feature spa
eof a universal kernel must fail". We strongly agree.14For example, in Se
tion 5 we dis
uss K's role as reprodu
ing kernel, in the sense that K(x;x0) =(K(�;x); K(�;x0))K in some Hilbert spa
e with inner produ
t (�; �)K . We 
ould de�ne � to map x 7! K(�;x)and use the Hilbert spa
e as weight spa
e.



3 Some Gaussian Pro
ess ModelsThe simplest Gaussian pro
ess model is useful for regression estimation:y = u+ ";where u = u(x) is a priori a zero-mean Gaussian pro
ess with 
ovarian
e fun
tion K and "is independent N(0; �2) noise. Inferen
e for this model is simple and analyti
ally tra
table,be
ause the observation pro
ess y(x) is zero-mean Gaussian with 
ovarian
e K(x;x0) +�2Æx;x0 .15 Given some i.i.d. data S = f(xi; yi) j i = 1; : : : ; ng, let K = (K(xi;xj))i;j . Then,P (u) = N(0;K ) andP (ujS) = N �K (�2I +K )�1y ; �2(�2I +K )�1K� ; (5)where u = (u(xi))i. For some test point x� distin
t from the training points, u� =u(x�)?y ju, so thatP (u�jx�; S) = Z P (u�jx�;u)P (ujS) du= N �u�jk(x�)T (�2I +K )�1y;K(x�;x�)� k(x�)T (�2I +K )�1k(x�)� :Here, k(x�) = (K(xi;x�))i. We see that for this model, the posterior predi
tive pro
essu(x) given S is Gaussian with mean fun
tion yT (�2I +K )�1k(x) and 
ovarian
e fun
tionK(x;x0)� k(x)T (�2I +K )�1k(x0):Note that the mean fun
tion used for predi
tion is linear in the targets y for every �xedx�. Furthermore, the posterior 
ovarian
e fun
tion does not depend on the targets at all.In pra
ti
e, if only posterior mean predi
tions are required, the predi
tion ve
tor � =(�2I +K)�1y 
an be 
omputed using a linear 
onjugate gradients solver whi
h runs inO(n2) if the eigenvalue spe
trum of K shows a fast de
ay. If predi
tive varian
es for manytest points are required, the Cholesky de
omposition16 �2I+K = LLT should be 
omputed,after whi
h ea
h varian
e 
omputation requires a single ba
k-substitution.The pointwise predi
tive varian
e is never larger than the 
orresponding prior varian
e, butthe shrinkage de
reases with in
reasing noise level �2. The same result 
an be derived inthe weight spa
e view with u(x) = �(x)T�, applying the standard derivation of Bayesianlinear regression (e.g., [85℄). Note that just as in parametri
 linear regression, the smoothedpredi
tion E[ujS℄ is a linear fun
tion of the observations y , as is the mean fun
tion of thepredi
tive pro
ess E[u(x)jS℄ (see also Se
tion 8). Note also that if K(x;x0)! 0 as kx�x0kgets big, predi
tive mean and varian
e for points x far from all data tend to prior mean0 and prior varian
e K(x;x). Se
ond-level inferen
e problems su
h as sele
ting values forhyperparameters (parameters of K and �2) or integrating them out are not analyti
ally15In the 
ontext of this model, it is interesting to note that if K0 is stationary and 
ontinuous everywhereex
ept at 0, it is the sum of a 
ontinuous (stationary) 
ovarian
e K and a white noise 
ovarian
e / Æx;x0 .Furthermore, S
h�onberg 
onje
tured that if K0 is an isotropi
 bounded 
ovarian
e fun
tion, it must be
ontinuous ex
ept possibly at 0.16A symmetri
 matrix is positive de�nite i� it has a (unique) Cholesky de
omposition LLT , where L islower triangular with positive diagonal elements.



tra
table and approximations have to be applied. Approximate model sele
tion is dis
ussedin Se
tion 4.We 
an generalise this model by allowing for an arbitrary \noise distribution" P (yju),retaining the GP prior on u(x). The generative view is to sample the pro
ess u(�) fromthe prior, then yi � P (yiju(xi)) independent from ea
h other given u(�).17 The likelihoodfun
tion fa
tors as a produ
t of univariate terms:P (yjX ; u(�)) = P (yju) = nYi=1P (yijui): (6)Sin
e the likelihood depends on u(�) only via the �nite set u, the predi
tive posterior pro
ess
an be written as dP (u(�)jS) = P (ujS)P (u) dP (u(�)); (7)i.e. P (u(X)jS) = (P (ujS)=P (u))P (u(X)) for any �nite X � X . The prior measure is\shifted" by multipli
ation with P (ujS)=P (u) depending on the pro
ess values u at thetraining points only. The predi
tive pro
ess is not Gaussian in general, but its mean and
ovarian
e fun
tion 
an be obtained from knowledge of the posterior mean and 
ovarian
ematrix of P (ujS) as dis
ussed in Se
tion 4. For a test point x�,P (y�jx�; S) = E [P (y�ju�)℄where the expe
tation is over the predi
tive distribution of u� = u(x�). In this generalmodel, �rst-level inferen
e is not analyti
ally tra
table. In Se
tion 4 a general approximateinferen
e framework is dis
ussed. Markov Chain Monte Carlo (MCMC) methods 
an beapplied fairly straightforwardly, for example by Gibbs sampling from the latent variablesu [43℄. Su
h methods are attra
tive be
ause the marginalisation over hyperparameters 
anbe dealt with in the same framework. However, naive realisations may have a prohibitiverunning time due to the large number of 
orrelated latent variables, and more advan
edte
hniques 
an be diÆ
ult to handle in pra
ti
e. While MCMC is maybe the most advan
edand widely used 
lass of approximate inferen
e te
hniques, it is not dis
ussed in any furtherdetail here (see [41℄ for a review).3.1 Generalised Linear Models. Binary Classi�
ationA large 
lass of models of this kind is obtained by starting from generalised linear models(GLMs) [44, 37℄ and repla
ing the parametri
 linear fun
tion xT� by a pro
ess u(x) witha GP prior. This 
an be seen as dire
t in�nite-dimensional generalisation of GLMs byemploying the weight spa
e view (see Se
tion 2). In the spline smoothing 
ontext, thisframework is presented in detail in [18℄. It employs noise distributionsP (yju) = exp ���1(y u� Z(u)) + 
(y; �)� ;i.e. P (yju) is in an exponential family with natural parameter u, suÆ
ient statisti
s y=� andlog partition fun
tion ��1Z(u). Here, � > 0 is a s
ale hyperparameter. The linear model is17This is generalised easily to allow for bounded linear fun
tionals of the latent pro
ess u(�) instead of theevaluation fun
tional Æxi , as dis
ussed in Se
tion 5.



a spe
ial 
ase with � = �2; u = � = Eu[y℄ and Z(u) = (1=2)u2. A te
hni
ally attra
tivefeature of this framework is that logP (yju) is stri
tly 
on
ave in u, leading to a stri
tlylog-
on
ave, unimodal posterior P (ujS). For binary 
lassi�
ation and y 2 f�1;+1g, theGLM for the binomial noise distribution is logisti
 regression with the logit noiseP (yju) = �(y (u+ b)); �(t) = 11 + e�t : (8)Here, � = 2 and Z(u) = 2 log 
osh((u+ b)=2). Another frequently used binary 
lassi�
ationnoise model is probit noiseP (yju) = �(y (u+ b)) = E��N(0;1) �Ify(u+b)+�>0g� (9)whi
h 
an be seen as noisy Heaviside step and is not in the exponential family. Both noisemodels (8), (9) are stri
tly log-
on
ave.3.2 Models with C Latent Pro
essesWe 
an also allow for a �xed number C � 1 of latent variables for ea
h 
ase (x;y), i.e. Cpro
esses u
(x). The likelihood fa
tors asnYi=1P (yiju(i)); u(i) = (u
(xi))
:u
(x) is zero-mean Gaussian a priori with 
ovarian
e fun
tionK(
). While it is theoreti
allypossible to use 
ross-
ovarian
e fun
tions for prior 
ovarian
es between u
 for di�erent 
,it may be hard to 
ome up with a suitable 
lass of su
h fun
tions.18 Furthermore, theassumption that the pro
esses u
 are independent a priori leads to large 
omputationalsavings, sin
e the joint 
ovarian
e matrix over the data assumes blo
k-diagonal stru
ture.Note that in this stru
ture, we separate w.r.t. di�erent 
, while in blo
k-diagonal stru
tures
oming from the fa
torised likelihood we separate w.r.t. 
ases i.An important example using C latent pro
esses is C-
lass 
lassi�
ation. The likelihood
omes from a multinomial GLM (or multiple logisti
 regression). It is 
onvenient to use abinary en
oding for the 
lass labels, i.e. y = Æ
 for 
lass 
 2 f1; : : : ; Cg.19 The noise ismultinomial with � = E[y ju℄ = softmax(u) = �1T exp(u)��1 exp(u):u 7! � is sometimes 
alled softmax mapping. Note that this mapping is not invertible, sin
ewe 
an add �1 to u for any � without 
hanging �. In other words, the parameterisation ofthe multinomial by u is over
omplete, due to the linear 
onstraint yT1 = 1 on y, and the
orresponding GLM log partition fun
tionZ(u) = log 1T exp(u)is not stri
tly 
onvex. The usual remedy is to 
onstrain u by for example �xing uC = 0. Thisis �ne in the 
ontext of �tting parameters by maximum likelihood, but may be problemati
18Hyperparameters may be shared between the prior pro
esses, making them marginally dependent.19We use ve
tor notation for u; y 2 RC asso
iated with a single 
ase. This should not be 
onfused withthe ve
tor notation u; y 2 Rn used above to group variables for all 
ases.



for Bayesian inferen
e. As mentioned above, we typi
ally use priors whi
h are i.i.d. over theu
, so if we �x uC = 0, the indu
ed prior on � is not an ex
hangeable distribution (i.e.
omponent permutations of u 
an have di�erent distributions) and �C is singled out forno other than te
hni
al reasons. We think it is preferable in the Bayesian 
ontext to retainsymmetry and a

ept that u 7! � is not 1-to-1. Dealing with this non-identi�ability duringinferen
e approximations is not too hard sin
e softmax is invertible on any plane orthogonalto 1 and Z(u) is stri
tly 
onvex on su
h. Anyway, this detail together with the two di�erentblo
king stru
tures mentioned above renders implementations of approximate inferen
e forthe C-
lass model somewhat more involved than the binary 
ase (see [86℄ for an example).Other examples for C-pro
ess models are ordinal regression (\ranking") models (see [37℄for likelihood suggestions) or multivariate regression.3.3 Robust RegressionGP regression with Gaussian noise 
an lead to poor results if the data is prone to outliers,due to the light tails of the noise distribution. A robust GP regression model 
an be ob-tained by using a heavy-tailed noise distribution P (yju) su
h as a Lapla
e or even Student-tdistribution. An interesting idea is to use the fa
t that the latter is obtained by startingwith N(0; ��1) and to integrate out the pre
ision � over a Gamma distribution (e.g., [42℄).Thus, a robust model 
an be written asy = u+ "; " � N(0; ��1);where � is drawn i.i.d. from a Gamma distribution (whose parameters are hyperparameters).The posterior P (ujS; � ) 
onditioned on the pre
ision values �i is Gaussian and is 
omputedin the same way as for the 
ase �i = ��2 above. � 
an be sampled by MCMC, or may be
hosen to maximise the posterior P (� jS). The marginal likelihood P (yj� ) is Gaussian and
an be 
omputed easily. However, note that in the latter 
ase the number of hyperparametersgrows as n whi
h might invalidate the usual justi�
ation of marginal likelihoodmaximisation(see Se
tion 4).4 Approximate Inferen
e and LearningWe have seen in the previous se
tion that the posterior pro
ess for a likelihood of the generalform (6) 
an be written as \shifted" version (7) of the prior. About the only pro
esses (inthis 
ontext) whi
h 
an be dealt with feasibly are Gaussian ones, and a general way ofobtaining a GP approximation to the posterior pro
ess is to approximate P (ujS) by aGaussian Q(u),20 leading to the pro
essdQ(u(�)) = Q(u)P (u)dP (u(�)) (10)whi
h is Gaussian (re
all from Se
tion A.1 that this is a 
on
ise way of writing thatQ(u(X)) = (Q(u)=P (u))P (u(X)) for every �nite X � X ). An optimal way of 
hoosingQ would be to minimise the relative entropy (De�nition 1)D[P (u(�)jS) kQ(u(�))℄ = D[P (ujS) kQ(u)℄: (11)20The 
onditioning on S in Q(�) is omitted for notational simpli
ity.



The equality is intuitively 
lear, sin
e Q(u(�)); P (u(�)jS) and P (u(�)) are the same 
ondi-tional on u. Formally, it follows from the fa
t that if dP (u(�)jS) � dQ(u(�)), thendP (u(�)jS) = P (ujS)Q(u) dQ(u(�));and otherwise D[P (ujS) kQ(u)℄ =1 (re
all our notation from Se
tion A.1). At the mini-mum point (unique w.r.t. f.d.d.'s of Q) Q and P (�jS) have the same mean and 
ovarian
efun
tion. This is equivalent to moment mat
hing and requires us to �nd mean and 
o-varian
e matrix of P (ujS). Unfortunately, this is intra
table in general for large datasetsand non-Gaussian noise. Any other Gaussian approximation Q(u) leads to a GP posteriorapproximation Q(u(�)), and the intra
table (11) 
an nevertheless be valuable as guideline.Here, we are primarily interested in approximate inferen
e methods for GP models whi
hemploy GP approximations (10) to posterior pro
esses viaQ(u) = N(u jK�;A): (12)Here, �; A 
an depend on the data S, the 
ovarian
e fun
tionK (often via the kernel matrixK ) and on other hyperparameters. This 
lass 
ontains a variety of methods proposed inthe literature. Virtually all of these have a redu
ed O(n) parameterisation, sin
e A has therestri
ted form A = �K�1 + I �;IDII;���1 (13)with D 2 Rd;d diagonal with positive entries and I � f1; : : : ; ng; jIj = d. For the methodsmentioned below in this se
tion, d = n and I �;I = I, but for sparse GP approximations (e.g.,[13, 78, 31℄) we have d � n. In the latter 
ase, �nI = 0 and we use � 2 Rd for simpli
ity,repla
ing � in (12) by I �;I� .From (10), the (approximate) predi
tive posterior distribution of u� = u(x�) at a test pointx� is determined easily as Q(u�jx�; S) = N(u�j�(x�); �2(x�)), where�(x�) = kI(x�)T �;�2(x�) = K(x�;x�)� kI(x�)TD1=2B�1D1=2kI(x�);B = I +D1=2KID1=2: (14)Here, kI(x�) = (K(xi;x�))i2I . More generally, the GP posterior approximation has meanfun
tion �(x) and 
ovarian
e fun
tionK(x;x0)� kI(x)TD1=2B�1D1=2kI(x0):The predi
tive distribution P (y�jx�; S) is obtained by averaging P (y�ju�) overN(u�j�(x�); �2(x�)). If this expe
tation is not analyti
ally tra
table, it 
an be done byGaussian quadrature (e.g., [54℄, Se
t. 4.5) if P (y�ju�) is smooth and does not grow fasterthan polynomial.A simple and numeri
ally stable way to determine the predi
tive varian
es is to 
ompute theCholesky de
ompositionB = LLT after whi
h ea
h varian
e requires one ba
k-substitutionwith L. It is important to stress that while inferen
e approximation in GP models oftenboils down to simple linear algebra, it is 
ru
ial in pra
ti
e to 
hoose representations and



pro
edures whi
h are numeri
ally stable. In the presen
e of positive de�nite matri
es, te
h-niques based on the Cholesky fa
torisation are known to be most stable.21 Furthermore, inour representation B is well-
onditioned sin
e all its eigenvalues are � 1.We will refer to � as predi
tion ve
tor. More generally, as mentioned in Se
tion 2, we 
anuse derivative information or other bounded linear fun
tionals of the latent pro
ess u(x) inthe likelihood and/or for the variables to be predi
ted, using the fa
t that the 
orresponding�nite set of s
alar variables is multivariate Gaussian with prior 
ovarian
e matrix derivedfrom the 
ovarian
e fun
tion K (as dis
ussed in more detail in Se
tion 5).A generalisation to the multi-pro
ess models of Se
tion 3 is also straightforward in prin
iple.Here, u has dimension C n. Again A is restri
ted to the form (13), although D is merelyblo
k-diagonal with n (C � C) blo
ks on the diagonal. Moreover, if the pro
esses are apriori independent, both K and K�1 
onsist of C (n � n) blo
ks on the diagonal. Thegeneral formulae for predi
tion (14) have to be modi�ed for eÆ
ien
y. The details are moreinvolved and may depend on the 
on
rete approximation method, C-pro
ess models are notdis
ussed in further detail here.4.1 Some ExamplesA simple and eÆ
ient way of obtaining a Gaussian approximation Q(ujS) is via Lapla
e'smethod (also 
alled saddle-point approximation), as proposed in [86℄ for binary 
lassi�
ationwith logit noise (8). To this end, we have to �nd the posterior mode û whi
h 
an be doneby a variant of Newton-Raphson (or Fisher s
oring, see [37℄). Ea
h iteration 
onsists of aweighted regression problem, i.e. requires the solution of an n � n positive de�nite linearsystem. This 
an be done approximately in O(n2) using a 
onjugate gradients solver. Atthe mode, we have� = Y �(�Y û); D = (diag �(�Y û))(diag �(Y û)); (15)where � is the logisti
 fun
tion (8) and Y = diagy. All n diagonal elements of D arepositive. Re
all that the Lapla
e approximation repla
es the log posterior by a quadrati
�tted to the lo
al 
urvature at the mode û. For the logit noise the log posterior is stri
tly
on
ave and dominated by the Gaussian prior far out, so in general a Gaussian approxima-tion should be fairly a

urate. On the other hand, the true posterior is signi�
antly skewed,meaning that the mode 
an be quite distant from the mean (whi
h would be optimal) andthe 
ovarian
e approximation via lo
al 
urvature around the mode 
an be poor.The expe
tation propagation (EP) algorithm [39℄ for GP models 
an signi�
antly out-perform the Lapla
e GP approximation in terms of predi
tion a

ura
y, but is also more
ostly.22 It is also somewhat harder to ensure numeri
al stability. On the other hand, EPis more general and 
an for example deal with dis
ontinuous or non-di�erentiable log likeli-hoods. In fa
t, the spe
ial 
ase of EP for Gaussian �elds has been given earlier by Opper andWinther [48℄ under the name ADATAP, and EP 
an be seen as an iterative generalizationof older Bayesian online learning te
hniques.21Matrix inversion is often re
ommended in the GP ma
hine learning literature. It is well known innumeri
al mathemati
s that inversion should be avoided whenever possible for reasons of stability, and inthe 
ontext of our GP framework using a Cholesky de
omposition is even more eÆ
ient.22Partly due to its more 
omplex iterative stru
ture, but also be
ause its elementary steps are smallerthan for the Lapla
e te
hnique and 
annot be ve
torised as eÆ
iently.



A range of di�erent variational approximations have been suggested in [16, 65, 24℄. Notethat for the variational method where Q(ujS) is 
hosen to minimise D[� kP (ujS)℄, it is easyto see that the best Gaussian variational distribution has a 
ovarian
e matrix of the form(13) (e.g., [64℄, Se
t. 5.2.1).Sparse approximations to GP inferen
e are developed in [12, 13, 31℄. While the originalappli
ation was online learning, they are understood easier as \sparsi�
ations" of EP (orADATAP). While the approximations mentioned so far have training time s
aling of O(n3),sparse inferen
e approximations redu
e this s
aling to O(nd2) with adjustable d � n. Formany problems, sparse approximations attain suÆ
ient a

ura
y in essentially linear timein n whi
h allows the appli
ation in data-ri
h settings. The idea is to 
on
entrate on asubset I � f1; : : : ; ng; jIj = d of the training data whi
h we 
all the a
tive set, then toapproximate the true likelihood P (yju) of the model by a likelihood approximation Q(uI)whi
h is a fun
tion of the 
omponents uI only. With this repla
ement, inferen
e be
omeslinear in n (as 
an be seen from the formulae in this se
tion whi
h allow the use of an a
tiveset). The 
hallenge is how to 
hoose I and the form for Q(uI) in a way to best approximatethe moments of the true posterior P (ujy), while staying within the resour
e limitations ofO(nd2) time and O(nd) memory.23 Also, if P (y ju) is not Gaussian, the sparse te
hniquehas to be embedded in an inferen
e approximation of the kind dis
ussed in this se
tion.Details on some sparse s
hemes 
an be found in [78, 13, 31℄, some generi
 s
hemes based onthe EP algorithm and information-theoreti
 sele
tion heuristi
s for I are des
ribed in [63℄.Free Matlab software has been released by Lehel Csat�o.244.2 Model Sele
tionSo far we have only been 
on
erned with �rst-level inferen
e 
onditioned on �xed hyper-parameters. A useful general method has to provide some means to sele
t good values forthese parameters or to marginalise over them (see Se
tion 3). The latter is the 
orre
t wayto pro
eed in a stri
t Bayesian sense and 
an be approximated by MCMC te
hniques, butoften model sele
tion is 
omputationally more attra
tive. A frequently used general empiri-
al Bayesian method for marginalising over nuisan
e hyperparameters is marginal likelihoodmaximisation or maximum likelihood II (also 
alled eviden
e maximisation). This te
hnique
an be applied to the generi
 GP approximation des
ribed in this se
tion, leading to apowerful generi
 way of adjusting hyperparameters via nonlinear optimization whi
h s
aleslinearly in the number of parameters. It is important to point out that su
h automati
model sele
tion te
hniques are a strong advantage of Bayesian GP methods over other ker-nel ma
hines su
h as SVMs (see Se
tion 7) for whi
h we do not know of sele
tion strategiesof similar power and generality.If we denote the hyperparameters by �, the marginal likelihood is P (Sj�) = P (yj�), wherethe latent \primary" parameters u have been integrated out. If S is suÆ
iently large and� of rather small �xed dimension, the hyperposterior P (�jS) frequently is highly 
on
en-trated around a mode �̂. Instead of using P (�jS) to marginalise over �, we repla
e theposterior by Æ�̂(�), thus simply plug in �̂ for �. This is an example of a maximum a pos-23Choosing I 
ompletely at random is possible, but performs poorly in situations su
h as 
lassi�
ationwhere the in
uen
e of patterns on the posterior 
an be very di�erent.24See http://www.kyb.tuebingen.mpg.de/bs/people/
satol/ogp/index.html.



teriori (MAP) approximation.25 Finding �̂ basi
ally amounts to maximising the marginallikelihood, be
ause the hyperprior P (�) is of a simple form. Conditions under whi
h thehyperposterior is suÆ
iently peaked are hard to 
ome by in general and will usually beoverrestri
tive for realisti
 models.26 Thus, while marginal likelihood maximisation doesnot solve the model sele
tion problem in general, it has been shown to work well in manyempiri
al studies featuring very di�erent models, and its des
ription as \plug-in" approx-imation to Bayesian marginalisation may lead to su

essful extensions in 
ases where thesimple method fails.Some readers might worry at this point that we propose to sele
t � by maximising thelikelihood P (yj�), and maximum likelihood te
hniques are prone to over�tting. The keydi�eren
e is that in the marginal likelihood, the primary \parameter" u(�) has been in-tegrated out. While 
hoosing primary parameters so as to maximise the likelihood oftenleads to over
ompli
ated �ts that generalise badly, this is not true in general for marginallikelihood maximisation. A simple argument (yet not a proof) is that a value �(1) leading tovery 
ompli
ated u(�) needs to assign mass P (u(�)j�) to many more fun
tions than a value�(2) leading to simple u(�) (e.g. linear or low-order polynomial), so even if the likelihoodof y is mu
h higher for some of the 
ompli
ated u(�), in the pro
ess of marginalisationthe 
ompli
ated fun
tions are downweighted stronger in the integral for P (y j�(1)) than arethe simpler fun
tions in the integral for P (y j�(2)). This \O

am razor" e�e
t has beenanalysed by Ma
Kay [33℄. However it is obviously possible to 
reate situations in whi
hmarginal likelihood maximisation still leads to over�tting.27 As a general rule of thumb, thedimensionality of the hyperparameters � should not s
ale with n,28 and the O

am razorargument just given should intuitively apply to the situation (on
e more, we do not knowof a de�nite test separating admissable from non-admissable 
ases in general).We will fo
us on marginal likelihood maximisation as general model sele
tion te
hnique.The log marginal likelihood logP (yj�) is as diÆ
ult to 
ompute as the posterior P (ujS;�)and has to be approximated in general.29 It is easy to see that the variational lower boundlogP (yj�) � EQ [logP (y ju;�) + logP (uj�)℄ + H[Q(u)℄= EQ [logP (y ju;�)℄�D[Q(u) kP (uj�)℄: (16)holds for any distribution Q(u) (re
all relative and di�erential entropy from Se
tion A.2).The sla
k in the bound is the relative entropy D[Q(u) kP (ujS;�)℄. Note that the posteriorapproximation Q(u) depends on � as well, but it is not feasible in general to obtain its exa
tgradient w.r.t. �. Variational EM, an important spe
ial 
ase of a lower bound maximisationalgorithm is iterative, in turn freezing one of Q; � and maximising the lower bound w.r.t.the other (here, Q 
an be 
hosen from a family of variational distributions). Alternatively,25Multimodality in the hyperposterior 
an arise from non-identi�ability of the model though symmetries in�, i.e. there exist di�erent �(1); �(2) s.t. P (y jfxig;�(1)) � P (y jfxig;�(2)) for datasets of interest. In this
ase, we 
an just pi
k any of the dominant modes �̂ in the hyperposterior to arrive at the same predi
tionsas if we had 
hosen a peak train featuring all equivalent modes.26Sin
e we integrate out a variable u of the same dimension of the training sample and the latter isindependent only 
onditional on the pro
ess u(�) (whi
h is not in general a �nite-dimensional variable), we
annot use the 
entral limit theorem dire
tly to assert Gaussianity of P (y j�) as n gets large.27For example, one 
ould mali
iously set � = u(�).28Although in spe
ial situations the te
hnique may still be appli
able, see [78℄ or Se
tion 3.3.29It is analyti
ally tra
table for a Gaussian likelihood, for example in the 
ase of GP regression withGaussian noise dis
ussed above it is logN(y j0;K + �2I).



Q 
an be 
hosen in a di�erent way as approximation of the posterior P (ujS) (for exampleusing the EP algorithm or sparse approximations). The deviation from the variational 
hoi
eof Q (i.e. the one whi
h maximises the lower bound over a family of 
andidates) 
an be
riti
ised on the ground that other 
hoi
es of Q 
an lead to de
reases in the lower bound,so the overall algorithm does not in
rease its 
riterion stri
tly monotoni
ally. On the otherhand, Q 
hosen in a di�erent way may lie outside families over whi
h the lower bound 
an bemaximised eÆ
iently, thus may even result in a larger value than the variational maximiserwithin the family.30 Furthermore, the lower bound 
riterion 
an be motivated by the fa
tthat its gradient EQ(u) [r� logP (y ;uj�)℄(ignoring the dependen
e of Q on �) approximates the true gradientr� logP (yj�) = EP (ujS) [r� logP (y ;uj�)℄at every point �.We 
lose by mentioning an interesting point in whi
h lower bound maximisation for GPmodels might deviate from the usual pra
ti
e with parametri
 ar
hite
tures. For the latter,it is 
ustomary to maximise the lower bound w.r.t. � while keeping Q 
ompletely �xed(the gradient of Q w.r.t. � is ignored). This makes sense as long as Q is independentof the prior distribution in the model, but in the 
ontext of approximate GP inferen
emethods, the dependen
e of Q(u) on the GP prior (thus on �) is quite expli
it (for example,the 
ovarian
e of Q is (K�1 + D)�1 whi
h depends strongly on the kernel matrix K ,sin
e D is merely a diagonal matrix). We argue that instead of keeping all of Q �xedduring the maximisation for �, we should merely ignore the dependen
e of the essentialparameters �; D on �.31 This typi
ally leads to a more involved gradient 
omputationwhi
h is potentially 
loser to the true gradient. Alternatively, if this 
omputation is beyondresour
e limits, further indire
t dependen
ies on � may be ignored. We remark that theoptimisation problem is slightly non-standard due to the la
k of stri
t monotoni
ity, andgiven optimisers have to be modi�ed to take this into a

ount. Details 
an be found in [63℄,Se
t. 4.5.3.5 Reprodu
ing Kernel Hilbert Spa
esThe theory of reprodu
ing kernel Hilbert spa
es (RKHS) 
an be used to 
hara
terise thespa
e of random variables obtained as bounded linear fun
tionals of a GP on whi
h anymethod of predi
tion from �nite information must be based. Apart from that, RKHS providea uni�
ation of ideas from a wide area of mathemati
s, most of whi
h will not be mentionedhere. The interested reader may 
onsult [3℄. Our exposition is taken from [80℄. This se
tion
an be skipped by readers interested primarily in pra
ti
al appli
ations.A reprodu
ing kernel Hilbert spa
e (RKHS) H is a Hilbert spa
e of fun
tions X ! R forwhi
h all evaluation fun
tionals Æx are bounded. This implies that there exists a kernel30For example, even though the bound maximiser over all Gaussians has a 
ovarian
e matrix of the form(13), �nding it is prohibitively 
ostly in pra
ti
e and proposed variational s
hemes [16, 65, 24℄ use restri
tedsubfamilies.31There is no simple analyti
 formula for this dependen
e, so we 
annot do better than ignoring it.



K(x;x0) s.t. K(�;x) 2 H for all x 2 X andf(x) = Æxf = (K(�;x); f) (17)for all f 2 H, where (�; �) is the inner produ
t inH. To be spe
i�
, a Hilbert spa
e is a ve
torspa
e with an inner produ
t whi
h is 
omplete, in the sense that ea
h Cau
hy sequen
e
onverges to an element of the spa
e. For example, a Hilbert spa
e H 
an be generatedfrom an inner produ
t spa
e of fun
tions X ! R by adjoining the limits of all Cau
hysequen
es to H. Note that this is a rather abstra
t operation and the adjoined obje
ts neednot be fun
tions in the usual sense. For example, L2(�) is obtained by 
ompleting the ve
torspa
e of fun
tions for whi
h Z f(x)2 d�(x) <1 (18)and 
an be shown to 
ontain \fun
tions" whi
h are not de�ned pointwise.32 For an RKHSH su
h anomalies 
annot o

ur, sin
e the fun
tionals Æx are bounded:33jf(x)j = jÆxf j � Cxkfk:By the Riesz representation theorem (e.g., [20℄) there exists a unique representer Kx 2 Hsu
h that (17) holds with K(�;x) = Kx . It is easy to see that the kernel K is positivesemide�nite. K is 
alled reprodu
ing kernel (RK) of H, note that�Kx ;Kx0� = �K(�;x);K(�;x0)� = K(x;x0):It is important to note that in a RKHS, (norm) 
onvergen
e implies pointwise 
onvergen
eto a pointwise de�ned fun
tion, sin
ejfm(x)� f(x)j = j(Kx ; fm � f)j � Cxkfm � fk:On the other hand, for any positive semide�nite K there exists a unique RKHS H with RKK. Namely, the set of �nite linear 
ombinations of K(�;xi); xi 2 X with0�Xi aiK(�;xi);Xj bjK(�;x0j)1A =Xi;j aibjK(xi;x0j)is an inner produ
t spa
e whi
h is extended to a Hilbert spa
e H by adjoining all limitsof Cau
hy sequen
es. Sin
e norm 
onvergen
e implies pointwise 
onvergen
e in the innerprodu
t spa
e, all adjoined limits are pointwise de�ned fun
tions and H is an RKHS withRK K. To 
on
lude, a RKHS has properties whi
h make it mu
h \ni
er" to work withthan a general Hilbert spa
e. All fun
tions are pointwise de�ned, and the representer of theevaluation fun
tional Æx is expli
itly given by K(�;x).32The existen
e of su
h fun
tions in L2(�) means that expressions su
h as (18) have to be interpreted withsome 
are. Ea
h element f 2 L2(�) 
an be de�ned as the set of all equivalent Cau
hy sequen
es whi
h de�nef (two Cau
hy sequen
es are equivalent if the sequen
e obtained by interleaving them is Cau
hy as well).An expression E(f; g) should then be understood as the limit limn!1E(fn; gn) where fn ! f; gn ! g,et
. The existen
e of the limit has to be established independently. In the sequel, we will always use this
onvention.33Bounded fun
tionals are also 
alled 
ontinuous.



5.1 RKHS by Mer
er Eigende
omposition. Karhunen-Loeve ExpansionWe have already mentioned that L2(�) is not a RKHS in general, but for many kernels K it
ontains a (unique) RKHS as subspa
e. Re
all that L2(�) 
ontains all fun
tions f : X ! Rfor whi
h (18) holds. The standard inner produ
t is(f; g) = Z f(x)g(x) d�(x):Often, � is taken as indi
ator fun
tion of a 
ompa
t set su
h as the unit hyper
ube. A posi-tive semide�niteK(x;x0) 
an be regarded as kernel (or representer) of a positive semide�nitelinear operator K in the sense (Kf)(x) = (K(�;x); f):� is an eigenfun
tion of K with eigenvalue � 6= 0 if(K�)(x) = (K(�;x); �) = ��(x):For K, all eigenvalues are real and non-negative. Furthermore, supposeK is 
ontinuous andZ K(x;x0)2 d�(x)d�(x0) <1:Then, by the Mer
er-Hilbert-S
hmidt theorems there exists a 
ountable orthonormal se-quen
e of 
ontinuous eigenfun
tions �� 2 L2(�) with eigenvalues �1 � �2 � � � � � 0, and K
an be expanded in terms of these:K(x;x0) =X��1 ����(x)��(x0); (19)and P��1 �2� < 1, thus �� ! 0(� ! 1). This 
an be seen as generalisation of theeigende
omposition of a positive semide�nite Hermitian matrix. Indeed, the reprodu
ingproperty of positive semide�nite kernels was re
ognised and used by E. H. Moore [40℄ todevelop the notion of general \positive Hermitian matri
es". In this 
ase, we 
an 
hara
terisethe RKHS embedded in L2(�) expli
itly. For f 2 L2(�), de�ne the Fourier 
oeÆ
ientsf� = (f; ��):Consider the subspa
e HK of all f 2 L2(�) with P��1 ��1� f2� <1. Then, HK is a Hilbertspa
e with inner produ
t (f; g)K =X��1 f�g��� ;moreover the Fourier seriesP��1 f��� 
onverges pointwise to f .34 Sin
e f����(x)g are theFourier 
oeÆ
ients of K(�;x) (using Equation 19), we have(f;K(�;x))K =X��1 f���(x) = f(x);34In parti
ular, f is de�ned pointwise.



thus K is the RK of HK . It is important to distinguish 
learly between the inner produ
ts(�; �) in L2(�) and (�; �)K in HK (see [89℄ for more details about the relationship of theseinner produ
ts). While k�k measures \expe
ted squared distan
e" from 0 (w.r.t. d�), k�kK isa measure of the \roughness" of a fun
tion. For example, the eigenfun
tions have k��k = 1,but k��kK = ��1=2� thus be
oming in
reasingly rough.35The spe
tral de
omposition of K leads to an important representation of a zero-mean GPu(x) with 
ovarian
e fun
tion K: the Karhunen-Loeve expansion. Namely, the sequen
euk(x) = kX�=1 u���(x); (20)where u� are independent N(0; ��) variables, 
onverges to u(x) in quadrati
 mean (astronger statement under additional 
onditions 
an be found in [2℄). Moreover,u� = Z u(x)��(x) d�(x)whi
h is well de�ned in quadrati
 mean. We have already used this expansion in Se
tion 2to introdu
e the \weight spa
e view". Note that sin
e the varian
es �� de
ay to 0, the GP
an be approximated by �nite partial sums of the expansion (see [89℄).5.2 Duality between RKHS and Gaussian Pro
essIf u(x) is a zero-mean GP with 
ovarian
e fun
tionK, what is the exa
t relationship betweenu(x) and the RKHS with RK K? One might think that u(x) 
an be seen as distributionover HK , but this is wrong (as pointed out in [80℄, Se
t. 1.1). In fa
t, for any version ofu(x) sample fun
tions from the pro
ess are not in HK with probability 1! This 
an be seenby noting that for the partial sums (20) we haveE �kukk2K� = E" kX�=1 u2��� # = k !1 (k !1):Roughly speaking, HK 
ontains \smooth", non-errati
 fun
tions from L2(�), 
hara
teristi
swe 
annot expe
t from sample paths of a random pro
ess. A better intuition about HK isthat it will turn out to 
ontain expe
ted values of u(x) 
onditioned on a �nite amount ofinformation, thus the posterior mean fun
tions we are interested in.The following duality between HK and a Hilbert spa
e based on u(x) was noti
ed in [27℄and is important in the 
ontext of theoreti
al analyses. Namely, 
onstru
t a Hilbert spa
eHGP in the same way as above starting from positive semide�nite K, but repla
e K(�;xi)by u(xi) and use the inner produ
t (A;B)GP = E[AB℄;thus 0�Xi aiu(xi);Xj bju(x0j)1AGP =Xi;j aibjK(xi;x0j):35In the same sense as high-frequen
y 
omponents in the usual Fourier transform.



HGP is a spa
e of random variables, not fun
tions, but it is isometri
ally isomorphi
 to HKunder the mapping u(xi) 7! K(�;xi), with(u(x); u(x0))GP = E[u(x)u(x0)℄ = K(x;x0) = (K(�;x);K(�;x0))K :For most purposes, we 
an regard HGP as RKHS with RK K. The spa
e HGP is importantin the 
ontext of inferen
e on GP models we are interested in, be
ause it 
ontains exa
tlythe random variables we 
ondition on or would like to predi
t in situations where only a�nite amount of information is available (from observations whi
h are linear fun
tionals ofthe pro
ess).If L is a bounded linear fun
tional on HK , it has a representer � 2 HK with �(x) = LKx .The isometry maps � to a random variable Z 2 HGP whi
h we formally denote by Lu(�).Note that E [(Lu(�))u(x)℄ = (�;Kx)K = �(x) = LKx :More generally, if L(1); L(2) are fun
tionals with representers �(1); �(2) s.t. x 7! L(j)Kx arein HK , thenE h(L(1)u(�))(L(2)u(�))i = (�(1); �(2))K = L(1)x (K(�;x); �(2))K = L(1)x L(2)y K(x;y):Again, it is 
lear that Lu(�) is (in general) very di�erent from the pro
ess obtained byapplying L to sample paths of u(x). In fa
t, sin
e the latter are almost surely not in HK ,L does not even apply to them in general. The 
orre
t interpretation is in quadrati
 mean,using the isometry betweenHGP andHK . As an example, suppose that X = Rg and L = Dxis a di�erential fun
tional evaluated at x. Then, we retrieve the observations in Se
tion 2about derivatives of a GP.6 Penalised Likelihood. Spline SmoothingThe GP models we are interested in here have their origin in spline smoothing te
hniquesand penalised likelihood estimation, and for low-dimensional input spa
es spline kernels arewidely used due to the favourable approximation properties of splines and 
omputationaladvantages. A 
omprehensive a

ount of spline smoothing and relations to Bayesian esti-mation in GP models is [80℄ whi
h our exposition is mainly based on. Spline smoothingis a spe
ial 
ase of penalised likelihood methods, giving another view on the reprodu
ingkernel via the Green's fun
tion of a penalisation (or regularisation) operator whi
h will beintrodu
ed below. This se
tion 
an be skipped by readers interested primarily in pra
ti
alappli
ations.In Se
tion 5 we have dis
ussed the duality between a Gaussian pro
ess and the RKHS ofits 
ovarian
e fun
tion. Apart from the Bayesian viewpoint using GP models, a di�erentand more dire
t approa
h to estimation in non-parametri
 models is the penalised likeli-hood approa
h, the oldest and most widely used in
arnations of whi
h are spline smoothingmethods. We will introdu
e the basi
 ideas for the one-dimensional model whi
h leads tothe general notion of regularisation operators, penalty fun
tionals and their 
onne
tions toRKHS. We omit all details, (important) 
omputational issues and multidimensional gener-alisations, see [80℄ for details. A more elementary a

ount is [18℄.



We will only sket
h the ideas, for rigorous details see [80, 27℄. Interpolation and smoothingby splines originates from the work of S
h�onberg [61℄. A natural spline s(x) of order m on[0; 1℄ is de�ned based on knots 0 < x1 < � � � < xn < 1. If �k denotes the set of polynomialsof order � k, then s(x) 2 �2m�1 on [xi; xi+1℄, s(x) 2 �m�1 on [0; x1℄ and on [xn; 1℄, ands 2 C2m�2 overall. Natural 
ubi
 splines are obtained for m = 2. De�ne the roughnesspenalty Jm(f) = Z 10 �f (m)(x)�2 dx:Jm(f) penalises large derivatives of order m by a large value, for example J2 is large forfun
tions of large 
urvature. Then, for some �xed fun
tion values the interpolant minimisingJm(f) over all f for whi
h the latter is de�ned is a spline of order m. More pre
isely,f 2 Wm[0; 1℄, a so-
alled Sobolev spa
e of all f 2 Cm�1[0; 1℄ s.t. f (m�1) is absolutely
ontinuous on [0; 1℄. If we 
onsider the related smoothing problem of minimising the penalisedempiri
al risk nXi=1(yi � f(xi))2 + �Jm(f); f 2 Wm[0; 1℄; (21)it is 
lear that the minimiser is again a natural spline s(x) of orderm (any other f 2 Wm[0; 1℄
an be repla
ed by the spline with the same values at the knots, this does not 
hange therisk term and 
annot in
rease Jm). Now, from Taylor's theorem:f(x) = m�1X�=0 x��! f (�)(0) + Z 10 Gm(x; t)f (m)(t) dtwith Gm(x; t) = (x� t)m�1+ =(m� 1)! (here, u+ = uIfu�0g). If f (�)(0) = 0; � = 0; : : : ;m� 1then (Gm(x; �);Dmf) = f(x), thus Gm(x; t) is the Green's fun
tion for the boundary valueproblem Dmf = g. These fun
tions f form a Hilbert spa
e with inner produ
t(f; g)K = Z 10 f (m)(t)g(m)(t) dtwhi
h is a RKHS with RK K(x; x0) = Z 10 Gm(x; t)Gm(x0; t) dt: (22)It is interesting to note that a zero-mean GP with 
ovarian
e fun
tionK 
an be obtained as(m� 1)-fold integrated Wiener pro
ess (introdu
ed in Se
tion 2.3). Let W (x) be a Wienerpro
ess on [0; 1℄ withW (0) = 0 a.s. and E[W (1)2℄ = 1 (its 
ovarian
e fun
tion is minfx; x0g).It is possible to de�ne a sto
hasti
 integral against a pro
ess with independent in
rements.36The pro
ess u(x) de�ned via the sto
hasti
 integralu(x) = Z Gm(x; t) dW (t)36See [19℄, Se
t. 9.4 for an easy derivation. It is important to note that the sto
hasti
 integral is not therandom variable arising from integrating over sample paths of the pro
ess, the latter integrals do not existin many 
ases in whi
h the sto
hasti
 integral 
an be 
onstru
ted.



is a zero-mean GP with 
ovarian
e fun
tion K. If W is 
hosen s.t. its sample paths are
ontinuous, u(x) is in Wm[0; 1℄ and u(�)(0) = 0 for � < m. Sin
e dGm=dx = Gm�1 andG1(x; t) = Ifx>tg, u(m�1) and W are m.s. equivalent. Note that u(x) 
an be written asu(x) = Z x0 dW (t) Z xt dx1 : : : Z xxm�2 dxm�1for m > 1.The boundary values 
an be satis�ed by taking the dire
t sum of the spa
e with �m�1. Thelatter is trivially an RKHS w.r.t. an inner produ
t of 
hoi
e: 
hoose an orthonormal basisand de�ne the kernel to be the sum of outer produ
ts of the basis fun
tions. The kernel forthe dire
t sum is the sum of K and the �nite-dimensional kernel. Note that k � kK is only aseminorm on the full spa
e be
ause kpkK = 0 for p 2 �m�1.We only sket
h the general 
ase, see [80, 53℄ for details. We make use of the following dualitybetween a RKHS and a regularisation (pseudodi�erential) operator P on L2(�). Let H bethe Hilbert spa
e of f s.t. Pf 2 L2(�). For P, 
onsider the operator37 P�P. If this has a nullspa
e (su
h as �m�1 in the example above), we restri
t H to the orthogonal 
omplement.Now, the operator is positive de�nite and has an inverse (its Green's fun
tion) whose kernelK is the RK of H.38 The inner produ
t is(f; g)K = (Pf;Pg)and the penalty fun
tional is simply the squared RKHS norm. If G(t;u) exists s.t.(G(t; �);Pf) = f(t) for all f 2 H, the RK is given byK(s; t) = (G(s; �); G(t; �)):On the other hand, we 
an start from an RKHS with RK K and derive the 
orrespondingregularisation operator P. This 
an give additional insight into the meaning of a 
ovarian
efun
tion (see [53, 70℄). In fa
t, if K is stationary and 
ontinuous, we 
an use Bo
hner's the-orem (2). Namely, if f(!) is the spe
tral density of K, we 
an take f(!)�1=2 as spe
trum ofP.39 The one-dimensional example above is readily generalised to splines on the unit sphereor to thin plate splines in X = Rg , but the details get quite involved (see [80℄, Chap. 2).Kimeldorf and Wahba [27℄ generalised this setup to a general variational problem in anRKHS, allowing for general bounded linear fun
tionals Lif instead of f(xi) in (21). Theminimiser is determined by n+M 
oeÆ
ients, whereM is the dimension of the null spa
e ofthe di�erential operator P asso
iated with K (M = m+ 1 in the spline 
ase above). These
an be 
omputed by dire
t formulae given in [80℄, Se
t. 1.3. In the more general penalisedlikelihood approa
h [80, 18℄, n fun
tion values or linear fun
tionals of f are used as latentvariables in a likelihood (see Se
tion 3), to obtain for example non-parametri
 extensionsof GLMs [18℄. The penalised likelihood is obtained by adding the penalty fun
tional to thelikelihood, and just as above the minimiser is determined by n+M 
oeÆ
ients only (thisrepresenter theorem 
an be proved using the same argument as in the spline 
ase above).In general, iterative methods are required to �nd values for these 
oeÆ
ients.37P� is the adjoint of P, i.e. (f;Pg) = (P�f; g).38This 
onstru
tion via Green's fun
tions is di�erent from the one above involving Gm(x; t). Withoutgoing into details, it may help to 
onsider the analogue of the �nite-dimensional 
ase (ve
tors and matri
esinstead of fun
tions and operators): K = (P TP )�1 = GGT where G = P�1.39P is not uniquely de�ned, but only P�P (whi
h has spe
trum f(!)�1).



6.1 Bayesian View on Spline SmoothingWe 
lose this se
tion by reviewing the equivalen
e between spline smoothing and Bayesianestimation for a GP model pointed out by Kimeldorf and Wahba [27℄. Given a positivesemide�nite kernel K 
orresponding to a pseudodi�erential operator with M -dimensionalnull spa
e, we 
an 
onstru
t an RKHS H as follows. If H0 is the null spa
e represented byan orthonormal basis p� and H1 the RKHS for K, let H be their dire
t sum. Consider themodel F (x) = MX�=1 ��p�(x) + b1=2u(x); yi = F (xi) + "i;where u(x) is a zero-mean GP with 
ovarian
e fun
tion K and "i are independent N(0; �2).Furthermore, � � N(0; aI) a priori. On the other hand, let f� be the minimiser in H ofthe regularised risk fun
tional1n nXi=1(yi � f(xi))2 + �kP1fk2H1 ;where P1 is the orthogonal proje
tion onto H1. Kimeldorf and Wahba [27℄ show that f� liesin the span of fp� j � = 1; : : : ;Mg [ fK(�;xi) j i = 1; : : : ; ng and give a numeri
al pro
edurefor 
omputing the 
oeÆ
ients. If we de�ne F̂a(x) = E[F (x) j y1; : : : ; yn℄, then they showthat lima!1 F̂a(x) = f�(x); � = �2n bfor every �xed x. The proof (see [80℄, Chap. 1) is a straightforward appli
ation of the dualitybetween the RKHS H1 and the Hilbert spa
e based on u(x), as des
ribed in Se
tion 5. Thepro
edure of dealing with H0 and the improper prior on � is awkward but is not ne
essaryif the RKHS H1 indu
ed by K is ri
h enough.40Finally, we note that a parametri
 extension of a non-parametri
 GP model 
an be sensibleeven if H1 is ri
h enough in prin
iple, leading to semiparametri
 models (or partial splines).For details about su
h models, we refer to [18℄, Chap. 4 and [80℄, Chap. 6.7 Maximum Entropy Dis
rimination. Large Margin Classi-�ersWe regard GPs as building blo
ks for statisti
al models in mu
h the same way as a para-metri
 family of distributions (see Se
tion 3 for examples). Statisti
al methods to estimateunknown parameters in su
h models follow di�erent paradigms, and in ma
hine learningthe following have been among the most popular.1. Probabilisti
 Bayesian paradigm:This has been introdu
ed in Se
tion 3. As noted in Se
tion 4, the (intra
table) posteriorpro
ess is typi
ally approximated by a GP itself.40This is not the 
ase for spline kernels, for whi
h f 2 H1 is 
onstrained by the boundary 
onditions.



2. Large margin (dis
riminative) paradigm:Here, a \posterior" pro
ess is obtained by asso
iating margin 
onstraints with observeddata, then sear
hing for a pro
ess whi
h ful�ls these (soft) 
onstraints and at thesame time is 
lose to the prior GP, in a sense made 
on
rete in this se
tion. Sin
e the
onstraints are linear in the latent outputs, the \posterior" pro
ess is always a GPwith the same 
ovarian
e as the prior.The relationship between Bayesian methods and penalised likelihood or generalised splinesmoothing methods has been dis
ussed in Se
tion 6. Large margin methods are spe
ial 
asesof spline smoothing models with a parti
ular loss fun
tion whi
h does not 
orrespond to aprobabilisti
 noise model (e.g., [81, 65, 73℄). Several attempts have been made to expresslarge margin dis
rimination methods as approximations to Bayesian inferen
e (e.g., [73, 65,64℄), but the paradigm separation suggested in [25℄ seems somewhat more 
onvin
ing.The 
onne
tion between these two paradigms has been formulated in [25℄, this se
tionis based on their exposition. The large margin paradigm has been made popular by theempiri
al su

ess of the support ve
tor ma
hine (SVM) (see [59, 8℄ for ba
kground material).In the Bayesian GP setting (see Se
tion 3), the likelihood P (y ju) of the observed data y
an be seen to impose \soft 
onstraints" on the predi
tive distribution, in the sense thatfun
tions of signi�
ant probability under the posterior must not violate many of themstrongly. In the large margin paradigm whose probabilisti
 view has been 
alled minimumrelative entropy dis
rimination (MRED) [25℄, su
h 
onstraints are enfor
ed more expli
itly.41We introdu
e a set of latent margin variables 
 = (
i)i 2 Rn , one for ea
h datapoint. Alongwith the GP prior P (u(�)) on the latent fun
tion, we 
hoose a prior P (
) over 
 . Themargin prior en
ourages large margins 
i, as is dis
ussed in detail below. The minimumrelative entropy distribution dQ(u(�);
) is de�ned as minimiser of D[Q kP ℄, subje
t to thesoft margin 
onstraints E(u(�);
 )�Q [yiu(xi)� 
i℄ � 0; i = 1; : : : ; n: (23)Just as in the 
ase of a likelihood fun
tion, these 
onstraints depend on the values u =(u(xi))i of the random pro
ess u(�) only. It is well known in information theory (e.g., [22℄,Se
t. 3.1) that the solution to this 
onstrained problem is given bydQ(u(�);
 ) = Z(�)�1 exp nXi=1 �i (yiui � 
i)! dP (u(�);
 ); (24)where Z(�) = E(u(�);
)�P "exp nXi=1 �i (yiui � 
i)!# :The value for the Lagrange multipliers � is obtained by minimising the 
onvex fun
tionlogZ(�) (sometimes 
alled the dual 
riterion) under the 
onstraints � � 0. Sin
e the righthand side of (24) fa
torises between u(�) and 
 and the same holds for the prior P , we seethat Q must fa
torise in the same way. Furthermore, it is immediate from (24) that Q(u(�))is again a Gaussian pro
ess with the same 
ovarian
e kernel K as P (u(�)) and with mean41For notational simpli
ity, we do not use a bias term b here. The modi�
ations to do so are straightforward.In the original SVM formulation, b 
an be seen to have a uniform (improper) prior.



fun
tion �(x�) = k(x�)TY �, where Y = diag(yi)i. Due to the fa
torised form, we alsohave Z(�) = Zu(�)(�)Z
 (�) andZu(�)(�) = Eu�P he�TY ui = e 12�TY KY � :The form of Z
 depends on the 
hoi
e of the prior P (
) on the margin variables.Jaakkola et. al. [25℄ give some examples of su
h priors whi
h en
ourage large margins.For example, if P (
) = Qi P (
i), then P (
i) should drop qui
kly for 
i < 1 in order topenalise small and espe
ially negative margins (empiri
al errors). In order for (23) to bea \soft 
onstraint" only w.r.t. margin violations and also to mimi
 the SVM situation, wehave to use P (
i) = 0 for 
i > 1.42 If P (
i) / e�
(1�
i)If
i�1g, thenZ
(�) / nYi=1 e��i1� �i=
 ;and the 
omplete dual 
riterion islogZ(�) = � nXi=1 (�i + log(1� �i=
)) + 12�TY KY �; � � 0: (25)Ex
ept for the potential term log(1��i=
), this is identi
al to the SVM dual obje
tive (seebelow).43 The so-
alled hard margin SVM for whi
h margin 
onstraints are enfor
ed withoutallowing for violations, is obtained for 
!1. It 
onverges only if the training data is indeedseparable and is prone to over-
ompli
ated solutions. The e�e
t of the potential term on thesolution is limited (see [25℄). It keeps �i from saturating to 
 exa
tly (whi
h happens in SVMfor mis
lassi�ed patterns). The dual 
riterion 
an be optimised using eÆ
ient algorithmssu
h as SMO [52℄, although the nonlinear potential term introdu
es minor 
ompli
ations.44Just like in SVM, sparsity in � is en
ouraged and 
an be observed in pra
ti
e.To 
on
lude, MRED gives a 
omplete probabilisti
 interpretation of the SVM, or at leastof a 
lose approximation thereof. Note that SVM 
lassi�
ation 
annot be seen as MAPapproximation to Bayesian inferen
e for a probabilisti
 model, be
ause its loss fun
tion doesnot 
orrespond to a proper negative log likelihood [65, 47, 73℄. Interestingly, the MRED viewpoints out limitations of this framework as opposed to a Bayesian treatment of a Gaussianpro
ess model with a proper likelihood. Re
all from above that the margin 
onstraints arelinear in the latent outputs u, leading to the fa
t that the MRED \posterior" pro
essQ(u(�)) has the same 
ovarian
e kernel K as the prior. While the 
onstraints enfor
e thepredi
tive mean to move from 0 a priori to �(x), the \predi
tive varian
es" are simply theprior ones, independent of the data. This suggests that if predi
tive varian
es (or error bars)are to be estimated besides simply performing a dis
rimination, then SVMs or other largemargin dis
riminative methods may be less appropriate than probabilisti
 GP models. Formore details on this argument, see [63℄, Se
t. 4.7.2.More important is the la
k of pra
ti
al methods for model sele
tion with SVM. For BayesianGP methods, a general model sele
tion strategy is detailed in Se
tion 4. Alternatively,42As in the SVM setup, the 
hoi
e of 1 as margin width is arbitrary, be
ause the distan
e 
an be re-s
aledin terms of the prior varian
e.43The potential term a
ts like a logarithmi
 barrier to enfor
e the 
onstraints �i < 
 (e.g., [7℄).44SMO makes use of the fa
t that the SVM 
riterion is quadrati
 with linear 
onstraints.



hyperparameters 
an be marginalised over approximately using MCMC te
hniques [43℄. In
ontrast, model sele
tion for SVM is typi
ally done using variants of 
ross validation, whi
hseverely limits the number of free parameters that 
an be adapted.While it is often 
laimed that learning-theoreti
al foundations 
ount as distin
tive advantageof SVM, similar or even superior guarantees 
an be given for approximate Bayesian GPte
hniques as well [67℄.8 KrigingAn important and early appli
ation of Gaussian random �eld models has been termedkriging [35℄ after a South-Afri
an mining engineer D. Krige who developed methods for pre-di
ting spatial ore-grade distributions from sampled ore grades [30℄. Optimal spatial linearpredi
tion has its roots in earlier work by Wiener and Kolmogorov (\
loseness in spa
e"may have to be repla
ed by \
loseness in time", sin
e they were mainly 
on
erned with timeseries). These fundamental ideas have been further developed in the �elds of geostatisti
s[35℄ as kriging and in meteorology under the name obje
tive analysis (see [11℄, Chap. 3 forreferen
es).We will not go into any details, but refer to [11℄, Chap. 3 and [74℄ (we follow the latterhere). The basi
 model is the same as for semiparametri
 smoothing:z(x) =m(x)T� + "(x)wherem(x) is a known feature map and "(x) is a zero-mean random �eld with 
ovarian
efun
tion K. In a nutshell, kriging is a minimum mean squared error predi
tion method forlinear fun
tionals of z(x) given observations z = (z(x1); : : : ; z(xn))T at spatial lo
ationsxi 2 Rg . For example, if z(x) measures ore grade at x one might be interested in predi
tingZB z(x) dxover some area B � Rg . Sin
e they fo
us on m.s. error and m.s. properties of z(x) ingeneral, kriging methods typi
ally depend on se
ond-order properties of the pro
ess only,and "(x) is often assumed to be a Gaussian �eld. Furthermore, we restri
t ourselves tolinear predi
tors �0 + �Tz . The optimal predi
tor of z(x�) in the m.s. error sense is the
onditional expe
tation whi
h is linear in z if "(x) is Gaussian and � is known:K� = k; �0 = �m(x�)�MT��T �where K = (K(xi;xj))i;j ; k = (K(xi;x�))i and M = (m(x1); : : : ;m(xn))T . If � isunknown, a simple pro
edure is to plug in the generalised least squares estimate�̂ = �MTK�1M ��1MTK�1zfor �̂. This pro
edure 
an be motivated from several angles. If we restri
t our attention tolinear predi
tors of z(x�) whi
h are unbiased in the senseE ��0 + �Tz� = �0 + �TM� = E[z(x�)℄ =m(x�)T�



for any �, the suggested approa
h minimises the m.s. error over these unbiased predi
tors.It is therefore 
alled best linear unbiased predi
tor (BLUP). A Bayesian motivation 
an be
onstru
ted in the same way as mentioned in Se
tion 6. Namely, � is given a Gaussianprior whose 
ovarian
e matrix s
ales with a > 0 and "(x) is a priori Gaussian. Then, theposterior mean for z(x�) 
onverges to the BLUP as a ! 1 (i.e. as the � prior be
omesuninformative).The equations behind the BLUP have been known long before and have been redis
overed inmany areas of statisti
s. In pra
ti
e, kriging methods are more 
on
erned about indu
ing anappropriate 
ovarian
e fun
tion (under the stationarity assumption) from observed data aswell. The empiri
al semivariogram is a frequently used method for estimating the 
ovarian
efun
tion 
lose to the origin. On the theoreti
al side, Stein [74℄ advo
ates the usefulness of�xed-domain asymptoti
s (a growing number of observations lo
ated within a �xed 
ompa
tregion) to understand the relationship between 
ovarian
e model and behaviour of krigingpredi
tors.45 By Bo
hner's theorem (2) a stationary 
ovarian
e fun
tion is 
hara
terisedby its spe
tral distribution F (!). Stein points out that �xed-domain asymptoti
s dependmost strongly on the spe
tral masses for large k!k, i.e. the high frequen
y 
omponents,mu
h less so on the low frequen
y ones or the mean fun
tion m(x)T� (if m(x) is smoothitself, e.g. polynomials). Let f(!) be the spe
tral density, i.e. the Fourier transform ofK(x). In general, the lighter the tails of f(!) the smoother "(x) is in the m.s. sense.Stein advo
ates this expe
ted smoothness as a 
entral parameter of the GP prior and
ondemns the un
riti
al use of smooth (analyti
) 
ovarian
e fun
tions su
h as the RBF(Gaussian) kernel (see Se
tion 9). Another important 
on
ept highlighted by Stein (see also[80℄, Chap. 3) is the one of equivalen
e and orthogonality of GPs.46 Essentially, GPs with
ovarian
e fun
tions of di�erent form 
an be equivalent in whi
h 
ase it is not possible tounambiguously de
ide for one of them even if an in�nite amount of observations in a �xedregion are given. On this basis, one 
an argue that for a parametri
 family of 
ovarian
efun
tions indu
ing equivalent GPs the parameters 
an just as well be �xed a priori sin
etheir 
onsistent estimation is not possible. On the other hand, parameters s.t. di�erentvalues lead to orthogonal GPs should be learned from data and not be �xed a priori.Note that kriging models are more generally 
on
erned with intrinsi
 random fun
tions(IRF) [36℄, generalisations of stationary pro
esses whi
h are also frequently used in thespline smoothing 
ontext. In a nutshell, a k-IRF u(x) is a non-stationary random �eldbased on a \spe
tral density" whose integral diverges on any neighborhood of the origin(e.g., has in�nite pointwise varian
e). However, if 
 2 Rn is a generalised divided di�eren
e(g.d.d.) for x1; : : : ;xn in the sense that Pi 
ip(xi) = 0 for all polynomials p of total degree� k, then the varian
e of Pi 
iu(xi) is �nite and serves to de�ne an \
ovarian
e fun
tion"K(x) whi
h is k-
onditionally positive semide�nite, namelynXi;j=1 
i
jK(xi � xj) � 045Stein restri
ts his analysis to \interpolation", i.e. to situations where predi
tions are required only atlo
ations whi
h are in prin
iple supported by observations (in 
ontrast to \extrapolation" often studied in thetime series 
ontext). This should not be 
onfused with the distin
tion between interpolation and smoothingused in Se
tion 6. All non-trivial kriging te
hniques are smoothing methods.46Two probability measures are equivalent if they have the same null sets, i.e. are mutually absolutely
ontinuous (see Se
tion A.1). They are orthogonal if there is a null set of one of them whi
h has mass 1under the other. Gaussian measures are either orthogonal or equivalent.



for all g.d.d.'s 
. In pra
ti
e, one uses semi-parametri
 models where the latent pro
ess ofinterest is the sum of a k-IRF and a polynomial of total degree � k whose 
oeÆ
ients areparametri
 latent variables.47In fa
t, IRFs do not add more generality w.r.t. high-frequen
y behaviour of the pro
esssin
e f(!) must be integrable on the 
omplement of any 0-neighborhood, so the IRF 
anbe written as the un
orrelated sum of a stationary and a non-stationary part, the latterwith f(!) = 0 outside a 0-neighborhood (thus very smooth). IRFs are not dis
ussed in anyfurther detail here (see [36, 74℄).9 Choi
e of Kernel. Kernel DesignThere is a tenden
y in the ma
hine learning 
ommunity to treat kernel methods as \bla
kbox" te
hniques, in the sense that 
ovarian
e fun
tions are 
hosen from a small set of
andidates over and over again. If a family of kernels is used, it typi
ally 
omes with avery small number of free parameters so that model sele
tion te
hniques su
h as 
ross-validation 
an be applied. Even though su
h approa
hes work surprisingly well for manyproblems of interest in ma
hine learning, experien
e almost invariably has shown that mu
h
an be gained by 
hoosing or designing 
ovarian
e fun
tions 
arefully depending on known
hara
teristi
s of a problem (for an example, see [59℄, Se
t. 11.4).Establishing a 
lear link between kernel fun
tions and 
onsequen
es for predi
tions is verynon-trivial and theoreti
al results are typi
ally asymptoti
 arguments. As opposed to �nite-dimensional parametri
 models, the pro
ess prior a�e
ts predi
tions from a non-parametri
model even in �xed-domain asymptoti
 situations (see Se
tion 8). The sole aim of this se
tionis to introdu
e a range of frequently used kernel fun
tions and some of their 
hara
teristi
s,to give some methods for 
onstru
ting 
ovarian
e fun
tions from simpler elements, andto show some te
hniques whi
h 
an be used to obtain insight into the behaviour of the
orresponding GP. Yaglom [88℄ gives extensive material, an a

essible review is [1℄. In the�nal part, we dis
uss some kernel methods over dis
rete spa
es X .It should be noted that positive de�niteness of an arbitrary symmetri
 form or fun
tion ishard to establish in general. For example, the sensible approa
h of 
onstru
ting a distan
ed(x;x0) between patterns depending on prior knowledge, then proposingK(x;x0) = e�w d(x;x0)2 (26)as 
ovarian
e fun
tion does not work in general be
ause K need not be positive semide�nite,moreover there is no simple general 
riterion to prove that K is a 
ovarian
e fun
tion.48 Ifd(x;x0) 
an be represented in an Eu
lidean spa
e, K is a kernel as we will see below. Notethat if K(x;x0) of the form (26) is a kernel, so must be K(x;x0)t for any t > 0.49 Kernelswith this property are 
alled in�nitely divisible. S
h�onberg [60℄ managed to 
hara
terisein�nitely divisible kernels (26) by a property on d(x;x0) whi
h unfortunately is just as hardto handle as positive semide�niteness.5047In fa
t,m(x) maps to a basis of �k. As mentioned above, the BLUP is obtained as posterior expe
tationunder an uninformative prior on the parametri
 
oeÆ
ients.48If d(x;x0) is stationary, one 
an try to 
ompute the spe
tral density, but this will not be analyti
allytra
table in general.49This is true in general only for t 2 N>0 , see below.50�d(x;x0)2 must be 
onditionally positive semide�nite of degree 0 (see Se
tion 8).



9.1 Some Standard KernelsIn the following, we provide a list of frequently used \standard kernels". Most of thesewill have a varian
e (s
aling) parameter C > 0 in pra
ti
e, sometimes an o�set parametervb > 0, thus instead of K one uses C K or C K + vb. C s
ales the varian
e of the pro
ess,while a vb > 0 
omes from the un
ertainty of a bias parameter added to the pro
ess.51 Inappli
ations where the kernel matrix K is used dire
tly in linear systems, it is advised toadd a jitter term52 �Æx;x0 to the kernel to improve the 
ondition number ofK . This amountsto a small amount of additive white noise on u(x) (� 
an be 
hosen quite small), but shouldnot be 
onfused with measurement noise whi
h is modelled separately (see Se
tion 3). Thesemodi�
ations are omitted in the sequel for simpli
ity.The Gaussian (RBF) 
ovarian
e fun
tionK(x;x0) = exp��w2 kx � x0k2� (27)is isotropi
 for ea
h X = Rg (i.e. D1). w > 0 is an inverse squared length s
ale parameter,in the sense that w�1=2 determines a s
ale on whi
h u(x) is expe
ted to 
hange signi�
antly.K(x) is analyti
 at 0, so u(x) is m.s. analyti
. Stein [74℄ points out thatkXj=0 u(j)(0)xjj! ! u(x)in quadrati
 mean for every x (a similar formula holds for X = Rg ), so that u 
an be pre-di
ted perfe
tly by knowing all its derivatives at 0 (whi
h depend on u on an neighborhoodof 0 only). He 
riti
ises the wide-spread use of the Gaussian 
ovarian
e fun
tion be
auseits strong smoothness assumptions are unrealisti
 for many physi
al pro
esses, in parti
ularpredi
tive varian
es are often unreasonably small given data. The spe
tral density (in R) isf(!) = (2�w)�1=2 exp(�!2=(2w)) with very light tails. On the other hand, Smola et. al. [70℄re
ommend the use of the Gaussian 
ovarian
e fun
tion for high-dimensional kernel 
lassi-�
ation methods be
ause of the high degree of smoothness. It is interesting to note that inthe 
ontext of using GPs for time series predi
tion, Girard et. al. [17℄ report problems withunreasonably small predi
tive varian
es using the Gaussian 
ovarian
e fun
tion (althoughthey do not 
onsider other kernels in 
omparison). Figure 1 shows smoothed plots of somesample paths. Note the e�e
t of the length s
ale w�1=2 and the high degree of smoothness.We 
an 
onsider the anisotropi
 version, 
alled squared-exponential 
ovarian
e fun
tion:K(x;x0) = exp��12(x � x0)TW (x � x0)� : (28)Here, W is positive de�nite. Typi
ally, W is a diagonal matrix with an inverse squaredlength s
ale parameter wj for ea
h dimension. Full matri
es W have been 
onsidered in[53, 79℄, and fa
tor analysis-type matri
es W are a useful intermediate (e.g., [4, 65℄). Animportant appli
ation of the additional d.o.f.'s in (28) as 
ompared to the Gaussian kernelis automati
 relevan
e determination (ARD), as dis
ussed below. Note that the squared-exponential 
ovarian
e fun
tion for diagonalW 
an be seen as produ
t of g one-dimensional51For reasons of numeri
al stability, vb must not be
ome too large.52In the 
ontext of kriging (see Se
tion 8), adding �Æx;x0 has been proposed by Math�eron to model theso-
alled \nugget e�e
t" (see [11℄, Se
t. 2.3.1), but other authors have 
riti
ised this pra
ti
e.
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Figure 1: Smoothed sample paths from GP with Gaussian 
ovarian
e fun
tion. All havevarian
e C = 1. Dash-dotted: w = 1. Solid: w = 102. Dashed: w = 502.Gaussian kernels with di�erent length s
ales, so the 
orresponding RKHS is a tensor produ
tspa
e built from RKHS's for one-dimensional fun
tions (see Se
tion 5).The Mat�ern 
lass of 
ovarian
e fun
tions (also 
alled modi�ed Bessel 
ovarian
e fun
tions)is given by K(�) = �1=22��1�(� + 1=2)�2� (��)�K�(��); � = kx � x0k; (29)where � > 0; � > 0 and K�(x) is a modi�ed Bessel fun
tion (e.g., [74℄, Se
t. 2.7). One 
anshow that z�K�(z)! 2��1�(�) for z ! 0, soK(0) = �1=2�(�)�(� + 1=2)�2� :K is isotropi
 for ea
h X = Rg . An important feature of this 
lass is that the m.s. smoothnessof u(x) 
an be regulated dire
tly via �. For example, u(x) is m times m.s. di�erentiablei� � > m. The spe
tral density in R is f(!) = (�2 + !2)���1=2. For � = 1=2 + m weobtain a pro
ess with rational spe
tral density, a 
ontinuous time analogue of an AR timeseries model. For � = 1=2, K(�) / e��� de�nes an Ornstein-Uhlenbe
k pro
ess, a stationaryanalogue to the Wiener pro
ess whi
h also has independent in
rements. In general, for� = 1=2 +m we have K(�) / e���p(��), where p(x) is a polynomial of order m (e.g., [74℄,Se
t. 2.7). Note that if � = (w(2� + 1))1=2, then�2�+1f(!)! e�!2=(2w) (� !1);thus K(�) 
onverges to the Gaussian 
ovarian
e fun
tion after appropriate re-s
aling.



The Mat�ern 
lass 
an be generalised to an anisotropi
 family in the same way as the Gaussiankernel. Figure 2 show some sample fun
tion plots for values � = 1=2; 3=2; 5=2; 10. Note thee�e
t of � on the roughness of the sample paths. For � = 1=2 the paths are errati
 eventhough the length s
ale is 1, i.e. the same as the horizontal region shown. For � = 3=2, thepro
ess is m.s. di�erentiable, for � = 5=2 twi
e so.
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Figure 2: Smoothed sample paths from GP with Mat�ern 
ovarian
e fun
tion. All havevarian
e C = 1. Upper left: Ornstein-Uhlenbe
k (Mat�ern, � = 1=2), � = 1. Upper right:Mat�ern, � = 3=2, � = 1 (dash-dotted), � = 102 (solid). Lower left: Mat�ern, � = 5=2, � = 1(dash-dotted), � = 102 (solid). Lower right: Mat�ern, � = 10, � = 1 (dash-dotted), � = 102(solid).The exponential 
lass of 
ovarian
e fun
tions is given byK(�) = e���Æ ; Æ 2 (0; 2℄:The positive de�niteness 
an be proved using the Mat�ern 
lass (see [74℄, Se
t. 2.7). ForÆ = 1, we have the Ornstein-Uhlenbe
k 
ovarian
e fun
tion, for Æ = 2 the Gaussian one.Although it seems that the kernel varies smoothly in Æ, the pro
esses have quite di�erentproperties in the regimes Æ 2 (0; 1), Æ = 1, Æ 2 (1; 2) and Æ = 2. Continuous sample paths
an be ensured for any Æ 2 (0; 2℄, but di�erentiable sample paths 
an only be obtained for



Æ = 2 (in whi
h 
ase they are analyti
).53 K(�) is not positive de�nite for Æ > 2. Figure 3shows some sample path plots.
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Figure 3: Smoothed sample paths from GP with exponential 
ovarian
e fun
tion. All havevarian
e C = 1 and � = 102. Solid: Æ = 1:5. Dashed: Æ = 1:9. Dash-dotted: Æ = 2 (Gaussian).We have derived the spline 
ovarian
e fun
tion on [0; 1℄ (22) from �rst prin
iples above.This kernel is of interest be
ause posterior mean fun
tions in GP models (or minimisers ofthe variational problem over the RKHS) are splines of order m, i.e. pie
ewise polynomialsin C2m�2 (see Se
tion 6) and asso
iated 
omputations are O(n) (where n is the number oftraining points, or \knots") only. On the other hand, te
hni
al 
ompli
ations arise be
ausespline kernels are RKs for subspa
es of Wm[0; 1℄ only, namely of the fun
tions whi
h satisfythe boundary 
onditions (see Se
tion 6). The operator indu
ed by a spline kernel has anull spa
e spanned by polynomials, and in pra
ti
e it is ne
essary to adjoin the 
orrespond-ing (�nite-dimensional) spa
e. The spline kernels are not stationary (they are supportedon [0; 1℄), but we 
an obtain spline kernels on the 
ir
le by imposing periodi
 boundary
onditions on Wm[0; 1℄, leading to the stationary kernelK(x; x0) =X��1 2(2��)2m 
os(2��(x� x0)):From this representation, it follows that the spe
tral density isf(!) =X��1 1(2��)2m Æ2��(j!j)whi
h is dis
rete. Note that sample fun
tions from u(x) are periodi
 with probability 1.In Wahba [80℄, Chap. 2 it is shown how to 
onstru
t splines on the sphere by using the53All these statements hold with probability 1, as usual.



iterated Lapla
ian, but this be
omes quite involved. An equivalent to splines (in a sense)
an be de�ned in Rg using thin-plate spline 
onditionally positive de�nite fun
tions (seeSe
tion 8), see [80, 18℄ for details.For kernel dis
rimination methods, polynomial 
ovarian
e fun
tionsK(x;x0) = (xTx0 + �)m((kxk2 + �)(kx0k2 + �))m=2 ; � � 0;m 2 Nare popular although they seem unsuitable for regression problems. The denominator nor-malises the kernel to K(x;x) = 1. Although this normalisation is not done in some appli
a-tions, it seems to be re
ommended in general. Polynomial kernels without the normalisingdenominator 
an be seen to indu
e a �nite-dimensional feature spa
e of polynomials of totaldegree � m (if � > 0).54 It is interesting to note that this is exa
tly the RKHS we have toadjoin to one for a 
onditionally positive de�nite kernel of order m su
h as the thin-platespline 
ovarian
e fun
tion. On the other hand, in the spline 
ase these polynomial partsare usually not regularised at all. By the Karhunen-Loeve expansion (see Se
tion 5), we
an write u(x) as expansion in all monomials of total degree � m with Gaussian random
oeÆ
ients. The regularisation operator (see Se
tion 6) for polynomial kernels is workedout in [70℄. Note that K(x;x0) is not a 
ovarian
e fun
tion for m 62 N, thus the kernel isnot in�nitely divisible. Figure 4 shows some sample path plots. These are polynomials andtherefore analyti
.
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Figure 4: Sample paths from GP with polynomial 
ovarian
e fun
tion. All have varian
eC = 1 and � = 0:05. Solid: m = 10. Dashed: m = 5.The Eu
lidean inner produ
t xT�x0 is sometimes referred to as \linear kernel" in the54The feature spa
e of the normalised polynomial kernel 
onsists of polynomials of total degree � mdivided by (kxk2 + �)m=2.



ma
hine learning literature. GP models based on this kernel are nothing else than straight-forward linear models (linear regression, logisti
 regression, et
.). It is 
lear from the weightspa
e view (see Se
tion 2) that a linear model 
an always be regarded as a GP model (orkernel te
hnique), but this makes sense only if n < g, where n is the number of trainingpoints.55 Furthermore, the SVM with linear kernel is a variant of the per
eptron method[55℄ with \maximal stability" [57℄ studied in statisti
al physi
s.Finally, let us give an example of a fun
tion whi
h is not a 
ovarian
e fun
tion, the so-
alled\sigmoid kernel" K(x;x0) = tanh �axTx0 + b� :K is not positive semide�nite for any a; b (see [69℄), it is nevertheless shipped in mostSVM pa
kages we know of. It springs from the desire to make kernel expansions look likerestri
ted one-layer neural networks. The 
orre
t link between MLPs and GP models hasbeen given by Neal (see Se
tion 2), whi
h involves taking the limit of in�nitely large net-works. A 
ovarian
e fun
tion 
orresponding to a one-layer MLP in the limit has been givenby Williams [84℄. In pra
ti
e, it is of 
ourse possible to �t expansions of kernels to datawhi
h are not 
ovarian
e fun
tions. However, the whole underlying theory of minimisationin a RKHS (see Se
tions 5 and 6) breaks down, as does the view as inferen
e in a GP model.On the pra
ti
al side, 
awed results su
h as negative predi
tive varian
es 
an pop up whenleast expe
ted. Even worse, most optimisation te
hniques (in
luding SVM algorithms) relyon the positive semide�niteness of matri
es and may break down otherwise. In fa
t, theSVM optimisation problem is not 
onvex and has lo
al minima for general K.9.2 Constru
ting Kernels from Elementary PartsWe 
an 
onstru
t 
ompli
ated 
ovarian
e fun
tions from simple restri
ted ones whi
h areeasier to 
hara
terise (e.g. stationary or (an)isotropi
 
ovarian
e fun
tions, see Se
tion 2).A large number of families of elementary 
ovarian
e fun
tions are known (e.g., [88℄), someof whi
h are reviewed in Se
tion 9.1.A generalisation of stationary kernels to 
onditionally positive semide�nite ones (stationary�elds to IRFs) is frequently used in geostatisti
al models (see Se
tion 8) but will not bedis
ussed here. The 
lass of positive semide�nite forms has formidable 
losure properties.It is 
losed under positive linear (so-
alled 
oni
) 
ombinations, pointwise produ
t andpointwise limit. If K(v;v0) is a 
ovarian
e fun
tion, so is~K(x;x0) = Z h(x;v)h(x0;v0)K(v;v0) dvdv0 (30)(if ~K is �nite everywhere). An important spe
ial 
ase is ~K(x;x0) = a(x)K(x;x0) a(x0).For example, a given kernel (with positive varian
e everywhere) 
an always be modi�ed tobe 
onstant on the diagonal by 
hoosing a(x) = K(x;x)�1=2, this normalisation has beendis
ussed in the 
ontext of the polynomial kernel above. Note that O'Hagan's \lo
alisedregression model" (Se
tion 2) is also a spe
ial 
ase of (30). A general way of 
reating anon-stationary 
ovarian
e fun
tion ~K(y;y0) from a parametri
 model h(y ;�) linear in �is to assume a GP prior on �, then to integrate out the parameters (see [62℄ for details).Furthermore, suppose we do so with a sequen
e of models and priors to obtain a sequen
e55Otherwise, running a kernel algorithm is wasteful and awkward due to a singular kernel matrix.



of kernels. If the priors are appropriately s
aled, the pointwise limit exists and is a kernelagain. Many standard kernels 
an be obtained in this way (e.g., [84℄). Neal showed that ifthe model size goes to in�nity and the prior varian
es tend to 0 a

ordingly, layered modelswith non-Gaussian priors will also tend to a GP (due to the 
entral limit theorem; seeSe
tion 2).Another important modi�
ation is embedding. IfK(h;h0) is a 
ovarian
e fun
tion and h(x)is an arbitrary map, then ~K(x;x0) = K(h(x);h(x0)) (31)is a 
ovarian
e fun
tion as well (this is a spe
ial 
ase of (30)). For example, if we haved(x;x0) = kh(x)�h(x0)k in some Eu
lidean spa
e, then (26) is a valid kernel indu
ed fromthe Gaussian (RBF) kernel (27). The Fisher kernel [23℄ and mutual information kernels [66℄are examples. Embedding 
an be used to put rigid 
onstraints on the GP. For example,if K is stationary in (31) and h(x) = h(x0), then u(x) = u(x0) almost surely.56 Forh(x) = (
os((2�=�)x); sin((2�=�)x))T , sample paths of u(x) are �-periodi
 fun
tions.Embedding 
an be used to 
reate non-stationary kernels from elementary stationary ones.A more powerful me
hanism starts from viewing (30) in a di�erent way. Let K be thesquared-exponential kernel (28), but suppose the input x is subje
t to noise:x = t + "; " � N(0;S(t)):Here, " at di�erent observed lo
ations t are independent, and all noise variables are inde-pendent of the pro
ess u(�). The pro
ess v(t) = u(x) = u(t + ") is not Gaussian, but itsmean and 
ovarian
e fun
tion are determined easily: E[v(t)℄ = 0 andE[v(t)v(t0)℄ / E �N(t + " j t0 + "0;W�1)� = N(t j t0;W�1 + S(t) + S(t0))whi
h has the form of a squared-exponential kernel with 
ovarian
e matrix whi
h depends ont; t0. A similar 
onstru
tion was used in [16℄ to 
reate non-stationary 
ovarian
e fun
tions.This idea 
an be generalised 
onsiderably as shown in [49℄. De�neQ(t; t0) =s(t � t0)T �12(S(t) + S(t0))��1 (t � t0):Note that Q is not a Mahalanobis distan
e, be
ause the 
ovarian
e matrix depends on t; t0.Now, if �(�) is an isotropi
 
orrelation fun
tion in D1 (re
all Se
tion 2.2), it is shown in[49℄ that �Q(t; t0) = jS(t)j1=4jS(t0)j1=4 ����12(S(t) + S(t0))�����1=2 �(Q(t; t0)) (32)is a valid 
orrelation fun
tion. The proof uses the 
hara
terisation�(�) = Z e��2!2 dF (!)56This is be
ause the 
orrelation �(u(x); u(x0)) is 1, thus u(x) = a u(x0)+b for �xed a; b, then a = 1; b = 0be
ause both variables have the same mean and varian
e.



of D1 (see Se
tion 2.2), thus�(Q(t; t0)) = ����12(S(t) + S(t0))����1=2 � �2!2�d=2Z N �t ��� t0; 14!2 (S(t) + S(t0))� dF (!):The integral 
an now be written as/ Z Z N(r j t; ~S(t; !))N(r j t0; ~S(t0; !)) dr dF (!)whi
h is positive semi-de�nite as a spe
ial 
ase of (30).57 Equation (32) 
an be used to 
reatemany new families of non-stationary kernels from isotropi
 ones. Note that now there aretwo �elds to estimate, u(�) and t 7! S(t). In prin
iple, the latter one 
an be spe
i�ed via GPsas well (see [49℄), but inferen
e be
omes very 
ostly. On the other hand, simpler parametri
models may be suÆ
ient. If unlabelled data is abundant, it is possible to learn the se
ond�eld from this sour
e only (see [62℄). It is interesting to note that if t 7! S(t) is smooth,then m.s. properties of u(�) dedu
ible from �(�) are transferred to the GP with 
orrelationfun
tion �Q (32).9.3 Guidelines for Kernel Choi
eChoosing a good kernel for a task depends on intuition and experien
e. On high-dimensionaltasks where no suitable prior knowledge is available, the best option may be to exploresimple 
ombinations of the standard kernels listed above. If invarian
es are known, theymay be en
oded using the methods des
ribed in [59℄, Se
t. 11.4. With approximate BayesianGP inferen
e, one 
an in prin
iple use 
ombinations of di�erent kernels with a lot of free(hyper)parameters whi
h 
an be adapted automati
ally.For low-dimensional X , one 
an obtain further insight. Stein [74℄ points out the usefulness ofstudying �xed-domain asymptoti
s (see Se
tion 8). In this respe
t, the tail behaviour of thespe
tral density (see Se
tion 2) is important. The m.s. degree of di�erentiability (degree ofsmoothness) of the pro
ess depends on the rate of de
ay of f(!). Stein re
ommends kernelfamilies su
h as the Mat�ern 
lass (29) whi
h 
ome with a degree of smoothness parameter�. He also stresses the importan
e of the 
on
ept of equivalen
e and orthogonality of GPs(see Se
tion 8). His arguments are of asymptoti
 nature, for example it is not 
lear whether� in the Mat�ern 
lass 
an be learned a

urately enough from a limited amount of data.Also, predi
tions from equivalent pro
esses with di�erent kernels 
an be di�erent.58There are ways of \getting a feeling" for the behaviour of a pro
ess by visualisation, whi
his an option if X = Rg is low-dimensional, g = 1; 2. We 
an draw \samples" from thepro
ess and plot them as follows (the plots in this se
tion have been produ
ed in thisway). Let X � X be a �ne grid59 over a domain of interest, n = jXj and u = u(X) �57Namely, (30) applies espe
ially to \diagonal kernels" K(v ;v0) = f(v)Æv (v0) where f is positive. In our
ase, v = (rT ; !)T .58Stein argues (
iting Je�reys) that su
h di�eren
es 
annot be important sin
e they do not lead to 
on-sisten
y in the large data limit (in a �xed domain).59For �ne grids and smooth kernels su
h as the Gaussian one, the Cholesky te
hnique des
ribed here failsdue to round-o� errors. The singular value de
omposition (SVD) should be used in this 
ase, 
on
entratingon the leading eigendire
tions whi
h 
an be determined reliably.



N(0;K (X)). We 
an sample u as u = Lv; v � N(0; I), where K (X) = LLT is theCholesky de
omposition. If X is too large, u 
an be approximated using an in
ompleteCholesky fa
torisation of K (X) (see [87℄). If g = 1, the pro
ess is isotropi
 and the gridis regularly spa
ed, K (X) has Toeplitz stru
ture60 and its Cholesky de
omposition 
an be
omputed in O(n2) (see [14℄). Repeatedly sampling u and plotting (X;u) 
an give an ideaabout degree of smoothness, average length s
ales (Eu
lidean distan
e in X over whi
h u(x)is expe
ted to vary signi�
antly) or other spe
ial features of K.9.4 Learning the KernelOne promising approa
h for 
hoosing a 
ovarian
e fun
tion is to learn it from data and/orprior knowledge. For example, given a parametri
 family of 
ovarian
e fun
tions, how 
anwe 
hoose61 the parameters in order for the 
orresponding pro
ess to model the observeddata well?Model sele
tion from a �xed family 
an be done by the empiri
al Bayesian method ofmarginal likelihood maximisation, a generi
 approximation of whi
h in the 
ase of GP mod-els is given in Se
tion 4. Sin
e this pro
edure typi
ally s
ales linearly in the number of hyper-parameters, elaborate and heavily parameterised families 
an be employed. An importantspe
ial 
ase has been termed automati
 relevan
e determination (ARD) by Ma
Kay [34℄and Neal [42℄. The idea is to introdu
e a hyperparameter whi
h determines the s
ale ofvariability of a related variable of interesting (with prior mean 0). For example, we mightset up a linear model (4) by throwing in a host of di�erent features (
omponents in �(x)),then pla
e a N(� j0;D) on the weights � where D is a diagonal matrix of positive hyper-parameters. If we pla
e a hyperprior on diagD whi
h en
ourages small values, there is ana priori in
entive for di = Di;i to be
ome very small, indu
ing a varian
e of �i 
lose to 0whi
h e�e
tively swit
hes o� the e�e
t of �i�i(x) on predi
tions. This is balan
ed againstthe need to use at least some of the 
omponents of the model to �t the data well, leadingto an automati
 dis
rimination between relevant and irrelevant 
omponents. In the 
ontextof 
ovarian
e fun
tions, we 
an implement ARD with any anisotropi
 kernel (see Se
tion 2)of the form K(x;x0) = ~K((x � x0)TW (x � x0));where ~K is isotropi
 and W is diagonal and positive de�nite. An example is the squared-exponential 
ovarian
e fun
tion (28). Here, wi determines the s
ale of variability of the(prior) �eld as x moves along the i-th 
oordinate axis. If we imagine the �eld being restri
tedto a line parallel to this axis, w�1=2i is the length s
ale of this restri
tion, i.e. a distan
efor whi
h the expe
ted 
hange of the pro
ess is signi�
ant. If wi � 0, this length s
ale isvery large, thus the �eld will be almost 
onstant along this dire
tion (in regions of interest).Thus, via ARD we 
an dis
riminate relevant from irrelevant dimensions in the input variablex automati
ally, and predi
tions will not be in
uen
ed signi�
antly by the latter.In spatial statisti
s, semivariogram te
hniques (see [11℄, Se
t. 2.3.1) are frequently used.For a stationary pro
ess, the (semi)variogram is 
(x � x0) = (1=2)Var[u(x) � u(x0)℄. It isestimated by averaged squared distan
es over groups of datapoints whi
h are roughly the60A matrix is Toeplitz if all its diagonals (main and o�-diagonals) are 
onstant.61The proper Bayesian solution would be to integrate out the parameters, but even if this 
an be ap-proximated with MCMC te
hniques, the out
ome is a mixture of 
ovarian
e fun
tions leading to expensivepredi
tors.



same distan
e apart and �tted to parametri
 families by maximum likelihood. Stein [74℄
riti
ises the use of the empiri
al semivariogram as single input for 
hoosing a 
ovarian
efun
tion and suggests a range of other te
hniques, in
luding the empiri
al Bayesian approa
hmentioned above.For 
lassi�
ation models, the idea of lo
al invarian
e w.r.t. 
ertain groups of transformationsis important. For example, the re
ognition of handwritten digits should not be in
uen
ed bytranslations or small-angle rotations of the bitmap.62 If a pro
ess is used as latent fun
tionin a 
lassi�
ation problem, e.g. representing the log probability ratio between 
lasses (seeSe
tion 3), then starting from some x and applying small transformations from a groupw.r.t. whi
h dis
rimination should remain invariant should not lead to signi�
ant 
hangesin the pro
ess output (e.g. in the m.s. sense). To relate this notion to ARD above, varying xalong su
h invariant dire
tions should indu
e a 
oordinate of x (non-linear in general) whi
his irrelevant for predi
tion. Chapter 11 in [59℄ gives a number of methods for modifyinga 
ovarian
e fun
tion in order to in
orporate invarian
e knowledge to some degree, alsoreviewing work in that dire
tion whi
h we omit here.Finally, Minka [38℄ pointed out that instan
es of the \learning how to learn" or \priorlearning" paradigm 
an be seen as learning a GP prior frommulti-task data (see his paper forreferen
es). In fa
t, the setup is the one of a standard hierar
hi
al model frequently used inBayesian statisti
s to implement realisti
 prior distributions. We have a

ess to several noisysamples and make the assumption that these have been sampled from di�erent realisationsof the latent pro
ess whi
h in turn have been sampled i.i.d. from the pro
ess prior. Dataof this sort is very valuable for inferring aspe
ts of the underlying 
ovarian
e fun
tion. Ina simple multi-task s
enario a multi-layer per
eptron is �t to several samples by penalisedmaximum likelihood, sharing the same input-to-hidden weights but using di�erent sets ofhidden-to-output weights for ea
h sample. The idea is that the hidden units might dis
overfeatures whi
h are important in general, while the 
ombination in the uppermost layer isspe
i�
. If we pla
e Gaussian priors on the hidden-to-output weights, this be
omes a GPmodel with a 
ovarian
e fun
tion determined by the hidden units. More generally, we 
anstart from any parametri
 family of 
ovarian
e fun
tions and learn hyperparameters or eventhe hyperposterior from multi-task data using marginal likelihood maximisation togetherwith the hierar
hi
al sampling model. An approximate implementation of this idea has beenreported in [51℄.9.5 Kernels for Dis
rete Obje
tsAs mentioned in Se
tion 2, in prin
iple the input spa
e X is not restri
ted to be Rg or evena group. For example, Gaussian pro
esses over latti
es are important in vision appli
ations(in the form of a Gaussian Markov random �eld with sparse stru
tured inverse 
ovarian
ematrix). For Gaussian likelihoods, the posterior mean 
an be determined most eÆ
ientlyusing a 
onjugate gradients solver63 and the embedded trees algorithm of Wainwright,Sudderth and Willsky [82℄ 
an be used to 
ompute the marginal varian
es as well. Kernelmethods, i.e. methods whi
h use 
ovarian
e matri
es over variables determined from the\spatial" relationship of these (or asso
iated 
ovariates) have been proposed for a number62Although a 180-degree rotation of a 6 results in a 9.63Loopy belief propagation renders the 
orre
t mean as well if it 
onverges [83℄, but is mu
h slower andoften numeri
ally unstable.



of problems involving dis
rete spa
es X (�nite or 
ountably in�nite). Our aim in this se
tionis no more than to give a few sele
ted examples.Kernels 
an be de�ned on the set of �nite-length strings from a �nite alphabet. Manystring kernels have been proposed re
ently, but we will not try to review any of this work.Important appli
ations of string kernels (or distan
e measures between sequen
es) arise fromproblems in DNA or RNA biology where statisti
al models have to be built for nu
leotidesequen
es. Many proposed string kernels are spe
ial 
ases of 
onvolution kernels introdu
edby Haussler [21℄. Maybe the most interesting 
ase dis
ussed there is the extension of ahidden Markov random �eld (HMRF). The latter is a Markov random �eld (MRF) withobserved variables x, latent variables u and 
lique potentials Cd(xd; ud) where xd; ud aresubsets of 
omponents of x; u, and u is marginalised over. If we repla
e the 
lique potentialby positive de�nite kernels Kd((xd; ud); (x0d; u0d)) and marginalise over u; u0, the result is a
ovarian
e kernel whi
h 
an also be seen as unnormalised joint generative distribution for(x;x0). If the original MRF has a stru
ture whi
h allows for tra
table 
omputation, thesame algorithm 
an be used to evaluate the 
ovarian
e fun
tion eÆ
iently. For example, ahidden Markov model (HMM) for sequen
es 
an be extended to a pair-HMM in this way,emitting two observed sequen
es sharing the same latent sequen
e, and many string kernelsarise as spe
ial 
ases of this 
onstru
tion.In pra
ti
e, string kernels (and more generally kernels obtained from joint probabilitiesunder pair-HMRFs) often su�er from the \ridge problem": K(x;x) is mu
h larger thanK(x;x0) for many x0 for whi
h a priori we would like to attain a signi�
ant 
orrelation,espe
ially if rather long sequen
es are 
ompared. For example, in models involving DNAsequen
es we would like sequen
es to 
orrelate strongly if they are homologous, i.e. en
odefor proteins of very similar fun
tion. In a standard string kernel, two sequen
es are strongly
orrelated if both 
an be obtained from a 
ommon \an
estor" latent sequen
e by few opera-tions su
h as insertions and substitutions (this an
estor model is motivated by the evolutionof genes and gives a good example for the pair-HMM setup). However, often homologoussequen
es di�er quite substantially in regions on whi
h the stru
ture of the fun
tional partof the protein does not depend strongly. Su
h \remote" homologies are the really interestingones, sin
e very 
lose homologies 
an often be dete
ted using simpler statisti
al te
hniquesthan pro
ess models based on string kernels. On the other hand, it may be possible to spotsu
h homologies by going beyond string kernels and pair-HMRF 
onstru
tions, for exam-ple building on the general framework given in [10℄ where kernels are obtained from �nitetransdu
ers.A 
on
eptually simple way to obtain a kernel on X is to embed X in some Eu
lidean spa
eRg , then to 
on
atenate the embedding with any of the known Rg kernels, for examplethe Gaussian one (27). An example is the Fisher kernel [23℄ whi
h maps datapoints totheir \Fisher s
ores" under a parametri
 model. There has been a surge of interest re
entlyin automati
 methods for parameterising low-dimensional non-linear manifolds (e.g., [77,56℄) by lo
al Eu
lidean 
oordinates. Although these methods are non-parametri
, they 
anbe used to �t 
onventional parametri
 mixture models in order to obtain a parametri
embedding whi
h 
ould then be used to obtain a kernel.Re
ently, Kondor and La�erty [29℄ proposed kernels on dis
rete obje
ts using 
on
eptsfrom spe
tral graph theory (di�usion on graphs). If X is �nite, a 
ovarian
e fun
tion onX is simply a positive semide�nite matrix. If H is a symmetri
 generator matrix, the




orresponding exponential kernel is de�ned asK(�) = exp(�H ) =Xj�1 �jj!Hj; � � 0: (33)We de�ne K�(x;x0) =K(�)x;x0 , where we use elements of X as indi
es into the matrix K(�).K(�) is positive de�nite. In fa
t, it has the same eigenve
tors asH , but the eigenspe
trum istransformed via �! exp(��). In pra
ti
e, general exponential kernels 
annot be 
omputedfeasibly if X is large, in parti
ular there is no general eÆ
ient way of 
omputing kernelmatri
es of K� over points of interest. It might be possible to approximate marginalisationsof K(�) by sampling. The kernel and generator matri
es are linked by the heat equation���K(�) =HK(�):It is interesting to note that every in�nitely divisible 
ovarian
e fun
tion K� with s
aleparameter � on X has the form (33). Namely, if K is the 
ovarian
e matrix for K� , thenH = �K=�� at � = 0. Kondor and La�erty are interested in di�usion kernels on graphsas spe
ial 
ases of exponential kernels. Here, the generator is the negative of the so-
alledgraph Lapla
ian. The 
onstru
tion 
an be seen as stationary Markov 
hain (random walk)in 
ontinuous time on the verti
es of the graph. The kernel K�(x;x0) is the probability ofbeing at x0 at time �, given that the state at time 0 was x. This interpretation requiresthat H1 = 0 whi
h is true for the negative graph Lapla
ian and whi
h implies that K(�)is (doubly) sto
hasti
. The same equation des
ribes heat 
ow or di�usion from an initialdistribution. The idea is to des
ribe the stru
ture of X (in the sense of \
loseness", i.e.
lose points should be highly 
orrelated under the 
ovarian
e fun
tion) in terms of lo
alneighbourhood asso
iation whi
h indu
e an (weighted or unweighted) undire
ted graph.Then, the 
orrelation at some x with all other points is proportional to the distributionof a random walk started at x after time �. Similar ideas have been used very e�e
tivelyfor non-parametri
 
lustering or 
lassi�
ation with partially labelled data [76℄. Kondor andLa�erty give examples for graphs of spe
ial regular stru
tures for whi
h the di�usion kernel
an be determined eÆ
iently. These in
lude 
ertain spe
ial 
ases of string kernels (here, Xis in�nite and the analogue to Markov 
hains has to be treated more 
arefully). In situationswhere K� 
annot be determined by known simple re
ursive formulae, one 
ould representX by a representative sample in
luding the training set (but also unlabelled data). If thegenerator matrix of the underlying graph (proje
ted onto the representative sample in asensible way) is sparse, its leading eigenve
tors and eigenvalues 
ould be approximatedby sparse eigensolvers whi
h would lead to an approximation of K(�) whi
h is low-rankoptimal w.r.t. the Frobenius norm. Kondor and La�erty also note that on the graph givenby a regular grid in Rg , the generator matrix 
onverges towards the usual Lapla
ian operatorand K� towards the Gaussian kernel (27) as the mesh size approa
hes 0.9.6 How Useful are Un
ertainty Estimates?In this se
tion we have highlighted a number of powerful te
hniques of en
oding priorknowledge in a 
ovarian
e fun
tion or learning an appropriate kernel. For many problems inma
hine learning (espe
ially in 
lassi�
ation) one does not observe a big di�eren
e in gen-eralisation error over a range of di�erent 
ommon kernels, while signi�
ant di�eren
es arise



in the un
ertainty estimates (predi
tive varian
es) for Bayesian GP te
hniques. Moreover,the dis
ussion in Se
tion 7 suggests that mu
h of the additional 
omplexity in Bayesian GPmethods as 
ompared to SVM arise exa
tly be
ause su
h un
ertainty estimates are desiredas well. It is therefore important to ask how useful these estimates are in pra
ti
e.Stri
tly speaking, both frequentist 
on�den
e intervals and Bayesian un
ertainty estimatesare tied to assumptions whi
h are likely to be violated in non-trivial real world situations.The former are 
onditioned on a null hypothesis whi
h is 
ertainly violated at some s
ale,the latter require the data to be generated by the model. In a Bayesian setting, di�erentpriors and models 
an be 
ompared either to 
on
lude that the predi
tions enjoy a 
ertainrobustness or to dete
t mismat
hes whi
h should trigger a re�nement.In the 
ase of GP models, the 
hoi
e of the 
ovarian
e fun
tion 
an have a signi�
ant e�e
ton the un
ertainty estimates. We demonstrate this fa
t using a simple one-dimensionalregression task. Note that in GP regression with Gaussian noise, the error bars do notdepend on the targets (this is di�erent for non-Gaussian likelihoods, e.g. in 
lassi�
ation).Data was sampled from a noisy sine wave around �=2; (3=2)�, a single point at �, thenoise standard deviation was � = 0:05. We 
ompare the RBF 
ovarian
e fun
tion (27) withw = 4 against the Mat�ern kernel with di�erent � and � = (w(2� + 1))1=2, the pro
essvarian
e was C = 1 in all 
ases. Re
all that for the Mat�ern kernel, � 
ontrols the degree ofm.s. di�erentiability of the pro
ess, while the RBF pro
ess is m.s. analyti
. Figure 5 showsmean predi
tions and one standard deviation error bars (the noise level was set to the truevalue).As expe
ted, for the Ornstein-Uhlenbe
k prior (� = 1=2) the mean predi
tion interpolatesthe data, the error bars grow to the maximum value 1 very rapidly away from the data. ABrownian motion pro
ess is not suitable as prior for a smoothing te
hnique. The tenden
yto interpolate rather than smooth the data diminishes with growing �, as does the speedwith whi
h the error bars grow to 1 away from data. Note also the very slim error bars forthe RBF predi
tion in the data-ri
h regions, expressing the strong (prior) belief that theunderlying fun
tion is smooth, thus 
lose to the smooth mean predi
tion there. Stein [74℄notes that predi
tions using the RBF 
ovarian
e fun
tion often 
ome with unrealisti
allysmall error bars.In many situations, the un
ertainty estimates themselves are of less importan
e than thequality of the de
isions based on them. In the Bayesian 
ontext, de
isions are made bysubstituting the predi
tive distribution inferred from data for the unknown truth. Utilityvalues 
an be 
omputed as expe
tations over the predi
tive distribution and \Bayesianoptimal" de
isions be made by 
omparing these for di�erent alternatives. A simple examplearises in binary 
lassi�
ation if the task allows us to reje
t a 
ertain fra
tion of the testpatterns. The Bayesian optimal de
ision is to reje
t patterns for whi
h the target predi
tivedistribution P (y�jx�;D) is most un
ertain (has highest entropy). A similar setting is treatedheuristi
ally with SVM dis
riminants reje
ting those patterns for whi
h the dis
riminantvalue is 
losest to zero. Note that in both 
ases, we are interested in the order relations of thes
ores over a test set rather than their numeri
al values. A study 
omparing both pra
ti
es(the GP te
hnique is a sparse IVM approximation [31℄ using the same amount of runningtime) has been done in [63℄, Se
t. 4.7.2. It 
on
ludes that on the example 
onsidered theSVM reje
t strategy shows signi�
ant weaknesses 
ompared to the approximate BayesianIVM setup and that the additional work for obtaining un
ertainty estimates 
an pay o�.6464It is shown that large wrong predi
tive means are often a

ompanied by large predi
tive varian
es,
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Figure 5: Error bars for noisy sine regression task for di�erent 
ovarian
e fun
tions. Meanpredi
tion (solid), errors bars (dotted), true 
urve (dashed), data (dots). Upper left: RBF,w = 4. Upper right: Ornstein-Uhlenbe
k (Mat�ern, � = 1=2), � = 2:8284. Lower left: Mat�ern,� = 3=2; � = 4. Lower right: Mat�ern, � = 3=2; � = 4:899.Note that these short
omings of SVM 
annot be alleviated by postho
 transformations ofthe dis
riminant output (as suggested by [50℄) be
ause these leave order relations invariant.10 SummaryIn this paper, we des
ribed 
entral properties of Gaussian pro
esses and statisti
al mod-els based on GPs together with eÆ
ient generi
 ways of approximate inferen
e and modelsele
tion. The fo
us is less on giving algorithmi
 des
riptions of 
on
rete inferen
e approxi-mations and their variational optimisation problems, whi
h may be found in the referen
esprovided. Instead we hope to have 
onveyed the basi
 
on
epts of latent variables andGaussian random �elds required to understand these non-parametri
 algorithms and tohave highlighted some of the essential di�eren
es to parametri
 statisti
al models. By theexplaining the superior performan
e of the Bayesian s
ore whi
h 
ombines these two quantities.



evolution of ever more powerful 
omputers and the development of fast sparse inferen
e ap-proximations, we feel that GP models will be
ome appli
able to large-data problems whi
hwere previously restri
ted to parametri
 models. GP models are more powerful and 
exiblethan simple linear parametri
 models and easier to handle than 
ompli
ated ones su
h asmulti-layer per
eptrons, and the availability of fast algorithms should remove remainingobsta
les of them be
oming part of the standard toolbox of ma
hine learning pra
titioners.A
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tion A.1, we des
ribe the notational 
onventions used in this paper and some 
on
eptsfrom probability theory. In Se
tion A.2 we 
olle
t some de�nitions.A.1 NotationVe
tors a = (ai)i = (a1 : : : an)T (
olumn by default) and matri
es A = (ai;j)i;j are writtenin bold-fa
e. If A 2 Rm;n , I � f1; : : : ;mg; J � f1; : : : ; ng are index sets,65 then AI;Jdenotes the jIj � jJ j sub-matrix formed from A by sele
ting the 
orresponding entries(i; j); i 2 I; j 2 J .Some spe
ial ve
tors and matri
es are de�ned as follows: 0 = (0)i and 1 = (1)i the ve
torsof all zero and all ones, Æj = (Æi;j)i the j-th standard unit ve
tor. Here, Æi;j = 1 if i = j,and 0 otherwise (Krone
ker symbol). Furthermore, I = (Æi;j)i;j is the identity matrix.The supers
ript T denotes transposition. diaga is the matrix with diagonal a and 0 else-where. diagA is the ve
tor 
ontaining the diagonal of A. trA is the sum of the diagonalelements of A, trA = 1T (diagA). jAj denotes the determinant of the square matrix A.For p > 1, kakp denotes the p-norm of the ve
tor a, kakp = (Pi jaijp)1=p. If nothing elseis said, k � k = k � k2, the Eu
lidean norm. Relations are ve
torised in Matlab style, as ares
alar fun
tions: a � b means that ai � bi for all i, and f(a) = (f(ai))i.We do not distinguish notationally between a random variable and its possible values.Ve
tor or matrix random variables are written in the same way as ve
tors or matri
es. If adistribution has a density, we generally use the same notation for the distribution and itsdensity fun
tion. If x is a random variable, then E[x℄ denotes the expe
tation (or expe
tedvalue) of x. If A is an event, then PrfAg denotes its probability. The probability spa
e will65All index sets and sets of data points are assumed to be ordered, although we use a notation knownfrom unordered sets.



usually be 
lear from the 
ontext, but for 
larity we often use an additional subs
ript, e.g.PrSfAg or EP [x℄ (meaning that x � P ). By IA, we denote the indi
ator fun
tion of anevent A, i.e. IA = 1 if A is true, IA = 0 otherwise. Note that PrfAg = E[IA℄. The deltadistribution Æx pla
es mass 1 onto the point x and no mass elsewhere, Æx(B) = Ifx2Bg. LetX ; Y; Z be sets of random variables, X ; Y non-empty. We write X ?Y jZ to denote the
onditional independen
e of X and Y given Z: the 
onditional distribution of X given Y; Zdoes not depend on Y.log denotes the logarithm to Euler's base e. The notation f(x) / g(x) means that f(x) =
g(x) for 
 6= 0 
onstant w.r.t. x. We often use this notation with the left hand side beinga density. By sgnx, we denote the sign of x, i.e. sgnx = +1 for x > 0, sgnx = �1 forx < 0, and sgn 0 = 0. The Landau O-notation is de�ned as g(n) = O(f(n)) i� there existsa 
onstant 
 � 0 su
h that g(n) � 
 f(n) for almost all n.We use some probability-theoreti
 
on
epts and notation whi
h might be unfamiliar to thereader. A measure is denoted by d�(x), the Lebesgue measure in Rg is denoted by dx. If Ais a measurable set (\event"), �(A) = R Ifx2Agd�(x) denotes its mass under �. A measureis �nite if the mass of the whole spa
e is �nite, and a probability measure if this mass is1. If d� is a probability measure, we denote its distribution by �. The events A of mass 0are 
alled null sets.66 For example, in Rg with Lebesgue measure (the usual \volume") allaÆne spa
es of dimension < g are null sets. A property is almost surely (a.s.) true if theevent of it being false is a null set. d�1 is 
alled absolutely 
ontinuous w.r.t. d�2 if all nullsets of d�1 are null sets of d�2 (the notation is d�1 � d�2). The theorem of Radon andNikodym states that d�1 has a density f(x) w.r.t. d�2, i.e.�1(A) = Z Ifx2Agf(x) d�2(x)for all measurable A, i� d�1 � d�2. In this 
ase,f(x) = d�1(x)d�2(x)is 
alled Radon-Nikodym derivative or simply density w.r.t. d�2.A.2 De�nitionsDe�nition 1 (Relative Entropy) Let P; Q be two probability measures on the samespa
e with Q � P , su
h that the density dQ=dP exists almost everywhere. The relativeentropy is de�ned as D[Q kP ℄ = EQ �log dQdP � = Z �log dQdP � dQ:If Q is not absolutely 
ontinuous w.r.t. P , we set D[Q kP ℄ =1. It is always non-negative,and equal to 0 i� Q = P . The fun
tion (Q;P ) 7! D[Q kP ℄ is stri
tly 
onvex.66In order not to run into trouble, we always assume that our probability spa
e is 
omplete, meaning thatits sigma-algebra 
ontains all subsets of null sets.



If both Q and P have a density w.r.t. Lebesgue measure dw, then dQ=dP = Q(w)=P (w),the ratio of the densities.If we �x a base measure P0 (�nite, need not be a probability), the entropy 
an be de�ned asH[Q℄ = �D[Q kP0℄. For 
ontinuous distributions over Rg , the uniform (Lebesgue) measureis not �nite. The usual remedy is to subtra
t o� an in�nite part of the entropy whi
h doesnot depend on the argument Q, ending up with the di�erential entropyH[Q℄ = �Z Q(w) logQ(w) dw: (34)Both entropy and di�erential entropy are 
on
ave fun
tions (being the negative of 
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