
Gaussian Proesses for Mahine LearningMatthias Seeger�Department of EECSUniversity of California at Berkeley485 Soda Hall, Berkeley CA 94720-1776, USAmseeger�s.berkeley.eduFebruary 24, 2004AbstratGaussian proesses (GPs) are natural generalisations of multivariate Gaussian ran-dom variables to in�nite (ountably or ontinuous) index sets. GPs have been applied ina large number of �elds to a diverse range of ends, and very many deep theoretial anal-yses of various properties are available. This paper gives an introdution to Gaussianproesses on a fairly elementary level with speial emphasis on harateristis relevantin mahine learning. It draws expliit onnetions to branhes suh as spline smoothingmodels and support vetor mahines in whih similar ideas have been investigated.Gaussian proess models are routinely used to solve hard mahine learning problems. Theyare attrative beause of their exible non-parametri nature and omputational simpliity.Treated within a Bayesian framework, very powerful statistial methods an be implementedwhih o�er valid estimates of unertainties in our preditions and generi model seletionproedures ast as nonlinear optimization problems. Their main drawbak of heavy om-putational saling has reently been alleviated by the introdution of generi sparse ap-proximations [13, 78, 31℄. The mathematial literature on GPs is large and often uses deeponepts whih are not required to fully understand most mahine learning appliations. Inthis tutorial paper, we aim to present harateristis of GPs relevant to mahine learningand to show up preise onnetions to other \kernel mahines" popular in the ommunity.Our fous is on a simple presentation, but referenes to more detailed soures are provided.1 Introdution and Overview: Gaussian Proesses in a Nut-shellIn this setion, we introdue the basi reasoning behind non-parametri random �eld andGaussian proess models. Readers who have been exposed to these onepts may jump tothe end of the setion where an overview of the remaining setions is given.In most mahine learning problems, we aim to generalise from a �nite set of observed data,in the sense that our ability to predit unertain aspets of a problem improves after making�Previously at: Institute for Adaptive and Neural Computation, University of Edinburgh, UK.1



the observations. This is possible only if we postulate a priori a relationship between thevariables we will observe and the ones we wish to predit. This relationship is unertainitself, making generalisation a non-trivial problem. For example, in spatial statistis weobserve the values of a funtion at ertain loations and want to predit them at otherones. In temporal statistis, we might want to predit future values of a time series fromits past. In the situations we are interested in here, the postulated relationship an berepresented by an ensemble (or a distribution) of funtions. It is helpful to imagine theobserved data being \generated" by piking a funtion from the ensemble whih gives riseto the sample (typially, observations themselves are imperfet or \noisy"). It is importantto stress that this generative view an well be a rude abstration of the mehanism we reallyhold apable of simulating the phenomenon, as long as its probabilisti inversion leads tosatisfying preditions. This inversion is obtained by onditioning the generative ensembleon the observed data, whih leads to a new adapted ensemble pinned down at observationpoints but still variable elsewhere.In parametri statistis, we agree on a funtion lass indexed by a �nite number of param-eters. A distribution over these parameters indues an ensemble over funtions. Learningfrom observations means to modify this distribution so to adapt the ensemble to the data.If our a priori postulate is a very informed one (e.g. if the funtion lass is motivated bya physial theory of the phenomenon), the parametri approah is the method of hoie,but if many aspets of the phenomenon are unknown or hard to desribe expliitly, non-parametri modelling an be more versatile and powerful. It is important to stress that ouraim is solely to obtain aurate preditions together with valid estimates of unertainty,not to \explain" the inner workings of the true generative proess. In the latter ase, non-parametri modelling is less appliable.In non-parametri statistis, regularities of the relationship are postulated without requiringthe ensemble to be onentrated on a easily desribable lass. For example, we may assumethe ensemble to be stationary or isotropi (see Setion 2), whih allows us to infer propertiesof the generative ensemble even though our observations ome from a single realisationthereof. We might also postulate smoothness so that nearby points (in spae or time) havesimilar values with high probability, periodiity, boundary onditions, et. In ontrast to theparametri ase, it is less lear how we an represent suh a generative ensemble expliitly.A random �eld is a mapping from an input spae to real-valued random variables1, anatural generalisation of a joint distribution to an in�nite index set. Like a joint distribution,we an try to desribe the �eld by its low-order umulants suh as mean and ovarianefuntion, the latter being a bivariate form satisfying a positive semide�niteness propertyakin to a ovariane matrix of a joint distribution. If all umulants above seond ordervanish, the random �eld is Gaussian: a Gaussian proess. Importantly, properties suh asstationarity, isotropy, smoothness, periodiity, et. an be enfored via the hoie of theovariane funtion. Furthermore, all �nite-dimensional marginal distributions of the �eldare jointly Gaussian, and inferene and predition require little more than numerial linearalgebra.With this brief introdution, we hope to have motivated the reader to browse through themore detailed setions to follow. Setion 2 de�nes Gaussian proesses, introdues the im-portant sublasses of stationary and isotropi GPs and develops two di�erent views on GPs1The extension to omplex-valued random �elds is straightforward. Sine most mahine learning appli-ations require real-valued �elds only, we onentrate on this ase for simpliity.



prominent in mahine learning. Some elementary GP models are introdued in Setion 3.Approximate inferene tehniques for suh models are disussed in Setion 4 using a generiframework. Theoretial aspets of GPs an be understood by assoiating them with re-produing kernel Hilbert spaes (RKHS), as shown in Setion 5. Traditionally, GP modelshave been used in the ontext of penalised maximum likelihood and spline smoothing whihare motivated in Setion 6. A variant of spline smoothing, the support vetor mahine hasgained large popularity in the mahine learning ommunity, its relationship to Bayesian GPtehniques is given in Setion 7. GP models have been used extensively in spatial statistis,using an estimation proedure alled kriging, as desribed in Setion 8. The �nal Setion 9deals with the hoie of the ovariane funtion whih is of entral importane in GP mod-elling. We desribe lasses of standard kernels and their properties, show how kernels anbe onstruted from elementary parts, disuss methods for learning aspets of the kerneland �nally illustrate lasses of ovariane funtions over disrete index sets.Readers more interested in pratial mahine learning aspets may want to skip over Se-tions 5 and 6 whih ontain more theoretial material not required to understand GP appli-ations. We use notational onventions familiar to probability theorists whih is introduedin Setion A.1, but are areful to motivate the formalism in the more applied setions.2 Gaussian Proesses: The Proess and the Weight SpaeViewGaussian proess (GP) models are onstruted from lassial statistial models by replainglatent funtions of parametri form (e.g. linear funtions, trunated Fourier or Wavelet ex-pansions, multi-layer pereptrons) by random proesses with Gaussian prior. In this setion,we will introdue GPs and highlight some aspets whih are relevant to mahine learning.We develop two simple views on GPs, pointing out similarities and key di�erenes to distri-butions indued by parametri models. We follow [2℄, Chap. 1,2. A good introdution intothe onepts required to study GP predition is given in [74℄, Chap. 2. For onepts andvoabulary from general probability theory, we refer to [19, 6, 9℄.Let X be an non-empty index set. For the main parts of this paper, X an be arbitrary, buthere we assume that X is at least a group2 (and sometimes we assume it to be Rg ). In anutshell, a random proess X ! R is a olletion of random variables (one for eah x 2 X )over a ommon probability spae. The measure-theoreti de�nition is awkward, but basiallythe same as for a single variable. It an also be viewed as a funtion from the probabilityspae and X into the reals. The funtions X ! R obtained for a �xed atomi event are alledsample paths, and a random proess an also be seen as the orresponding distribution oversample paths. If X � X is �nite, we obtain a random variable 2 RjXj by evaluating theproess at the points X, its distribution is alled �nite-dimensional distribution (f.d.d.). Ifwe assume that a random proess exists and onsider the system of all f.d.d.'s, it is learthat it has to be symmetri and onsistent: a permutation of the omponents of X mustresult in the distribution of an equally permuted random vetor, and if X1 \X2 6= ;, themarginal distributions on the intersetion starting from the ones for X1 and X2 must beidential. Formally, for every n 2 N>0 ; x1; : : : ;xn 2 X , Borel sets B1; : : : ; Bn and every2Has an addition +, an origin 0 and a negation �.



permutation � of f1; : : : ; ng we must have�x�(1);:::;x�(n)(B�(1) � � � � �B�(n)) = �x1;:::;xn(B1 � � � � �Bn) and�x1;:::;xn(B1 � � � � �Bn�1 � R) = �x1;:::;xn�1(B1 � � � � �Bn�1):Importantly, Kolmogorov [28℄ proved that symmetry and onsisteny are also suÆientonditions for suh a spei�ation to guarantee the existene of a random proess (in theonrete measure-theoreti sense) with these f.d.d.'s. The question about uniqueness of ran-dom proesses is triky, beause two proesses an be equivalent (u(x) = v(x) almost surelyfor every x; equivalent proesses are alled versions of eah other), yet di�er signi�antlyw.r.t. almost sure properties of their sample paths. For example, one an onstrut a ver-sion of a smooth proess whose sample paths are not di�erentiable at a �nite number ofpoints almost surely. In the ontext of mahine learning appliations we are interested here,sample path properties suh as di�erentiability are of lesser importane, and we will fouson m.s. properties (to be introdued shortly) whih an be haraterised more diretly andare invariant under hange of version. In other words, we will in general identify a proesswith the equivalene lass of all its versions or with a partiularly \nie" member of thislass,3 and the simple nature of the appliations we are interested in here guarantees theadmissability of this pratie. We will see that global sample path properties of a proess (inthis sense) suh as smoothness and average variability are diretly related to orrespondingm.s. properties. See Adler [2℄ for methods of studying sample path properties.Let fXng be a sequene of real-valued random variables, and reall that Xn ! X (n!1)in quadrati mean (or in mean square (m.s.)) if E[jXn�Xj2℄! 0. M.s. onvergene is weakerthan almost sure (a.s.) onvergene, but turns out to be the most useful mode for disussingGP aspets we require here. In general, X and Y are m.s. equivalent if E[jX�Y j2℄ = 0. In anutshell, for a property whih is traditionally de�ned in terms of limits (suh as ontinuity,di�erentiability, et.) within R we an typially de�ne the orresponding m.s. property forsalar random variables by substituting normal for m.s. onvergene.Suppose that u(x) is a random proess. The �rst and seond-order statistis of u(x) are itsmean funtion m(x) = E[u(x)℄ and ovariane funtionK(x;x0) = E �(u(x)�m(x))(u(x0)�m(x0))� :Obviously, both depend on the f.d.d.'s of the proess only. The ovariane funtion is en-tral to studying harateristis of the proess in the mean square sense. It is a positivesemide�nite4 funtion in the sense that for every n 2 N, x1; : : : ;xn 2 X ; z1; : : : ; zn 2 R:nXi;j=1 zizjK(xi;xj) � 0: (1)This is lear beause for X =Pi zi(u(xi)�m(xi)) we have E[jXj2℄ � 0. Positive semidef-initeness means that for every �nite set X � X the symmetri matrix K(X;X) 2 RjXj;jXjobtained by evaluating K on X � X is positive semide�nite. Note that this implies thatK(x;x) � 0 for all x. K is alled positive de�nite if (1) holds with > whenever z 6= 0.3As an example, a Wiener proess (see Setion 2.3) always has a version with ontinuous sample paths.4This term is not uniquely used in the literature, it is sometimes replaed by non-negative de�nite oreven positive de�nite (whih has a di�erent meaning here).



The positive semide�niteness of K leads to an important spetral deomposition whih isdisussed in Setion 5. A positive semide�nite K will also be referred to as kernel, pointingout its role as kernel for a linear integral operator (see Setion 5).2.1 Stationary ProessesIn many situations, the behaviour of the proess does not depend on the loation of theobserver, and under this restrition a rih theory an be developed, linking loal m.s. prop-erties of the proess to the behaviour of K lose to the origin. A proess is alled stritlyhomogeneous (or stritly stationary) if its f.d.d.'s are invariant under simultaneous trans-lation of their variables. This implies that m(x) is onstant and K(x;x0) is a funtion ofx�x0 (we write K(x;x0) = K(x�x0) in this ase). A proess ful�lling the latter two on-ditions is alled (weakly) homogeneous (or (weakly) stationary). For a stationary proess,the hoie of the origin is not reeted in the statistis up to seond order. If K(0) > 0,�(x) = K(x)K(0)is alled orrelation funtion. A stationary proess has a spetral representation as a stohas-ti Fourier integral (e.g., [2℄, Chap. 2; [19℄, Chap. 9; [88℄), based on Bohner's theorem whih(for X = Rg ) asserts that �(x) is positive semide�nite, furthermore uniformly ontinuouswith �(0) = 1; j�(x)j � 1 i� it is the harateristi funtion of a variable !, i.e.�(x) = Z eixT!dF (!) (2)for a probability distribution funtion F (!). If F (!) has a density f(!) (w.r.t. Lebesguemeasure), f is alled spetral density. This theorem allows to prove positive semide�nitenessof K by omputing its Fourier transform and heking that it is non-negative. If so, it mustbe proportional to the spetral density. Note that sine �(x) is an even funtion, the spetraldistribution is symmetri around 0, and if f(!) exists it is even as well.The f.d.d.'s of a proess determine its mean square properties, while this is not true ingeneral for almost sure properties (suh as ontinuity or di�erentiability of sample paths).Even stronger, for a zero-mean proess, m.s. properties are usually determined entirelyby the ovariane funtion K(x;x0). For stationary proesses, it is merely the behaviourof K(x) at the origin whih ounts: the m.s. derivative5 Dxu(x) exists everywhere i�DxDxK(x) exists at x = 0. Thus, the smoothness of the proess in the m.s. sense growswith the degree of di�erentiability at 0. For example, a proess with the RBF (Gaussian)ovariane funtion K (27) is m.s. analyti, beause K is analyti (di�erentiable up to anyorder) at 0.2.2 Isotropi ProessesA stationary proess is alled isotropi if its ovariane funtion K(x) depends on kxkonly. In this ase, the spetral distribution F is invariant under isotropi isomorphisms(e.g., rotations). Loosely speaking, seond-order harateristis of an isotropi proess are5Here, Dx denotes a di�erential funtional, suh as �2=(�x1�x2).



the same from whatever position and diretion they are observed. It is muh simpler toharaterise isotropi orrelation funtions than stationary ones in general. Let �(�) = �(x)for � = kxk. The spetral deomposition (2) simpli�es to�(�) = Z �g=2�1(� !)dF (!) (3)where F (!) = R Ifk!k�!g dF (!) is a distribution funtion for ! � 0 and��(z) = �(� + 1)(z=2)� J�(z);where J�(z) is a Bessel funtion of the �rst kind (see [2℄, Set. 2.5). Reall that g is the di-mensionality of the input spae X = Rg . The right hand side in (3) is the Hankel transformof order g=2� 1 of F (see [74℄, Set. 2.10). Alternatively, if the spetral density f(!) existsand f(!) = f(!) for ! = k!k, then dF (!) = Ag�1!g�1f(!) d!,6 so we an easily onvertto the spetral representation in terms of f(!). Denote the set of �(�) orresponding toisotropi orrelation funtions in Rg by Dg. Note that (3) haraterises Dg (by Bohner'stheorem). It is lear that Dg+1 � Dg, sine an isotropi orrelation funtion in Rg+1 re-strited to a g-dimensional subspae is in Dg. Beware that both F (!) and f(!) dependon the dimension g for whih �(�) is used to indue a orrelation funtion (see (3)). LetD1 = Tg�1Dg. Sine �g=2�1 �(2g)1=2x�! e�x2 (g !1);one an show that �(�) 2 D1 i� �(�) = R exp(��2!2) dF (!) (this result is due to Shoen-berg).Note that the assumption of isotropy puts strong onstraints on the orrelation funtion,espeially for large g. For example, �(�) � infx �g=2�1(x) � �1=g so large negative orrela-tions are ruled out. If �(�) 2 D1, it must be non-negative. Furthermore, for large g �(�) issmooth on (0;1) while it may have a jump at 0 (additive white noise). If �(�) 2 Dg andB 2 Rg;g is nonsingular, then �B (x) = �(kBxk)is a orrelation funtion as well, alled anisotropi. Examples of (an)isotropi ovarianefuntions are given in Setion 9.2.3 Two Views on Gaussian ProessesA Gaussian proess (GP) is a proess whose f.d.d.'s are Gaussian. Sine a Gaussian isdetermined by its �rst and seond-order umulants and these involve pairwise interationsonly, its f.d.d.'s are ompletely determined by mean and ovariane funtion. This meansthat for GPs, strong and weak stationarity are the same onept. GPs are by far the mostaessible and well-understood proesses (on unountable index sets). It is lear that forevery positive semide�nite funtion K there exists a zero-mean GP with K as ovarianefuntion (by Kolmogorov's theorem), so GPs as modelling tool are very exible. Importantly,by hoosing K properly we an enode properties of the funtion distribution impliitly aswe desired in Setion 1.6Ag�1 = 2�g=2=�(g=2) is the surfae area of the unit sphere in Rg .



In onjuntion with latent variable modelling tehniques, a wide variety of non-parametrimodels an be onstruted (see Setion 3). The fat that all f.d.d.'s are Gaussian withovariane matries indued by K(x;x0) an be used to obtain approximations to Bayesianinferene fairly straightforwardly (see Setion 4), and these approximations often turn outto be muh more aurate than for parametri models of equal exibility (suh as multi-layer pereptrons). It is interesting to note that m.s. derivatives Dxu(x) of a GP are GPsagain (if they exist), andE hD(1)x u(x)D(2)x0 u(x0)i = D(1)x D(2)x0 K(x;x0);thus derivative observations an be inorporated into a model in the same way as funtionvalue observations (for appliations, see [46, 71℄). Charateristis suh as m.s. di�erentia-bility up to a given order an be ontrolled via the ovariane funtion (see Setion 2.1), anexample is given in Setion 9.One of the most thoroughly studied GPs is theWiener proess (or Brownian motion, or on-tinuous random walk) with ovariane funtion K(x; x0) = �2minfx; x0g (here, X = R�0 ;for multivariate generalisations to Brownian sheets, see [2℄, Chap. 8). It is haraterised byu(0) = 0 a.s., E[ju(x + h) � u(x)j2℄ = �2h; h � 0, and by having orthogonal7 inrements:E[(u(x1)�u(x2))(u(x3)�u(x4))℄ = 0; x1 � x2 � x3 � x4. Note that u(x) is not stationary,a stationary version with orthogonal inrements is the Ornstein-Uhlenbek proess (see Se-tion 9.1). The Wiener proess is an example for a di�usion proess. It has a large number ofappliations in mathematis, physis and mathematial �nane. The property of orthogonalinrements allows to de�ne stohasti integrals (e.g., [19℄, Chap. 13) with a Wiener proessas (random) measure. u(x) is m.s. ontinuous everywhere, but not m.s. di�erentiable atany point. In fat, a version of the Wiener proess an be onstruted whih has ontinuoussample paths, but for every version sample paths are nowhere di�erentiable with probability1. The Wiener proess an be used to expliitly onstrut other GPs by means of stohastiintegrals, the proedure is skethed in Setion 6.We now develop two elementary views on Gaussian proesses, the proess and the weightspae view. While the former is usually muh simpler to work with, the latter allows usto relate GP models to parametri linear models rather diretly. We follow [85℄.8 The pro-ess view on a zero-mean GP u(x) with ovariane funtion K is in the spirit of the GPde�nition given above. u(x) is de�ned impliitly, in that for any �nite subset X � X itindues a f.d.d. N(0;K (X)) over the vetor u = u(X) of proess values at the points X.Here, K (X) = K (X;X) = (K(xi;xj))i;j where X = fx1; : : : ;xng. Kolmogorov's theoremguarantees the existene of a GP with this family of f.d.d.'s.9 In pratie, many modellingproblems involving an unknown funtional relationship u(x) an be formulated suh thatonly ever a �nite number of linear harateristis of u(x) (e.g., evaluations or derivativesof u(x)) are linked to observations or preditive queries, and in suh ases the proessview boils down to dealing with the \projetion" of the GP onto a multivariate Gaussiandistribution, thus to simple linear algebra of quadrati forms.107Orthogonality implies independene sine the proess is Gaussian.8We use the term \proess view" instead of \funtion spae view" employed in [85℄. The relationshipbetween GPs and assoiated spaes of smooth funtions is a bit subtle and introdued only below in Setion 5.9If K is ontinuous everywhere, a version exists with ontinuous sample paths, but we do not require thishere.10In pratie, some knowledge of numerial mathematis is required to avoid numerially instable proe-



GPs an also be seen from a weight spae viewpoint, relating them to the linear model. Inthe Bayesian ontext this view was �rst suggested by O'Hagan [45℄ as a \loalised regressionmodel" (the weight spae is �nite-dimensional there) while the generalisation to arbitraryGP priors developed there uses the proess view. This paper is among the �rst to address GPregression in a rigorous Bayesian ontext, while the equivalene between spline smoothingand Bayesian estimation of proesses was notied earlier by Kimeldorf and Wahba [27℄ (seeSetion 6). Reall the linear model y = �(x)T� + "; (4)where �(x) is a feature map from the ovariate x and " is independent Gaussian noise.Every GP whose ovariane funtion satis�es weak onstraints an be written as (4), albeitwith possibly in�nite-dimensional weight spae. To develop this view, we use some fatswhih are disussed in detail below in Setion 5. Under mild onditions on the ovarianefuntion K(x;x0) of u(x), we an onstrut a sequenekX�=1 ���1=2� ��(x);whih onverges to u(x) in quadrati mean (k ! 1).11 Here, �� are i.i.d. N(0; 1) vari-ables. �� are orthonormal eigenfuntions of the operator indued by K with orrespondingeigenvalues �1 � �2 � � � � � 0; P��1 �2� < 1, in a sense made preise in Setion 5.Thus, if � = (��)� and �(x) = (�1=2� ��(x))� , then u(x) = �(x)T� in quadrati mean,and �(x)T�(x0) = K(x;x0). This is the weight spae view on GPs and allows to view anon-parametri regression model y = u(x) + "as diret in�nite-dimensional generalisation of the linear model (4) with spherial Gaussianprior on �. We say that �(x) maps into a feature spae whih is typially (ountably)in�nite-dimensional. It is important to note that in this onstrution of the feature map�(x) the individual omponents �1=2� ��(x) do not have the same saling, in the sense thattheir norm in L2(�) (the Hilbert spae they are drawn from and that K operates on) is�1=2� ! 0 (� ! 1). They are omparable in a di�erent (RKHS) norm whih sales withthe \roughness" of a funtion. Intuitively, as � !1, the graph of �� beomes rougher andinreasingly ompliated, see Setion 5 for details.For all inferene purposes whih are onerned with f.d.d.'s of u(x) and its derivatives (orother linear funtionals) only, the proess and the weight spae view are equivalent: they leadto idential results. However, we feel that often the proess view is muh simpler to workwith, avoiding spurious in�nities12 and relying on familiar Gaussian manipulations only.On the other hand, the weight spae view is more frequently used at least in the mahinelearning literature, and its peuliarities may be a reason behind the pereption that GPmodels are diÆult to interpret. There is also the danger that false intuitions or onlusionsdures. Sine most matries to be dealt with are positive semide�nite, this is not too hard. Some reliabletehniques are mentioned in Setion 4.11We only need pointwise m.s. onvergene, although muh stronger statements are possible under mildassumptions, e.g. [2℄, Set. 3.3.12Whih seem to anel out almost \magially" in the end from the weight spae viewpoint, while in�nitiesdo not our in the proess view in the �rst plae.



are developed from interpolating geometrial arguments from low-dimensional Eulideanspae to the feature spae.13 We should also note that a weight spae representation of aGP in terms of a feature map � is of ourse not unique. The route via eigenfuntions of theovariane operator is only one way to establish suh.14 About the only invariant is that wealways have �(x)T�(x0) = K(x;x0).2.4 Gaussian Proesses as Limit Priors of Parametri ModelsWe onlude this setion by mentioning that one of the prime reasons for fousing urrentmahine learning interest on GP models was a highly original di�erent way of establishinga weight spae view proposed in [42℄. Consider a modelf(x) = HXj=1 vjh(x;u(j))whih ould be a multi-layer pereptron (MLP) with hidden layer funtions h, weightsu(j) and output layer weights v. Suppose that u(j) have independent idential priors s.t.the resulting h(x;u(j)) are bounded almost surely over a ompat region of interest. Also,vj � N(0; !2=H) independently. Then, for H !1, f(x) onverges in quadrati mean to azero-mean GP with ovariane funtion !2Eu [h(x;u)h(x0;u)℄. Stronger onditions wouldassure almost sure onvergene uniformly over a ompat region. The bottom line is thatif we take a onventional parametri model whih linearly ombines the outputs of a largenumber of feature detetors, and if we sale the outputs s.t. eah of them in isolation hasonly a negligible ontribution to the response, we might just as well use the orrespondingGaussian proess model. Neal [42℄ also shows that if a non-zero number of the non-Gaussianfeature outputs have a signi�ant impat on the response with non-zero probability, thenthe limit proess is typially not Gaussian.To onlude, the weight spae view seems to relate non-parametri GP models with para-metri linear models fairly diretly. However, there are important di�erenes in general.Neal showed that GPs are obtained as limit distributions of large linear ombinations offeatures if eah feature's ontribution beomes negligible, while the output distributions ofarhitetures whih �t at least a few strong feature detetors are typially not Gaussian.Preditions from a GP model are smoothed versions of the data (in a sense made on-rete in Setion 6), i.e. interpolate by minimising general smoothness onstraints enodedin the GP prior, as opposed to parametri models whih predit by fousing on these fun-tions (within the family) whih are most onsistent with the data. O'Hagan [45℄ disussesdi�erenes w.r.t. optimal design.13Steinwart [75℄ gives the following example. For a universal ovariane funtion (most kernels disussedhere have this property), any two �nite disjoint subsets of X an be separated by a hyperplane in featurespae, and the distanes of all points to the plane an be made to lie in an interval of arbitrarily small size.Steinwart onludes that \any �nite dimensional interpretation of the geometri situation in a feature spaeof a universal kernel must fail". We strongly agree.14For example, in Setion 5 we disuss K's role as reproduing kernel, in the sense that K(x;x0) =(K(�;x); K(�;x0))K in some Hilbert spae with inner produt (�; �)K . We ould de�ne � to map x 7! K(�;x)and use the Hilbert spae as weight spae.



3 Some Gaussian Proess ModelsThe simplest Gaussian proess model is useful for regression estimation:y = u+ ";where u = u(x) is a priori a zero-mean Gaussian proess with ovariane funtion K and "is independent N(0; �2) noise. Inferene for this model is simple and analytially tratable,beause the observation proess y(x) is zero-mean Gaussian with ovariane K(x;x0) +�2Æx;x0 .15 Given some i.i.d. data S = f(xi; yi) j i = 1; : : : ; ng, let K = (K(xi;xj))i;j . Then,P (u) = N(0;K ) andP (ujS) = N �K (�2I +K )�1y ; �2(�2I +K )�1K� ; (5)where u = (u(xi))i. For some test point x� distint from the training points, u� =u(x�)?y ju, so thatP (u�jx�; S) = Z P (u�jx�;u)P (ujS) du= N �u�jk(x�)T (�2I +K )�1y;K(x�;x�)� k(x�)T (�2I +K )�1k(x�)� :Here, k(x�) = (K(xi;x�))i. We see that for this model, the posterior preditive proessu(x) given S is Gaussian with mean funtion yT (�2I +K )�1k(x) and ovariane funtionK(x;x0)� k(x)T (�2I +K )�1k(x0):Note that the mean funtion used for predition is linear in the targets y for every �xedx�. Furthermore, the posterior ovariane funtion does not depend on the targets at all.In pratie, if only posterior mean preditions are required, the predition vetor � =(�2I +K)�1y an be omputed using a linear onjugate gradients solver whih runs inO(n2) if the eigenvalue spetrum of K shows a fast deay. If preditive varianes for manytest points are required, the Cholesky deomposition16 �2I+K = LLT should be omputed,after whih eah variane omputation requires a single bak-substitution.The pointwise preditive variane is never larger than the orresponding prior variane, butthe shrinkage dereases with inreasing noise level �2. The same result an be derived inthe weight spae view with u(x) = �(x)T�, applying the standard derivation of Bayesianlinear regression (e.g., [85℄). Note that just as in parametri linear regression, the smoothedpredition E[ujS℄ is a linear funtion of the observations y , as is the mean funtion of thepreditive proess E[u(x)jS℄ (see also Setion 8). Note also that if K(x;x0)! 0 as kx�x0kgets big, preditive mean and variane for points x far from all data tend to prior mean0 and prior variane K(x;x). Seond-level inferene problems suh as seleting values forhyperparameters (parameters of K and �2) or integrating them out are not analytially15In the ontext of this model, it is interesting to note that if K0 is stationary and ontinuous everywhereexept at 0, it is the sum of a ontinuous (stationary) ovariane K and a white noise ovariane / Æx;x0 .Furthermore, Sh�onberg onjetured that if K0 is an isotropi bounded ovariane funtion, it must beontinuous exept possibly at 0.16A symmetri matrix is positive de�nite i� it has a (unique) Cholesky deomposition LLT , where L islower triangular with positive diagonal elements.



tratable and approximations have to be applied. Approximate model seletion is disussedin Setion 4.We an generalise this model by allowing for an arbitrary \noise distribution" P (yju),retaining the GP prior on u(x). The generative view is to sample the proess u(�) fromthe prior, then yi � P (yiju(xi)) independent from eah other given u(�).17 The likelihoodfuntion fators as a produt of univariate terms:P (yjX ; u(�)) = P (yju) = nYi=1P (yijui): (6)Sine the likelihood depends on u(�) only via the �nite set u, the preditive posterior proessan be written as dP (u(�)jS) = P (ujS)P (u) dP (u(�)); (7)i.e. P (u(X)jS) = (P (ujS)=P (u))P (u(X)) for any �nite X � X . The prior measure is\shifted" by multipliation with P (ujS)=P (u) depending on the proess values u at thetraining points only. The preditive proess is not Gaussian in general, but its mean andovariane funtion an be obtained from knowledge of the posterior mean and ovarianematrix of P (ujS) as disussed in Setion 4. For a test point x�,P (y�jx�; S) = E [P (y�ju�)℄where the expetation is over the preditive distribution of u� = u(x�). In this generalmodel, �rst-level inferene is not analytially tratable. In Setion 4 a general approximateinferene framework is disussed. Markov Chain Monte Carlo (MCMC) methods an beapplied fairly straightforwardly, for example by Gibbs sampling from the latent variablesu [43℄. Suh methods are attrative beause the marginalisation over hyperparameters anbe dealt with in the same framework. However, naive realisations may have a prohibitiverunning time due to the large number of orrelated latent variables, and more advanedtehniques an be diÆult to handle in pratie. While MCMC is maybe the most advanedand widely used lass of approximate inferene tehniques, it is not disussed in any furtherdetail here (see [41℄ for a review).3.1 Generalised Linear Models. Binary Classi�ationA large lass of models of this kind is obtained by starting from generalised linear models(GLMs) [44, 37℄ and replaing the parametri linear funtion xT� by a proess u(x) witha GP prior. This an be seen as diret in�nite-dimensional generalisation of GLMs byemploying the weight spae view (see Setion 2). In the spline smoothing ontext, thisframework is presented in detail in [18℄. It employs noise distributionsP (yju) = exp ���1(y u� Z(u)) + (y; �)� ;i.e. P (yju) is in an exponential family with natural parameter u, suÆient statistis y=� andlog partition funtion ��1Z(u). Here, � > 0 is a sale hyperparameter. The linear model is17This is generalised easily to allow for bounded linear funtionals of the latent proess u(�) instead of theevaluation funtional Æxi , as disussed in Setion 5.



a speial ase with � = �2; u = � = Eu[y℄ and Z(u) = (1=2)u2. A tehnially attrativefeature of this framework is that logP (yju) is stritly onave in u, leading to a stritlylog-onave, unimodal posterior P (ujS). For binary lassi�ation and y 2 f�1;+1g, theGLM for the binomial noise distribution is logisti regression with the logit noiseP (yju) = �(y (u+ b)); �(t) = 11 + e�t : (8)Here, � = 2 and Z(u) = 2 log osh((u+ b)=2). Another frequently used binary lassi�ationnoise model is probit noiseP (yju) = �(y (u+ b)) = E��N(0;1) �Ify(u+b)+�>0g� (9)whih an be seen as noisy Heaviside step and is not in the exponential family. Both noisemodels (8), (9) are stritly log-onave.3.2 Models with C Latent ProessesWe an also allow for a �xed number C � 1 of latent variables for eah ase (x;y), i.e. Cproesses u(x). The likelihood fators asnYi=1P (yiju(i)); u(i) = (u(xi)):u(x) is zero-mean Gaussian a priori with ovariane funtionK(). While it is theoretiallypossible to use ross-ovariane funtions for prior ovarianes between u for di�erent ,it may be hard to ome up with a suitable lass of suh funtions.18 Furthermore, theassumption that the proesses u are independent a priori leads to large omputationalsavings, sine the joint ovariane matrix over the data assumes blok-diagonal struture.Note that in this struture, we separate w.r.t. di�erent , while in blok-diagonal struturesoming from the fatorised likelihood we separate w.r.t. ases i.An important example using C latent proesses is C-lass lassi�ation. The likelihoodomes from a multinomial GLM (or multiple logisti regression). It is onvenient to use abinary enoding for the lass labels, i.e. y = Æ for lass  2 f1; : : : ; Cg.19 The noise ismultinomial with � = E[y ju℄ = softmax(u) = �1T exp(u)��1 exp(u):u 7! � is sometimes alled softmax mapping. Note that this mapping is not invertible, sinewe an add �1 to u for any � without hanging �. In other words, the parameterisation ofthe multinomial by u is overomplete, due to the linear onstraint yT1 = 1 on y, and theorresponding GLM log partition funtionZ(u) = log 1T exp(u)is not stritly onvex. The usual remedy is to onstrain u by for example �xing uC = 0. Thisis �ne in the ontext of �tting parameters by maximum likelihood, but may be problemati18Hyperparameters may be shared between the prior proesses, making them marginally dependent.19We use vetor notation for u; y 2 RC assoiated with a single ase. This should not be onfused withthe vetor notation u; y 2 Rn used above to group variables for all ases.



for Bayesian inferene. As mentioned above, we typially use priors whih are i.i.d. over theu, so if we �x uC = 0, the indued prior on � is not an exhangeable distribution (i.e.omponent permutations of u an have di�erent distributions) and �C is singled out forno other than tehnial reasons. We think it is preferable in the Bayesian ontext to retainsymmetry and aept that u 7! � is not 1-to-1. Dealing with this non-identi�ability duringinferene approximations is not too hard sine softmax is invertible on any plane orthogonalto 1 and Z(u) is stritly onvex on suh. Anyway, this detail together with the two di�erentbloking strutures mentioned above renders implementations of approximate inferene forthe C-lass model somewhat more involved than the binary ase (see [86℄ for an example).Other examples for C-proess models are ordinal regression (\ranking") models (see [37℄for likelihood suggestions) or multivariate regression.3.3 Robust RegressionGP regression with Gaussian noise an lead to poor results if the data is prone to outliers,due to the light tails of the noise distribution. A robust GP regression model an be ob-tained by using a heavy-tailed noise distribution P (yju) suh as a Laplae or even Student-tdistribution. An interesting idea is to use the fat that the latter is obtained by startingwith N(0; ��1) and to integrate out the preision � over a Gamma distribution (e.g., [42℄).Thus, a robust model an be written asy = u+ "; " � N(0; ��1);where � is drawn i.i.d. from a Gamma distribution (whose parameters are hyperparameters).The posterior P (ujS; � ) onditioned on the preision values �i is Gaussian and is omputedin the same way as for the ase �i = ��2 above. � an be sampled by MCMC, or may behosen to maximise the posterior P (� jS). The marginal likelihood P (yj� ) is Gaussian andan be omputed easily. However, note that in the latter ase the number of hyperparametersgrows as n whih might invalidate the usual justi�ation of marginal likelihoodmaximisation(see Setion 4).4 Approximate Inferene and LearningWe have seen in the previous setion that the posterior proess for a likelihood of the generalform (6) an be written as \shifted" version (7) of the prior. About the only proesses (inthis ontext) whih an be dealt with feasibly are Gaussian ones, and a general way ofobtaining a GP approximation to the posterior proess is to approximate P (ujS) by aGaussian Q(u),20 leading to the proessdQ(u(�)) = Q(u)P (u)dP (u(�)) (10)whih is Gaussian (reall from Setion A.1 that this is a onise way of writing thatQ(u(X)) = (Q(u)=P (u))P (u(X)) for every �nite X � X ). An optimal way of hoosingQ would be to minimise the relative entropy (De�nition 1)D[P (u(�)jS) kQ(u(�))℄ = D[P (ujS) kQ(u)℄: (11)20The onditioning on S in Q(�) is omitted for notational simpliity.



The equality is intuitively lear, sine Q(u(�)); P (u(�)jS) and P (u(�)) are the same ondi-tional on u. Formally, it follows from the fat that if dP (u(�)jS) � dQ(u(�)), thendP (u(�)jS) = P (ujS)Q(u) dQ(u(�));and otherwise D[P (ujS) kQ(u)℄ =1 (reall our notation from Setion A.1). At the mini-mum point (unique w.r.t. f.d.d.'s of Q) Q and P (�jS) have the same mean and ovarianefuntion. This is equivalent to moment mathing and requires us to �nd mean and o-variane matrix of P (ujS). Unfortunately, this is intratable in general for large datasetsand non-Gaussian noise. Any other Gaussian approximation Q(u) leads to a GP posteriorapproximation Q(u(�)), and the intratable (11) an nevertheless be valuable as guideline.Here, we are primarily interested in approximate inferene methods for GP models whihemploy GP approximations (10) to posterior proesses viaQ(u) = N(u jK�;A): (12)Here, �; A an depend on the data S, the ovariane funtionK (often via the kernel matrixK ) and on other hyperparameters. This lass ontains a variety of methods proposed inthe literature. Virtually all of these have a redued O(n) parameterisation, sine A has therestrited form A = �K�1 + I �;IDII;���1 (13)with D 2 Rd;d diagonal with positive entries and I � f1; : : : ; ng; jIj = d. For the methodsmentioned below in this setion, d = n and I �;I = I, but for sparse GP approximations (e.g.,[13, 78, 31℄) we have d � n. In the latter ase, �nI = 0 and we use � 2 Rd for simpliity,replaing � in (12) by I �;I� .From (10), the (approximate) preditive posterior distribution of u� = u(x�) at a test pointx� is determined easily as Q(u�jx�; S) = N(u�j�(x�); �2(x�)), where�(x�) = kI(x�)T �;�2(x�) = K(x�;x�)� kI(x�)TD1=2B�1D1=2kI(x�);B = I +D1=2KID1=2: (14)Here, kI(x�) = (K(xi;x�))i2I . More generally, the GP posterior approximation has meanfuntion �(x) and ovariane funtionK(x;x0)� kI(x)TD1=2B�1D1=2kI(x0):The preditive distribution P (y�jx�; S) is obtained by averaging P (y�ju�) overN(u�j�(x�); �2(x�)). If this expetation is not analytially tratable, it an be done byGaussian quadrature (e.g., [54℄, Set. 4.5) if P (y�ju�) is smooth and does not grow fasterthan polynomial.A simple and numerially stable way to determine the preditive varianes is to ompute theCholesky deompositionB = LLT after whih eah variane requires one bak-substitutionwith L. It is important to stress that while inferene approximation in GP models oftenboils down to simple linear algebra, it is ruial in pratie to hoose representations and



proedures whih are numerially stable. In the presene of positive de�nite matries, teh-niques based on the Cholesky fatorisation are known to be most stable.21 Furthermore, inour representation B is well-onditioned sine all its eigenvalues are � 1.We will refer to � as predition vetor. More generally, as mentioned in Setion 2, we anuse derivative information or other bounded linear funtionals of the latent proess u(x) inthe likelihood and/or for the variables to be predited, using the fat that the orresponding�nite set of salar variables is multivariate Gaussian with prior ovariane matrix derivedfrom the ovariane funtion K (as disussed in more detail in Setion 5).A generalisation to the multi-proess models of Setion 3 is also straightforward in priniple.Here, u has dimension C n. Again A is restrited to the form (13), although D is merelyblok-diagonal with n (C � C) bloks on the diagonal. Moreover, if the proesses are apriori independent, both K and K�1 onsist of C (n � n) bloks on the diagonal. Thegeneral formulae for predition (14) have to be modi�ed for eÆieny. The details are moreinvolved and may depend on the onrete approximation method, C-proess models are notdisussed in further detail here.4.1 Some ExamplesA simple and eÆient way of obtaining a Gaussian approximation Q(ujS) is via Laplae'smethod (also alled saddle-point approximation), as proposed in [86℄ for binary lassi�ationwith logit noise (8). To this end, we have to �nd the posterior mode û whih an be doneby a variant of Newton-Raphson (or Fisher soring, see [37℄). Eah iteration onsists of aweighted regression problem, i.e. requires the solution of an n � n positive de�nite linearsystem. This an be done approximately in O(n2) using a onjugate gradients solver. Atthe mode, we have� = Y �(�Y û); D = (diag �(�Y û))(diag �(Y û)); (15)where � is the logisti funtion (8) and Y = diagy. All n diagonal elements of D arepositive. Reall that the Laplae approximation replaes the log posterior by a quadrati�tted to the loal urvature at the mode û. For the logit noise the log posterior is stritlyonave and dominated by the Gaussian prior far out, so in general a Gaussian approxima-tion should be fairly aurate. On the other hand, the true posterior is signi�antly skewed,meaning that the mode an be quite distant from the mean (whih would be optimal) andthe ovariane approximation via loal urvature around the mode an be poor.The expetation propagation (EP) algorithm [39℄ for GP models an signi�antly out-perform the Laplae GP approximation in terms of predition auray, but is also moreostly.22 It is also somewhat harder to ensure numerial stability. On the other hand, EPis more general and an for example deal with disontinuous or non-di�erentiable log likeli-hoods. In fat, the speial ase of EP for Gaussian �elds has been given earlier by Opper andWinther [48℄ under the name ADATAP, and EP an be seen as an iterative generalizationof older Bayesian online learning tehniques.21Matrix inversion is often reommended in the GP mahine learning literature. It is well known innumerial mathematis that inversion should be avoided whenever possible for reasons of stability, and inthe ontext of our GP framework using a Cholesky deomposition is even more eÆient.22Partly due to its more omplex iterative struture, but also beause its elementary steps are smallerthan for the Laplae tehnique and annot be vetorised as eÆiently.



A range of di�erent variational approximations have been suggested in [16, 65, 24℄. Notethat for the variational method where Q(ujS) is hosen to minimise D[� kP (ujS)℄, it is easyto see that the best Gaussian variational distribution has a ovariane matrix of the form(13) (e.g., [64℄, Set. 5.2.1).Sparse approximations to GP inferene are developed in [12, 13, 31℄. While the originalappliation was online learning, they are understood easier as \sparsi�ations" of EP (orADATAP). While the approximations mentioned so far have training time saling of O(n3),sparse inferene approximations redue this saling to O(nd2) with adjustable d � n. Formany problems, sparse approximations attain suÆient auray in essentially linear timein n whih allows the appliation in data-rih settings. The idea is to onentrate on asubset I � f1; : : : ; ng; jIj = d of the training data whih we all the ative set, then toapproximate the true likelihood P (yju) of the model by a likelihood approximation Q(uI)whih is a funtion of the omponents uI only. With this replaement, inferene beomeslinear in n (as an be seen from the formulae in this setion whih allow the use of an ativeset). The hallenge is how to hoose I and the form for Q(uI) in a way to best approximatethe moments of the true posterior P (ujy), while staying within the resoure limitations ofO(nd2) time and O(nd) memory.23 Also, if P (y ju) is not Gaussian, the sparse tehniquehas to be embedded in an inferene approximation of the kind disussed in this setion.Details on some sparse shemes an be found in [78, 13, 31℄, some generi shemes based onthe EP algorithm and information-theoreti seletion heuristis for I are desribed in [63℄.Free Matlab software has been released by Lehel Csat�o.244.2 Model SeletionSo far we have only been onerned with �rst-level inferene onditioned on �xed hyper-parameters. A useful general method has to provide some means to selet good values forthese parameters or to marginalise over them (see Setion 3). The latter is the orret wayto proeed in a strit Bayesian sense and an be approximated by MCMC tehniques, butoften model seletion is omputationally more attrative. A frequently used general empiri-al Bayesian method for marginalising over nuisane hyperparameters is marginal likelihoodmaximisation or maximum likelihood II (also alled evidene maximisation). This tehniquean be applied to the generi GP approximation desribed in this setion, leading to apowerful generi way of adjusting hyperparameters via nonlinear optimization whih saleslinearly in the number of parameters. It is important to point out that suh automatimodel seletion tehniques are a strong advantage of Bayesian GP methods over other ker-nel mahines suh as SVMs (see Setion 7) for whih we do not know of seletion strategiesof similar power and generality.If we denote the hyperparameters by �, the marginal likelihood is P (Sj�) = P (yj�), wherethe latent \primary" parameters u have been integrated out. If S is suÆiently large and� of rather small �xed dimension, the hyperposterior P (�jS) frequently is highly onen-trated around a mode �̂. Instead of using P (�jS) to marginalise over �, we replae theposterior by Æ�̂(�), thus simply plug in �̂ for �. This is an example of a maximum a pos-23Choosing I ompletely at random is possible, but performs poorly in situations suh as lassi�ationwhere the inuene of patterns on the posterior an be very di�erent.24See http://www.kyb.tuebingen.mpg.de/bs/people/satol/ogp/index.html.



teriori (MAP) approximation.25 Finding �̂ basially amounts to maximising the marginallikelihood, beause the hyperprior P (�) is of a simple form. Conditions under whih thehyperposterior is suÆiently peaked are hard to ome by in general and will usually beoverrestritive for realisti models.26 Thus, while marginal likelihood maximisation doesnot solve the model seletion problem in general, it has been shown to work well in manyempirial studies featuring very di�erent models, and its desription as \plug-in" approx-imation to Bayesian marginalisation may lead to suessful extensions in ases where thesimple method fails.Some readers might worry at this point that we propose to selet � by maximising thelikelihood P (yj�), and maximum likelihood tehniques are prone to over�tting. The keydi�erene is that in the marginal likelihood, the primary \parameter" u(�) has been in-tegrated out. While hoosing primary parameters so as to maximise the likelihood oftenleads to overompliated �ts that generalise badly, this is not true in general for marginallikelihood maximisation. A simple argument (yet not a proof) is that a value �(1) leading tovery ompliated u(�) needs to assign mass P (u(�)j�) to many more funtions than a value�(2) leading to simple u(�) (e.g. linear or low-order polynomial), so even if the likelihoodof y is muh higher for some of the ompliated u(�), in the proess of marginalisationthe ompliated funtions are downweighted stronger in the integral for P (y j�(1)) than arethe simpler funtions in the integral for P (y j�(2)). This \Oam razor" e�et has beenanalysed by MaKay [33℄. However it is obviously possible to reate situations in whihmarginal likelihood maximisation still leads to over�tting.27 As a general rule of thumb, thedimensionality of the hyperparameters � should not sale with n,28 and the Oam razorargument just given should intuitively apply to the situation (one more, we do not knowof a de�nite test separating admissable from non-admissable ases in general).We will fous on marginal likelihood maximisation as general model seletion tehnique.The log marginal likelihood logP (yj�) is as diÆult to ompute as the posterior P (ujS;�)and has to be approximated in general.29 It is easy to see that the variational lower boundlogP (yj�) � EQ [logP (y ju;�) + logP (uj�)℄ + H[Q(u)℄= EQ [logP (y ju;�)℄�D[Q(u) kP (uj�)℄: (16)holds for any distribution Q(u) (reall relative and di�erential entropy from Setion A.2).The slak in the bound is the relative entropy D[Q(u) kP (ujS;�)℄. Note that the posteriorapproximation Q(u) depends on � as well, but it is not feasible in general to obtain its exatgradient w.r.t. �. Variational EM, an important speial ase of a lower bound maximisationalgorithm is iterative, in turn freezing one of Q; � and maximising the lower bound w.r.t.the other (here, Q an be hosen from a family of variational distributions). Alternatively,25Multimodality in the hyperposterior an arise from non-identi�ability of the model though symmetries in�, i.e. there exist di�erent �(1); �(2) s.t. P (y jfxig;�(1)) � P (y jfxig;�(2)) for datasets of interest. In thisase, we an just pik any of the dominant modes �̂ in the hyperposterior to arrive at the same preditionsas if we had hosen a peak train featuring all equivalent modes.26Sine we integrate out a variable u of the same dimension of the training sample and the latter isindependent only onditional on the proess u(�) (whih is not in general a �nite-dimensional variable), weannot use the entral limit theorem diretly to assert Gaussianity of P (y j�) as n gets large.27For example, one ould maliiously set � = u(�).28Although in speial situations the tehnique may still be appliable, see [78℄ or Setion 3.3.29It is analytially tratable for a Gaussian likelihood, for example in the ase of GP regression withGaussian noise disussed above it is logN(y j0;K + �2I).



Q an be hosen in a di�erent way as approximation of the posterior P (ujS) (for exampleusing the EP algorithm or sparse approximations). The deviation from the variational hoieof Q (i.e. the one whih maximises the lower bound over a family of andidates) an beritiised on the ground that other hoies of Q an lead to dereases in the lower bound,so the overall algorithm does not inrease its riterion stritly monotonially. On the otherhand, Q hosen in a di�erent way may lie outside families over whih the lower bound an bemaximised eÆiently, thus may even result in a larger value than the variational maximiserwithin the family.30 Furthermore, the lower bound riterion an be motivated by the fatthat its gradient EQ(u) [r� logP (y ;uj�)℄(ignoring the dependene of Q on �) approximates the true gradientr� logP (yj�) = EP (ujS) [r� logP (y ;uj�)℄at every point �.We lose by mentioning an interesting point in whih lower bound maximisation for GPmodels might deviate from the usual pratie with parametri arhitetures. For the latter,it is ustomary to maximise the lower bound w.r.t. � while keeping Q ompletely �xed(the gradient of Q w.r.t. � is ignored). This makes sense as long as Q is independentof the prior distribution in the model, but in the ontext of approximate GP inferenemethods, the dependene of Q(u) on the GP prior (thus on �) is quite expliit (for example,the ovariane of Q is (K�1 + D)�1 whih depends strongly on the kernel matrix K ,sine D is merely a diagonal matrix). We argue that instead of keeping all of Q �xedduring the maximisation for �, we should merely ignore the dependene of the essentialparameters �; D on �.31 This typially leads to a more involved gradient omputationwhih is potentially loser to the true gradient. Alternatively, if this omputation is beyondresoure limits, further indiret dependenies on � may be ignored. We remark that theoptimisation problem is slightly non-standard due to the lak of strit monotoniity, andgiven optimisers have to be modi�ed to take this into aount. Details an be found in [63℄,Set. 4.5.3.5 Reproduing Kernel Hilbert SpaesThe theory of reproduing kernel Hilbert spaes (RKHS) an be used to haraterise thespae of random variables obtained as bounded linear funtionals of a GP on whih anymethod of predition from �nite information must be based. Apart from that, RKHS providea uni�ation of ideas from a wide area of mathematis, most of whih will not be mentionedhere. The interested reader may onsult [3℄. Our exposition is taken from [80℄. This setionan be skipped by readers interested primarily in pratial appliations.A reproduing kernel Hilbert spae (RKHS) H is a Hilbert spae of funtions X ! R forwhih all evaluation funtionals Æx are bounded. This implies that there exists a kernel30For example, even though the bound maximiser over all Gaussians has a ovariane matrix of the form(13), �nding it is prohibitively ostly in pratie and proposed variational shemes [16, 65, 24℄ use restritedsubfamilies.31There is no simple analyti formula for this dependene, so we annot do better than ignoring it.



K(x;x0) s.t. K(�;x) 2 H for all x 2 X andf(x) = Æxf = (K(�;x); f) (17)for all f 2 H, where (�; �) is the inner produt inH. To be spei�, a Hilbert spae is a vetorspae with an inner produt whih is omplete, in the sense that eah Cauhy sequeneonverges to an element of the spae. For example, a Hilbert spae H an be generatedfrom an inner produt spae of funtions X ! R by adjoining the limits of all Cauhysequenes to H. Note that this is a rather abstrat operation and the adjoined objets neednot be funtions in the usual sense. For example, L2(�) is obtained by ompleting the vetorspae of funtions for whih Z f(x)2 d�(x) <1 (18)and an be shown to ontain \funtions" whih are not de�ned pointwise.32 For an RKHSH suh anomalies annot our, sine the funtionals Æx are bounded:33jf(x)j = jÆxf j � Cxkfk:By the Riesz representation theorem (e.g., [20℄) there exists a unique representer Kx 2 Hsuh that (17) holds with K(�;x) = Kx . It is easy to see that the kernel K is positivesemide�nite. K is alled reproduing kernel (RK) of H, note that�Kx ;Kx0� = �K(�;x);K(�;x0)� = K(x;x0):It is important to note that in a RKHS, (norm) onvergene implies pointwise onvergeneto a pointwise de�ned funtion, sinejfm(x)� f(x)j = j(Kx ; fm � f)j � Cxkfm � fk:On the other hand, for any positive semide�nite K there exists a unique RKHS H with RKK. Namely, the set of �nite linear ombinations of K(�;xi); xi 2 X with0�Xi aiK(�;xi);Xj bjK(�;x0j)1A =Xi;j aibjK(xi;x0j)is an inner produt spae whih is extended to a Hilbert spae H by adjoining all limitsof Cauhy sequenes. Sine norm onvergene implies pointwise onvergene in the innerprodut spae, all adjoined limits are pointwise de�ned funtions and H is an RKHS withRK K. To onlude, a RKHS has properties whih make it muh \nier" to work withthan a general Hilbert spae. All funtions are pointwise de�ned, and the representer of theevaluation funtional Æx is expliitly given by K(�;x).32The existene of suh funtions in L2(�) means that expressions suh as (18) have to be interpreted withsome are. Eah element f 2 L2(�) an be de�ned as the set of all equivalent Cauhy sequenes whih de�nef (two Cauhy sequenes are equivalent if the sequene obtained by interleaving them is Cauhy as well).An expression E(f; g) should then be understood as the limit limn!1E(fn; gn) where fn ! f; gn ! g,et. The existene of the limit has to be established independently. In the sequel, we will always use thisonvention.33Bounded funtionals are also alled ontinuous.



5.1 RKHS by Merer Eigendeomposition. Karhunen-Loeve ExpansionWe have already mentioned that L2(�) is not a RKHS in general, but for many kernels K itontains a (unique) RKHS as subspae. Reall that L2(�) ontains all funtions f : X ! Rfor whih (18) holds. The standard inner produt is(f; g) = Z f(x)g(x) d�(x):Often, � is taken as indiator funtion of a ompat set suh as the unit hyperube. A posi-tive semide�niteK(x;x0) an be regarded as kernel (or representer) of a positive semide�nitelinear operator K in the sense (Kf)(x) = (K(�;x); f):� is an eigenfuntion of K with eigenvalue � 6= 0 if(K�)(x) = (K(�;x); �) = ��(x):For K, all eigenvalues are real and non-negative. Furthermore, supposeK is ontinuous andZ K(x;x0)2 d�(x)d�(x0) <1:Then, by the Merer-Hilbert-Shmidt theorems there exists a ountable orthonormal se-quene of ontinuous eigenfuntions �� 2 L2(�) with eigenvalues �1 � �2 � � � � � 0, and Kan be expanded in terms of these:K(x;x0) =X��1 ����(x)��(x0); (19)and P��1 �2� < 1, thus �� ! 0(� ! 1). This an be seen as generalisation of theeigendeomposition of a positive semide�nite Hermitian matrix. Indeed, the reproduingproperty of positive semide�nite kernels was reognised and used by E. H. Moore [40℄ todevelop the notion of general \positive Hermitian matries". In this ase, we an haraterisethe RKHS embedded in L2(�) expliitly. For f 2 L2(�), de�ne the Fourier oeÆientsf� = (f; ��):Consider the subspae HK of all f 2 L2(�) with P��1 ��1� f2� <1. Then, HK is a Hilbertspae with inner produt (f; g)K =X��1 f�g��� ;moreover the Fourier seriesP��1 f��� onverges pointwise to f .34 Sine f����(x)g are theFourier oeÆients of K(�;x) (using Equation 19), we have(f;K(�;x))K =X��1 f���(x) = f(x);34In partiular, f is de�ned pointwise.



thus K is the RK of HK . It is important to distinguish learly between the inner produts(�; �) in L2(�) and (�; �)K in HK (see [89℄ for more details about the relationship of theseinner produts). While k�k measures \expeted squared distane" from 0 (w.r.t. d�), k�kK isa measure of the \roughness" of a funtion. For example, the eigenfuntions have k��k = 1,but k��kK = ��1=2� thus beoming inreasingly rough.35The spetral deomposition of K leads to an important representation of a zero-mean GPu(x) with ovariane funtion K: the Karhunen-Loeve expansion. Namely, the sequeneuk(x) = kX�=1 u���(x); (20)where u� are independent N(0; ��) variables, onverges to u(x) in quadrati mean (astronger statement under additional onditions an be found in [2℄). Moreover,u� = Z u(x)��(x) d�(x)whih is well de�ned in quadrati mean. We have already used this expansion in Setion 2to introdue the \weight spae view". Note that sine the varianes �� deay to 0, the GPan be approximated by �nite partial sums of the expansion (see [89℄).5.2 Duality between RKHS and Gaussian ProessIf u(x) is a zero-mean GP with ovariane funtionK, what is the exat relationship betweenu(x) and the RKHS with RK K? One might think that u(x) an be seen as distributionover HK , but this is wrong (as pointed out in [80℄, Set. 1.1). In fat, for any version ofu(x) sample funtions from the proess are not in HK with probability 1! This an be seenby noting that for the partial sums (20) we haveE �kukk2K� = E" kX�=1 u2��� # = k !1 (k !1):Roughly speaking, HK ontains \smooth", non-errati funtions from L2(�), harateristiswe annot expet from sample paths of a random proess. A better intuition about HK isthat it will turn out to ontain expeted values of u(x) onditioned on a �nite amount ofinformation, thus the posterior mean funtions we are interested in.The following duality between HK and a Hilbert spae based on u(x) was notied in [27℄and is important in the ontext of theoretial analyses. Namely, onstrut a Hilbert spaeHGP in the same way as above starting from positive semide�nite K, but replae K(�;xi)by u(xi) and use the inner produt (A;B)GP = E[AB℄;thus 0�Xi aiu(xi);Xj bju(x0j)1AGP =Xi;j aibjK(xi;x0j):35In the same sense as high-frequeny omponents in the usual Fourier transform.



HGP is a spae of random variables, not funtions, but it is isometrially isomorphi to HKunder the mapping u(xi) 7! K(�;xi), with(u(x); u(x0))GP = E[u(x)u(x0)℄ = K(x;x0) = (K(�;x);K(�;x0))K :For most purposes, we an regard HGP as RKHS with RK K. The spae HGP is importantin the ontext of inferene on GP models we are interested in, beause it ontains exatlythe random variables we ondition on or would like to predit in situations where only a�nite amount of information is available (from observations whih are linear funtionals ofthe proess).If L is a bounded linear funtional on HK , it has a representer � 2 HK with �(x) = LKx .The isometry maps � to a random variable Z 2 HGP whih we formally denote by Lu(�).Note that E [(Lu(�))u(x)℄ = (�;Kx)K = �(x) = LKx :More generally, if L(1); L(2) are funtionals with representers �(1); �(2) s.t. x 7! L(j)Kx arein HK , thenE h(L(1)u(�))(L(2)u(�))i = (�(1); �(2))K = L(1)x (K(�;x); �(2))K = L(1)x L(2)y K(x;y):Again, it is lear that Lu(�) is (in general) very di�erent from the proess obtained byapplying L to sample paths of u(x). In fat, sine the latter are almost surely not in HK ,L does not even apply to them in general. The orret interpretation is in quadrati mean,using the isometry betweenHGP andHK . As an example, suppose that X = Rg and L = Dxis a di�erential funtional evaluated at x. Then, we retrieve the observations in Setion 2about derivatives of a GP.6 Penalised Likelihood. Spline SmoothingThe GP models we are interested in here have their origin in spline smoothing tehniquesand penalised likelihood estimation, and for low-dimensional input spaes spline kernels arewidely used due to the favourable approximation properties of splines and omputationaladvantages. A omprehensive aount of spline smoothing and relations to Bayesian esti-mation in GP models is [80℄ whih our exposition is mainly based on. Spline smoothingis a speial ase of penalised likelihood methods, giving another view on the reproduingkernel via the Green's funtion of a penalisation (or regularisation) operator whih will beintrodued below. This setion an be skipped by readers interested primarily in pratialappliations.In Setion 5 we have disussed the duality between a Gaussian proess and the RKHS ofits ovariane funtion. Apart from the Bayesian viewpoint using GP models, a di�erentand more diret approah to estimation in non-parametri models is the penalised likeli-hood approah, the oldest and most widely used inarnations of whih are spline smoothingmethods. We will introdue the basi ideas for the one-dimensional model whih leads tothe general notion of regularisation operators, penalty funtionals and their onnetions toRKHS. We omit all details, (important) omputational issues and multidimensional gener-alisations, see [80℄ for details. A more elementary aount is [18℄.



We will only sketh the ideas, for rigorous details see [80, 27℄. Interpolation and smoothingby splines originates from the work of Sh�onberg [61℄. A natural spline s(x) of order m on[0; 1℄ is de�ned based on knots 0 < x1 < � � � < xn < 1. If �k denotes the set of polynomialsof order � k, then s(x) 2 �2m�1 on [xi; xi+1℄, s(x) 2 �m�1 on [0; x1℄ and on [xn; 1℄, ands 2 C2m�2 overall. Natural ubi splines are obtained for m = 2. De�ne the roughnesspenalty Jm(f) = Z 10 �f (m)(x)�2 dx:Jm(f) penalises large derivatives of order m by a large value, for example J2 is large forfuntions of large urvature. Then, for some �xed funtion values the interpolant minimisingJm(f) over all f for whih the latter is de�ned is a spline of order m. More preisely,f 2 Wm[0; 1℄, a so-alled Sobolev spae of all f 2 Cm�1[0; 1℄ s.t. f (m�1) is absolutelyontinuous on [0; 1℄. If we onsider the related smoothing problem of minimising the penalisedempirial risk nXi=1(yi � f(xi))2 + �Jm(f); f 2 Wm[0; 1℄; (21)it is lear that the minimiser is again a natural spline s(x) of orderm (any other f 2 Wm[0; 1℄an be replaed by the spline with the same values at the knots, this does not hange therisk term and annot inrease Jm). Now, from Taylor's theorem:f(x) = m�1X�=0 x��! f (�)(0) + Z 10 Gm(x; t)f (m)(t) dtwith Gm(x; t) = (x� t)m�1+ =(m� 1)! (here, u+ = uIfu�0g). If f (�)(0) = 0; � = 0; : : : ;m� 1then (Gm(x; �);Dmf) = f(x), thus Gm(x; t) is the Green's funtion for the boundary valueproblem Dmf = g. These funtions f form a Hilbert spae with inner produt(f; g)K = Z 10 f (m)(t)g(m)(t) dtwhih is a RKHS with RK K(x; x0) = Z 10 Gm(x; t)Gm(x0; t) dt: (22)It is interesting to note that a zero-mean GP with ovariane funtionK an be obtained as(m� 1)-fold integrated Wiener proess (introdued in Setion 2.3). Let W (x) be a Wienerproess on [0; 1℄ withW (0) = 0 a.s. and E[W (1)2℄ = 1 (its ovariane funtion is minfx; x0g).It is possible to de�ne a stohasti integral against a proess with independent inrements.36The proess u(x) de�ned via the stohasti integralu(x) = Z Gm(x; t) dW (t)36See [19℄, Set. 9.4 for an easy derivation. It is important to note that the stohasti integral is not therandom variable arising from integrating over sample paths of the proess, the latter integrals do not existin many ases in whih the stohasti integral an be onstruted.



is a zero-mean GP with ovariane funtion K. If W is hosen s.t. its sample paths areontinuous, u(x) is in Wm[0; 1℄ and u(�)(0) = 0 for � < m. Sine dGm=dx = Gm�1 andG1(x; t) = Ifx>tg, u(m�1) and W are m.s. equivalent. Note that u(x) an be written asu(x) = Z x0 dW (t) Z xt dx1 : : : Z xxm�2 dxm�1for m > 1.The boundary values an be satis�ed by taking the diret sum of the spae with �m�1. Thelatter is trivially an RKHS w.r.t. an inner produt of hoie: hoose an orthonormal basisand de�ne the kernel to be the sum of outer produts of the basis funtions. The kernel forthe diret sum is the sum of K and the �nite-dimensional kernel. Note that k � kK is only aseminorm on the full spae beause kpkK = 0 for p 2 �m�1.We only sketh the general ase, see [80, 53℄ for details. We make use of the following dualitybetween a RKHS and a regularisation (pseudodi�erential) operator P on L2(�). Let H bethe Hilbert spae of f s.t. Pf 2 L2(�). For P, onsider the operator37 P�P. If this has a nullspae (suh as �m�1 in the example above), we restrit H to the orthogonal omplement.Now, the operator is positive de�nite and has an inverse (its Green's funtion) whose kernelK is the RK of H.38 The inner produt is(f; g)K = (Pf;Pg)and the penalty funtional is simply the squared RKHS norm. If G(t;u) exists s.t.(G(t; �);Pf) = f(t) for all f 2 H, the RK is given byK(s; t) = (G(s; �); G(t; �)):On the other hand, we an start from an RKHS with RK K and derive the orrespondingregularisation operator P. This an give additional insight into the meaning of a ovarianefuntion (see [53, 70℄). In fat, if K is stationary and ontinuous, we an use Bohner's the-orem (2). Namely, if f(!) is the spetral density of K, we an take f(!)�1=2 as spetrum ofP.39 The one-dimensional example above is readily generalised to splines on the unit sphereor to thin plate splines in X = Rg , but the details get quite involved (see [80℄, Chap. 2).Kimeldorf and Wahba [27℄ generalised this setup to a general variational problem in anRKHS, allowing for general bounded linear funtionals Lif instead of f(xi) in (21). Theminimiser is determined by n+M oeÆients, whereM is the dimension of the null spae ofthe di�erential operator P assoiated with K (M = m+ 1 in the spline ase above). Thesean be omputed by diret formulae given in [80℄, Set. 1.3. In the more general penalisedlikelihood approah [80, 18℄, n funtion values or linear funtionals of f are used as latentvariables in a likelihood (see Setion 3), to obtain for example non-parametri extensionsof GLMs [18℄. The penalised likelihood is obtained by adding the penalty funtional to thelikelihood, and just as above the minimiser is determined by n+M oeÆients only (thisrepresenter theorem an be proved using the same argument as in the spline ase above).In general, iterative methods are required to �nd values for these oeÆients.37P� is the adjoint of P, i.e. (f;Pg) = (P�f; g).38This onstrution via Green's funtions is di�erent from the one above involving Gm(x; t). Withoutgoing into details, it may help to onsider the analogue of the �nite-dimensional ase (vetors and matriesinstead of funtions and operators): K = (P TP )�1 = GGT where G = P�1.39P is not uniquely de�ned, but only P�P (whih has spetrum f(!)�1).



6.1 Bayesian View on Spline SmoothingWe lose this setion by reviewing the equivalene between spline smoothing and Bayesianestimation for a GP model pointed out by Kimeldorf and Wahba [27℄. Given a positivesemide�nite kernel K orresponding to a pseudodi�erential operator with M -dimensionalnull spae, we an onstrut an RKHS H as follows. If H0 is the null spae represented byan orthonormal basis p� and H1 the RKHS for K, let H be their diret sum. Consider themodel F (x) = MX�=1 ��p�(x) + b1=2u(x); yi = F (xi) + "i;where u(x) is a zero-mean GP with ovariane funtion K and "i are independent N(0; �2).Furthermore, � � N(0; aI) a priori. On the other hand, let f� be the minimiser in H ofthe regularised risk funtional1n nXi=1(yi � f(xi))2 + �kP1fk2H1 ;where P1 is the orthogonal projetion onto H1. Kimeldorf and Wahba [27℄ show that f� liesin the span of fp� j � = 1; : : : ;Mg [ fK(�;xi) j i = 1; : : : ; ng and give a numerial proedurefor omputing the oeÆients. If we de�ne F̂a(x) = E[F (x) j y1; : : : ; yn℄, then they showthat lima!1 F̂a(x) = f�(x); � = �2n bfor every �xed x. The proof (see [80℄, Chap. 1) is a straightforward appliation of the dualitybetween the RKHS H1 and the Hilbert spae based on u(x), as desribed in Setion 5. Theproedure of dealing with H0 and the improper prior on � is awkward but is not neessaryif the RKHS H1 indued by K is rih enough.40Finally, we note that a parametri extension of a non-parametri GP model an be sensibleeven if H1 is rih enough in priniple, leading to semiparametri models (or partial splines).For details about suh models, we refer to [18℄, Chap. 4 and [80℄, Chap. 6.7 Maximum Entropy Disrimination. Large Margin Classi-�ersWe regard GPs as building bloks for statistial models in muh the same way as a para-metri family of distributions (see Setion 3 for examples). Statistial methods to estimateunknown parameters in suh models follow di�erent paradigms, and in mahine learningthe following have been among the most popular.1. Probabilisti Bayesian paradigm:This has been introdued in Setion 3. As noted in Setion 4, the (intratable) posteriorproess is typially approximated by a GP itself.40This is not the ase for spline kernels, for whih f 2 H1 is onstrained by the boundary onditions.



2. Large margin (disriminative) paradigm:Here, a \posterior" proess is obtained by assoiating margin onstraints with observeddata, then searhing for a proess whih ful�ls these (soft) onstraints and at thesame time is lose to the prior GP, in a sense made onrete in this setion. Sine theonstraints are linear in the latent outputs, the \posterior" proess is always a GPwith the same ovariane as the prior.The relationship between Bayesian methods and penalised likelihood or generalised splinesmoothing methods has been disussed in Setion 6. Large margin methods are speial asesof spline smoothing models with a partiular loss funtion whih does not orrespond to aprobabilisti noise model (e.g., [81, 65, 73℄). Several attempts have been made to expresslarge margin disrimination methods as approximations to Bayesian inferene (e.g., [73, 65,64℄), but the paradigm separation suggested in [25℄ seems somewhat more onvining.The onnetion between these two paradigms has been formulated in [25℄, this setionis based on their exposition. The large margin paradigm has been made popular by theempirial suess of the support vetor mahine (SVM) (see [59, 8℄ for bakground material).In the Bayesian GP setting (see Setion 3), the likelihood P (y ju) of the observed data yan be seen to impose \soft onstraints" on the preditive distribution, in the sense thatfuntions of signi�ant probability under the posterior must not violate many of themstrongly. In the large margin paradigm whose probabilisti view has been alled minimumrelative entropy disrimination (MRED) [25℄, suh onstraints are enfored more expliitly.41We introdue a set of latent margin variables  = (i)i 2 Rn , one for eah datapoint. Alongwith the GP prior P (u(�)) on the latent funtion, we hoose a prior P () over  . Themargin prior enourages large margins i, as is disussed in detail below. The minimumrelative entropy distribution dQ(u(�);) is de�ned as minimiser of D[Q kP ℄, subjet to thesoft margin onstraints E(u(�); )�Q [yiu(xi)� i℄ � 0; i = 1; : : : ; n: (23)Just as in the ase of a likelihood funtion, these onstraints depend on the values u =(u(xi))i of the random proess u(�) only. It is well known in information theory (e.g., [22℄,Set. 3.1) that the solution to this onstrained problem is given bydQ(u(�); ) = Z(�)�1 exp nXi=1 �i (yiui � i)! dP (u(�); ); (24)where Z(�) = E(u(�);)�P "exp nXi=1 �i (yiui � i)!# :The value for the Lagrange multipliers � is obtained by minimising the onvex funtionlogZ(�) (sometimes alled the dual riterion) under the onstraints � � 0. Sine the righthand side of (24) fatorises between u(�) and  and the same holds for the prior P , we seethat Q must fatorise in the same way. Furthermore, it is immediate from (24) that Q(u(�))is again a Gaussian proess with the same ovariane kernel K as P (u(�)) and with mean41For notational simpliity, we do not use a bias term b here. The modi�ations to do so are straightforward.In the original SVM formulation, b an be seen to have a uniform (improper) prior.



funtion �(x�) = k(x�)TY �, where Y = diag(yi)i. Due to the fatorised form, we alsohave Z(�) = Zu(�)(�)Z (�) andZu(�)(�) = Eu�P he�TY ui = e 12�TY KY � :The form of Z depends on the hoie of the prior P () on the margin variables.Jaakkola et. al. [25℄ give some examples of suh priors whih enourage large margins.For example, if P () = Qi P (i), then P (i) should drop quikly for i < 1 in order topenalise small and espeially negative margins (empirial errors). In order for (23) to bea \soft onstraint" only w.r.t. margin violations and also to mimi the SVM situation, wehave to use P (i) = 0 for i > 1.42 If P (i) / e�(1�i)Ifi�1g, thenZ(�) / nYi=1 e��i1� �i= ;and the omplete dual riterion islogZ(�) = � nXi=1 (�i + log(1� �i=)) + 12�TY KY �; � � 0: (25)Exept for the potential term log(1��i=), this is idential to the SVM dual objetive (seebelow).43 The so-alled hard margin SVM for whih margin onstraints are enfored withoutallowing for violations, is obtained for !1. It onverges only if the training data is indeedseparable and is prone to over-ompliated solutions. The e�et of the potential term on thesolution is limited (see [25℄). It keeps �i from saturating to  exatly (whih happens in SVMfor mislassi�ed patterns). The dual riterion an be optimised using eÆient algorithmssuh as SMO [52℄, although the nonlinear potential term introdues minor ompliations.44Just like in SVM, sparsity in � is enouraged and an be observed in pratie.To onlude, MRED gives a omplete probabilisti interpretation of the SVM, or at leastof a lose approximation thereof. Note that SVM lassi�ation annot be seen as MAPapproximation to Bayesian inferene for a probabilisti model, beause its loss funtion doesnot orrespond to a proper negative log likelihood [65, 47, 73℄. Interestingly, the MRED viewpoints out limitations of this framework as opposed to a Bayesian treatment of a Gaussianproess model with a proper likelihood. Reall from above that the margin onstraints arelinear in the latent outputs u, leading to the fat that the MRED \posterior" proessQ(u(�)) has the same ovariane kernel K as the prior. While the onstraints enfore thepreditive mean to move from 0 a priori to �(x), the \preditive varianes" are simply theprior ones, independent of the data. This suggests that if preditive varianes (or error bars)are to be estimated besides simply performing a disrimination, then SVMs or other largemargin disriminative methods may be less appropriate than probabilisti GP models. Formore details on this argument, see [63℄, Set. 4.7.2.More important is the lak of pratial methods for model seletion with SVM. For BayesianGP methods, a general model seletion strategy is detailed in Setion 4. Alternatively,42As in the SVM setup, the hoie of 1 as margin width is arbitrary, beause the distane an be re-saledin terms of the prior variane.43The potential term ats like a logarithmi barrier to enfore the onstraints �i <  (e.g., [7℄).44SMO makes use of the fat that the SVM riterion is quadrati with linear onstraints.



hyperparameters an be marginalised over approximately using MCMC tehniques [43℄. Inontrast, model seletion for SVM is typially done using variants of ross validation, whihseverely limits the number of free parameters that an be adapted.While it is often laimed that learning-theoretial foundations ount as distintive advantageof SVM, similar or even superior guarantees an be given for approximate Bayesian GPtehniques as well [67℄.8 KrigingAn important and early appliation of Gaussian random �eld models has been termedkriging [35℄ after a South-Afrian mining engineer D. Krige who developed methods for pre-diting spatial ore-grade distributions from sampled ore grades [30℄. Optimal spatial linearpredition has its roots in earlier work by Wiener and Kolmogorov (\loseness in spae"may have to be replaed by \loseness in time", sine they were mainly onerned with timeseries). These fundamental ideas have been further developed in the �elds of geostatistis[35℄ as kriging and in meteorology under the name objetive analysis (see [11℄, Chap. 3 forreferenes).We will not go into any details, but refer to [11℄, Chap. 3 and [74℄ (we follow the latterhere). The basi model is the same as for semiparametri smoothing:z(x) =m(x)T� + "(x)wherem(x) is a known feature map and "(x) is a zero-mean random �eld with ovarianefuntion K. In a nutshell, kriging is a minimum mean squared error predition method forlinear funtionals of z(x) given observations z = (z(x1); : : : ; z(xn))T at spatial loationsxi 2 Rg . For example, if z(x) measures ore grade at x one might be interested in preditingZB z(x) dxover some area B � Rg . Sine they fous on m.s. error and m.s. properties of z(x) ingeneral, kriging methods typially depend on seond-order properties of the proess only,and "(x) is often assumed to be a Gaussian �eld. Furthermore, we restrit ourselves tolinear preditors �0 + �Tz . The optimal preditor of z(x�) in the m.s. error sense is theonditional expetation whih is linear in z if "(x) is Gaussian and � is known:K� = k; �0 = �m(x�)�MT��T �where K = (K(xi;xj))i;j ; k = (K(xi;x�))i and M = (m(x1); : : : ;m(xn))T . If � isunknown, a simple proedure is to plug in the generalised least squares estimate�̂ = �MTK�1M ��1MTK�1zfor �̂. This proedure an be motivated from several angles. If we restrit our attention tolinear preditors of z(x�) whih are unbiased in the senseE ��0 + �Tz� = �0 + �TM� = E[z(x�)℄ =m(x�)T�



for any �, the suggested approah minimises the m.s. error over these unbiased preditors.It is therefore alled best linear unbiased preditor (BLUP). A Bayesian motivation an beonstruted in the same way as mentioned in Setion 6. Namely, � is given a Gaussianprior whose ovariane matrix sales with a > 0 and "(x) is a priori Gaussian. Then, theposterior mean for z(x�) onverges to the BLUP as a ! 1 (i.e. as the � prior beomesuninformative).The equations behind the BLUP have been known long before and have been redisovered inmany areas of statistis. In pratie, kriging methods are more onerned about induing anappropriate ovariane funtion (under the stationarity assumption) from observed data aswell. The empirial semivariogram is a frequently used method for estimating the ovarianefuntion lose to the origin. On the theoretial side, Stein [74℄ advoates the usefulness of�xed-domain asymptotis (a growing number of observations loated within a �xed ompatregion) to understand the relationship between ovariane model and behaviour of krigingpreditors.45 By Bohner's theorem (2) a stationary ovariane funtion is haraterisedby its spetral distribution F (!). Stein points out that �xed-domain asymptotis dependmost strongly on the spetral masses for large k!k, i.e. the high frequeny omponents,muh less so on the low frequeny ones or the mean funtion m(x)T� (if m(x) is smoothitself, e.g. polynomials). Let f(!) be the spetral density, i.e. the Fourier transform ofK(x). In general, the lighter the tails of f(!) the smoother "(x) is in the m.s. sense.Stein advoates this expeted smoothness as a entral parameter of the GP prior andondemns the unritial use of smooth (analyti) ovariane funtions suh as the RBF(Gaussian) kernel (see Setion 9). Another important onept highlighted by Stein (see also[80℄, Chap. 3) is the one of equivalene and orthogonality of GPs.46 Essentially, GPs withovariane funtions of di�erent form an be equivalent in whih ase it is not possible tounambiguously deide for one of them even if an in�nite amount of observations in a �xedregion are given. On this basis, one an argue that for a parametri family of ovarianefuntions induing equivalent GPs the parameters an just as well be �xed a priori sinetheir onsistent estimation is not possible. On the other hand, parameters s.t. di�erentvalues lead to orthogonal GPs should be learned from data and not be �xed a priori.Note that kriging models are more generally onerned with intrinsi random funtions(IRF) [36℄, generalisations of stationary proesses whih are also frequently used in thespline smoothing ontext. In a nutshell, a k-IRF u(x) is a non-stationary random �eldbased on a \spetral density" whose integral diverges on any neighborhood of the origin(e.g., has in�nite pointwise variane). However, if  2 Rn is a generalised divided di�erene(g.d.d.) for x1; : : : ;xn in the sense that Pi ip(xi) = 0 for all polynomials p of total degree� k, then the variane of Pi iu(xi) is �nite and serves to de�ne an \ovariane funtion"K(x) whih is k-onditionally positive semide�nite, namelynXi;j=1 ijK(xi � xj) � 045Stein restrits his analysis to \interpolation", i.e. to situations where preditions are required only atloations whih are in priniple supported by observations (in ontrast to \extrapolation" often studied in thetime series ontext). This should not be onfused with the distintion between interpolation and smoothingused in Setion 6. All non-trivial kriging tehniques are smoothing methods.46Two probability measures are equivalent if they have the same null sets, i.e. are mutually absolutelyontinuous (see Setion A.1). They are orthogonal if there is a null set of one of them whih has mass 1under the other. Gaussian measures are either orthogonal or equivalent.



for all g.d.d.'s . In pratie, one uses semi-parametri models where the latent proess ofinterest is the sum of a k-IRF and a polynomial of total degree � k whose oeÆients areparametri latent variables.47In fat, IRFs do not add more generality w.r.t. high-frequeny behaviour of the proesssine f(!) must be integrable on the omplement of any 0-neighborhood, so the IRF anbe written as the unorrelated sum of a stationary and a non-stationary part, the latterwith f(!) = 0 outside a 0-neighborhood (thus very smooth). IRFs are not disussed in anyfurther detail here (see [36, 74℄).9 Choie of Kernel. Kernel DesignThere is a tendeny in the mahine learning ommunity to treat kernel methods as \blakbox" tehniques, in the sense that ovariane funtions are hosen from a small set ofandidates over and over again. If a family of kernels is used, it typially omes with avery small number of free parameters so that model seletion tehniques suh as ross-validation an be applied. Even though suh approahes work surprisingly well for manyproblems of interest in mahine learning, experiene almost invariably has shown that muhan be gained by hoosing or designing ovariane funtions arefully depending on knownharateristis of a problem (for an example, see [59℄, Set. 11.4).Establishing a lear link between kernel funtions and onsequenes for preditions is verynon-trivial and theoretial results are typially asymptoti arguments. As opposed to �nite-dimensional parametri models, the proess prior a�ets preditions from a non-parametrimodel even in �xed-domain asymptoti situations (see Setion 8). The sole aim of this setionis to introdue a range of frequently used kernel funtions and some of their harateristis,to give some methods for onstruting ovariane funtions from simpler elements, andto show some tehniques whih an be used to obtain insight into the behaviour of theorresponding GP. Yaglom [88℄ gives extensive material, an aessible review is [1℄. In the�nal part, we disuss some kernel methods over disrete spaes X .It should be noted that positive de�niteness of an arbitrary symmetri form or funtion ishard to establish in general. For example, the sensible approah of onstruting a distaned(x;x0) between patterns depending on prior knowledge, then proposingK(x;x0) = e�w d(x;x0)2 (26)as ovariane funtion does not work in general beause K need not be positive semide�nite,moreover there is no simple general riterion to prove that K is a ovariane funtion.48 Ifd(x;x0) an be represented in an Eulidean spae, K is a kernel as we will see below. Notethat if K(x;x0) of the form (26) is a kernel, so must be K(x;x0)t for any t > 0.49 Kernelswith this property are alled in�nitely divisible. Sh�onberg [60℄ managed to haraterisein�nitely divisible kernels (26) by a property on d(x;x0) whih unfortunately is just as hardto handle as positive semide�niteness.5047In fat,m(x) maps to a basis of �k. As mentioned above, the BLUP is obtained as posterior expetationunder an uninformative prior on the parametri oeÆients.48If d(x;x0) is stationary, one an try to ompute the spetral density, but this will not be analytiallytratable in general.49This is true in general only for t 2 N>0 , see below.50�d(x;x0)2 must be onditionally positive semide�nite of degree 0 (see Setion 8).



9.1 Some Standard KernelsIn the following, we provide a list of frequently used \standard kernels". Most of thesewill have a variane (saling) parameter C > 0 in pratie, sometimes an o�set parametervb > 0, thus instead of K one uses C K or C K + vb. C sales the variane of the proess,while a vb > 0 omes from the unertainty of a bias parameter added to the proess.51 Inappliations where the kernel matrix K is used diretly in linear systems, it is advised toadd a jitter term52 �Æx;x0 to the kernel to improve the ondition number ofK . This amountsto a small amount of additive white noise on u(x) (� an be hosen quite small), but shouldnot be onfused with measurement noise whih is modelled separately (see Setion 3). Thesemodi�ations are omitted in the sequel for simpliity.The Gaussian (RBF) ovariane funtionK(x;x0) = exp��w2 kx � x0k2� (27)is isotropi for eah X = Rg (i.e. D1). w > 0 is an inverse squared length sale parameter,in the sense that w�1=2 determines a sale on whih u(x) is expeted to hange signi�antly.K(x) is analyti at 0, so u(x) is m.s. analyti. Stein [74℄ points out thatkXj=0 u(j)(0)xjj! ! u(x)in quadrati mean for every x (a similar formula holds for X = Rg ), so that u an be pre-dited perfetly by knowing all its derivatives at 0 (whih depend on u on an neighborhoodof 0 only). He ritiises the wide-spread use of the Gaussian ovariane funtion beauseits strong smoothness assumptions are unrealisti for many physial proesses, in partiularpreditive varianes are often unreasonably small given data. The spetral density (in R) isf(!) = (2�w)�1=2 exp(�!2=(2w)) with very light tails. On the other hand, Smola et. al. [70℄reommend the use of the Gaussian ovariane funtion for high-dimensional kernel lassi-�ation methods beause of the high degree of smoothness. It is interesting to note that inthe ontext of using GPs for time series predition, Girard et. al. [17℄ report problems withunreasonably small preditive varianes using the Gaussian ovariane funtion (althoughthey do not onsider other kernels in omparison). Figure 1 shows smoothed plots of somesample paths. Note the e�et of the length sale w�1=2 and the high degree of smoothness.We an onsider the anisotropi version, alled squared-exponential ovariane funtion:K(x;x0) = exp��12(x � x0)TW (x � x0)� : (28)Here, W is positive de�nite. Typially, W is a diagonal matrix with an inverse squaredlength sale parameter wj for eah dimension. Full matries W have been onsidered in[53, 79℄, and fator analysis-type matries W are a useful intermediate (e.g., [4, 65℄). Animportant appliation of the additional d.o.f.'s in (28) as ompared to the Gaussian kernelis automati relevane determination (ARD), as disussed below. Note that the squared-exponential ovariane funtion for diagonalW an be seen as produt of g one-dimensional51For reasons of numerial stability, vb must not beome too large.52In the ontext of kriging (see Setion 8), adding �Æx;x0 has been proposed by Math�eron to model theso-alled \nugget e�et" (see [11℄, Set. 2.3.1), but other authors have ritiised this pratie.
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Figure 1: Smoothed sample paths from GP with Gaussian ovariane funtion. All havevariane C = 1. Dash-dotted: w = 1. Solid: w = 102. Dashed: w = 502.Gaussian kernels with di�erent length sales, so the orresponding RKHS is a tensor produtspae built from RKHS's for one-dimensional funtions (see Setion 5).The Mat�ern lass of ovariane funtions (also alled modi�ed Bessel ovariane funtions)is given by K(�) = �1=22��1�(� + 1=2)�2� (��)�K�(��); � = kx � x0k; (29)where � > 0; � > 0 and K�(x) is a modi�ed Bessel funtion (e.g., [74℄, Set. 2.7). One anshow that z�K�(z)! 2��1�(�) for z ! 0, soK(0) = �1=2�(�)�(� + 1=2)�2� :K is isotropi for eah X = Rg . An important feature of this lass is that the m.s. smoothnessof u(x) an be regulated diretly via �. For example, u(x) is m times m.s. di�erentiablei� � > m. The spetral density in R is f(!) = (�2 + !2)���1=2. For � = 1=2 + m weobtain a proess with rational spetral density, a ontinuous time analogue of an AR timeseries model. For � = 1=2, K(�) / e��� de�nes an Ornstein-Uhlenbek proess, a stationaryanalogue to the Wiener proess whih also has independent inrements. In general, for� = 1=2 +m we have K(�) / e���p(��), where p(x) is a polynomial of order m (e.g., [74℄,Set. 2.7). Note that if � = (w(2� + 1))1=2, then�2�+1f(!)! e�!2=(2w) (� !1);thus K(�) onverges to the Gaussian ovariane funtion after appropriate re-saling.



The Mat�ern lass an be generalised to an anisotropi family in the same way as the Gaussiankernel. Figure 2 show some sample funtion plots for values � = 1=2; 3=2; 5=2; 10. Note thee�et of � on the roughness of the sample paths. For � = 1=2 the paths are errati eventhough the length sale is 1, i.e. the same as the horizontal region shown. For � = 3=2, theproess is m.s. di�erentiable, for � = 5=2 twie so.
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Figure 2: Smoothed sample paths from GP with Mat�ern ovariane funtion. All havevariane C = 1. Upper left: Ornstein-Uhlenbek (Mat�ern, � = 1=2), � = 1. Upper right:Mat�ern, � = 3=2, � = 1 (dash-dotted), � = 102 (solid). Lower left: Mat�ern, � = 5=2, � = 1(dash-dotted), � = 102 (solid). Lower right: Mat�ern, � = 10, � = 1 (dash-dotted), � = 102(solid).The exponential lass of ovariane funtions is given byK(�) = e���Æ ; Æ 2 (0; 2℄:The positive de�niteness an be proved using the Mat�ern lass (see [74℄, Set. 2.7). ForÆ = 1, we have the Ornstein-Uhlenbek ovariane funtion, for Æ = 2 the Gaussian one.Although it seems that the kernel varies smoothly in Æ, the proesses have quite di�erentproperties in the regimes Æ 2 (0; 1), Æ = 1, Æ 2 (1; 2) and Æ = 2. Continuous sample pathsan be ensured for any Æ 2 (0; 2℄, but di�erentiable sample paths an only be obtained for



Æ = 2 (in whih ase they are analyti).53 K(�) is not positive de�nite for Æ > 2. Figure 3shows some sample path plots.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3
Exponential

Figure 3: Smoothed sample paths from GP with exponential ovariane funtion. All havevariane C = 1 and � = 102. Solid: Æ = 1:5. Dashed: Æ = 1:9. Dash-dotted: Æ = 2 (Gaussian).We have derived the spline ovariane funtion on [0; 1℄ (22) from �rst priniples above.This kernel is of interest beause posterior mean funtions in GP models (or minimisers ofthe variational problem over the RKHS) are splines of order m, i.e. pieewise polynomialsin C2m�2 (see Setion 6) and assoiated omputations are O(n) (where n is the number oftraining points, or \knots") only. On the other hand, tehnial ompliations arise beausespline kernels are RKs for subspaes of Wm[0; 1℄ only, namely of the funtions whih satisfythe boundary onditions (see Setion 6). The operator indued by a spline kernel has anull spae spanned by polynomials, and in pratie it is neessary to adjoin the orrespond-ing (�nite-dimensional) spae. The spline kernels are not stationary (they are supportedon [0; 1℄), but we an obtain spline kernels on the irle by imposing periodi boundaryonditions on Wm[0; 1℄, leading to the stationary kernelK(x; x0) =X��1 2(2��)2m os(2��(x� x0)):From this representation, it follows that the spetral density isf(!) =X��1 1(2��)2m Æ2��(j!j)whih is disrete. Note that sample funtions from u(x) are periodi with probability 1.In Wahba [80℄, Chap. 2 it is shown how to onstrut splines on the sphere by using the53All these statements hold with probability 1, as usual.



iterated Laplaian, but this beomes quite involved. An equivalent to splines (in a sense)an be de�ned in Rg using thin-plate spline onditionally positive de�nite funtions (seeSetion 8), see [80, 18℄ for details.For kernel disrimination methods, polynomial ovariane funtionsK(x;x0) = (xTx0 + �)m((kxk2 + �)(kx0k2 + �))m=2 ; � � 0;m 2 Nare popular although they seem unsuitable for regression problems. The denominator nor-malises the kernel to K(x;x) = 1. Although this normalisation is not done in some applia-tions, it seems to be reommended in general. Polynomial kernels without the normalisingdenominator an be seen to indue a �nite-dimensional feature spae of polynomials of totaldegree � m (if � > 0).54 It is interesting to note that this is exatly the RKHS we have toadjoin to one for a onditionally positive de�nite kernel of order m suh as the thin-platespline ovariane funtion. On the other hand, in the spline ase these polynomial partsare usually not regularised at all. By the Karhunen-Loeve expansion (see Setion 5), wean write u(x) as expansion in all monomials of total degree � m with Gaussian randomoeÆients. The regularisation operator (see Setion 6) for polynomial kernels is workedout in [70℄. Note that K(x;x0) is not a ovariane funtion for m 62 N, thus the kernel isnot in�nitely divisible. Figure 4 shows some sample path plots. These are polynomials andtherefore analyti.
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Figure 4: Sample paths from GP with polynomial ovariane funtion. All have varianeC = 1 and � = 0:05. Solid: m = 10. Dashed: m = 5.The Eulidean inner produt xT�x0 is sometimes referred to as \linear kernel" in the54The feature spae of the normalised polynomial kernel onsists of polynomials of total degree � mdivided by (kxk2 + �)m=2.



mahine learning literature. GP models based on this kernel are nothing else than straight-forward linear models (linear regression, logisti regression, et.). It is lear from the weightspae view (see Setion 2) that a linear model an always be regarded as a GP model (orkernel tehnique), but this makes sense only if n < g, where n is the number of trainingpoints.55 Furthermore, the SVM with linear kernel is a variant of the pereptron method[55℄ with \maximal stability" [57℄ studied in statistial physis.Finally, let us give an example of a funtion whih is not a ovariane funtion, the so-alled\sigmoid kernel" K(x;x0) = tanh �axTx0 + b� :K is not positive semide�nite for any a; b (see [69℄), it is nevertheless shipped in mostSVM pakages we know of. It springs from the desire to make kernel expansions look likerestrited one-layer neural networks. The orret link between MLPs and GP models hasbeen given by Neal (see Setion 2), whih involves taking the limit of in�nitely large net-works. A ovariane funtion orresponding to a one-layer MLP in the limit has been givenby Williams [84℄. In pratie, it is of ourse possible to �t expansions of kernels to datawhih are not ovariane funtions. However, the whole underlying theory of minimisationin a RKHS (see Setions 5 and 6) breaks down, as does the view as inferene in a GP model.On the pratial side, awed results suh as negative preditive varianes an pop up whenleast expeted. Even worse, most optimisation tehniques (inluding SVM algorithms) relyon the positive semide�niteness of matries and may break down otherwise. In fat, theSVM optimisation problem is not onvex and has loal minima for general K.9.2 Construting Kernels from Elementary PartsWe an onstrut ompliated ovariane funtions from simple restrited ones whih areeasier to haraterise (e.g. stationary or (an)isotropi ovariane funtions, see Setion 2).A large number of families of elementary ovariane funtions are known (e.g., [88℄), someof whih are reviewed in Setion 9.1.A generalisation of stationary kernels to onditionally positive semide�nite ones (stationary�elds to IRFs) is frequently used in geostatistial models (see Setion 8) but will not bedisussed here. The lass of positive semide�nite forms has formidable losure properties.It is losed under positive linear (so-alled oni) ombinations, pointwise produt andpointwise limit. If K(v;v0) is a ovariane funtion, so is~K(x;x0) = Z h(x;v)h(x0;v0)K(v;v0) dvdv0 (30)(if ~K is �nite everywhere). An important speial ase is ~K(x;x0) = a(x)K(x;x0) a(x0).For example, a given kernel (with positive variane everywhere) an always be modi�ed tobe onstant on the diagonal by hoosing a(x) = K(x;x)�1=2, this normalisation has beendisussed in the ontext of the polynomial kernel above. Note that O'Hagan's \loalisedregression model" (Setion 2) is also a speial ase of (30). A general way of reating anon-stationary ovariane funtion ~K(y;y0) from a parametri model h(y ;�) linear in �is to assume a GP prior on �, then to integrate out the parameters (see [62℄ for details).Furthermore, suppose we do so with a sequene of models and priors to obtain a sequene55Otherwise, running a kernel algorithm is wasteful and awkward due to a singular kernel matrix.



of kernels. If the priors are appropriately saled, the pointwise limit exists and is a kernelagain. Many standard kernels an be obtained in this way (e.g., [84℄). Neal showed that ifthe model size goes to in�nity and the prior varianes tend to 0 aordingly, layered modelswith non-Gaussian priors will also tend to a GP (due to the entral limit theorem; seeSetion 2).Another important modi�ation is embedding. IfK(h;h0) is a ovariane funtion and h(x)is an arbitrary map, then ~K(x;x0) = K(h(x);h(x0)) (31)is a ovariane funtion as well (this is a speial ase of (30)). For example, if we haved(x;x0) = kh(x)�h(x0)k in some Eulidean spae, then (26) is a valid kernel indued fromthe Gaussian (RBF) kernel (27). The Fisher kernel [23℄ and mutual information kernels [66℄are examples. Embedding an be used to put rigid onstraints on the GP. For example,if K is stationary in (31) and h(x) = h(x0), then u(x) = u(x0) almost surely.56 Forh(x) = (os((2�=�)x); sin((2�=�)x))T , sample paths of u(x) are �-periodi funtions.Embedding an be used to reate non-stationary kernels from elementary stationary ones.A more powerful mehanism starts from viewing (30) in a di�erent way. Let K be thesquared-exponential kernel (28), but suppose the input x is subjet to noise:x = t + "; " � N(0;S(t)):Here, " at di�erent observed loations t are independent, and all noise variables are inde-pendent of the proess u(�). The proess v(t) = u(x) = u(t + ") is not Gaussian, but itsmean and ovariane funtion are determined easily: E[v(t)℄ = 0 andE[v(t)v(t0)℄ / E �N(t + " j t0 + "0;W�1)� = N(t j t0;W�1 + S(t) + S(t0))whih has the form of a squared-exponential kernel with ovariane matrix whih depends ont; t0. A similar onstrution was used in [16℄ to reate non-stationary ovariane funtions.This idea an be generalised onsiderably as shown in [49℄. De�neQ(t; t0) =s(t � t0)T �12(S(t) + S(t0))��1 (t � t0):Note that Q is not a Mahalanobis distane, beause the ovariane matrix depends on t; t0.Now, if �(�) is an isotropi orrelation funtion in D1 (reall Setion 2.2), it is shown in[49℄ that �Q(t; t0) = jS(t)j1=4jS(t0)j1=4 ����12(S(t) + S(t0))�����1=2 �(Q(t; t0)) (32)is a valid orrelation funtion. The proof uses the haraterisation�(�) = Z e��2!2 dF (!)56This is beause the orrelation �(u(x); u(x0)) is 1, thus u(x) = a u(x0)+b for �xed a; b, then a = 1; b = 0beause both variables have the same mean and variane.



of D1 (see Setion 2.2), thus�(Q(t; t0)) = ����12(S(t) + S(t0))����1=2 � �2!2�d=2Z N �t ��� t0; 14!2 (S(t) + S(t0))� dF (!):The integral an now be written as/ Z Z N(r j t; ~S(t; !))N(r j t0; ~S(t0; !)) dr dF (!)whih is positive semi-de�nite as a speial ase of (30).57 Equation (32) an be used to reatemany new families of non-stationary kernels from isotropi ones. Note that now there aretwo �elds to estimate, u(�) and t 7! S(t). In priniple, the latter one an be spei�ed via GPsas well (see [49℄), but inferene beomes very ostly. On the other hand, simpler parametrimodels may be suÆient. If unlabelled data is abundant, it is possible to learn the seond�eld from this soure only (see [62℄). It is interesting to note that if t 7! S(t) is smooth,then m.s. properties of u(�) deduible from �(�) are transferred to the GP with orrelationfuntion �Q (32).9.3 Guidelines for Kernel ChoieChoosing a good kernel for a task depends on intuition and experiene. On high-dimensionaltasks where no suitable prior knowledge is available, the best option may be to exploresimple ombinations of the standard kernels listed above. If invarianes are known, theymay be enoded using the methods desribed in [59℄, Set. 11.4. With approximate BayesianGP inferene, one an in priniple use ombinations of di�erent kernels with a lot of free(hyper)parameters whih an be adapted automatially.For low-dimensional X , one an obtain further insight. Stein [74℄ points out the usefulness ofstudying �xed-domain asymptotis (see Setion 8). In this respet, the tail behaviour of thespetral density (see Setion 2) is important. The m.s. degree of di�erentiability (degree ofsmoothness) of the proess depends on the rate of deay of f(!). Stein reommends kernelfamilies suh as the Mat�ern lass (29) whih ome with a degree of smoothness parameter�. He also stresses the importane of the onept of equivalene and orthogonality of GPs(see Setion 8). His arguments are of asymptoti nature, for example it is not lear whether� in the Mat�ern lass an be learned aurately enough from a limited amount of data.Also, preditions from equivalent proesses with di�erent kernels an be di�erent.58There are ways of \getting a feeling" for the behaviour of a proess by visualisation, whihis an option if X = Rg is low-dimensional, g = 1; 2. We an draw \samples" from theproess and plot them as follows (the plots in this setion have been produed in thisway). Let X � X be a �ne grid59 over a domain of interest, n = jXj and u = u(X) �57Namely, (30) applies espeially to \diagonal kernels" K(v ;v0) = f(v)Æv (v0) where f is positive. In ourase, v = (rT ; !)T .58Stein argues (iting Je�reys) that suh di�erenes annot be important sine they do not lead to on-sisteny in the large data limit (in a �xed domain).59For �ne grids and smooth kernels suh as the Gaussian one, the Cholesky tehnique desribed here failsdue to round-o� errors. The singular value deomposition (SVD) should be used in this ase, onentratingon the leading eigendiretions whih an be determined reliably.



N(0;K (X)). We an sample u as u = Lv; v � N(0; I), where K (X) = LLT is theCholesky deomposition. If X is too large, u an be approximated using an inompleteCholesky fatorisation of K (X) (see [87℄). If g = 1, the proess is isotropi and the gridis regularly spaed, K (X) has Toeplitz struture60 and its Cholesky deomposition an beomputed in O(n2) (see [14℄). Repeatedly sampling u and plotting (X;u) an give an ideaabout degree of smoothness, average length sales (Eulidean distane in X over whih u(x)is expeted to vary signi�antly) or other speial features of K.9.4 Learning the KernelOne promising approah for hoosing a ovariane funtion is to learn it from data and/orprior knowledge. For example, given a parametri family of ovariane funtions, how anwe hoose61 the parameters in order for the orresponding proess to model the observeddata well?Model seletion from a �xed family an be done by the empirial Bayesian method ofmarginal likelihood maximisation, a generi approximation of whih in the ase of GP mod-els is given in Setion 4. Sine this proedure typially sales linearly in the number of hyper-parameters, elaborate and heavily parameterised families an be employed. An importantspeial ase has been termed automati relevane determination (ARD) by MaKay [34℄and Neal [42℄. The idea is to introdue a hyperparameter whih determines the sale ofvariability of a related variable of interesting (with prior mean 0). For example, we mightset up a linear model (4) by throwing in a host of di�erent features (omponents in �(x)),then plae a N(� j0;D) on the weights � where D is a diagonal matrix of positive hyper-parameters. If we plae a hyperprior on diagD whih enourages small values, there is ana priori inentive for di = Di;i to beome very small, induing a variane of �i lose to 0whih e�etively swithes o� the e�et of �i�i(x) on preditions. This is balaned againstthe need to use at least some of the omponents of the model to �t the data well, leadingto an automati disrimination between relevant and irrelevant omponents. In the ontextof ovariane funtions, we an implement ARD with any anisotropi kernel (see Setion 2)of the form K(x;x0) = ~K((x � x0)TW (x � x0));where ~K is isotropi and W is diagonal and positive de�nite. An example is the squared-exponential ovariane funtion (28). Here, wi determines the sale of variability of the(prior) �eld as x moves along the i-th oordinate axis. If we imagine the �eld being restritedto a line parallel to this axis, w�1=2i is the length sale of this restrition, i.e. a distanefor whih the expeted hange of the proess is signi�ant. If wi � 0, this length sale isvery large, thus the �eld will be almost onstant along this diretion (in regions of interest).Thus, via ARD we an disriminate relevant from irrelevant dimensions in the input variablex automatially, and preditions will not be inuened signi�antly by the latter.In spatial statistis, semivariogram tehniques (see [11℄, Set. 2.3.1) are frequently used.For a stationary proess, the (semi)variogram is (x � x0) = (1=2)Var[u(x) � u(x0)℄. It isestimated by averaged squared distanes over groups of datapoints whih are roughly the60A matrix is Toeplitz if all its diagonals (main and o�-diagonals) are onstant.61The proper Bayesian solution would be to integrate out the parameters, but even if this an be ap-proximated with MCMC tehniques, the outome is a mixture of ovariane funtions leading to expensivepreditors.



same distane apart and �tted to parametri families by maximum likelihood. Stein [74℄ritiises the use of the empirial semivariogram as single input for hoosing a ovarianefuntion and suggests a range of other tehniques, inluding the empirial Bayesian approahmentioned above.For lassi�ation models, the idea of loal invariane w.r.t. ertain groups of transformationsis important. For example, the reognition of handwritten digits should not be inuened bytranslations or small-angle rotations of the bitmap.62 If a proess is used as latent funtionin a lassi�ation problem, e.g. representing the log probability ratio between lasses (seeSetion 3), then starting from some x and applying small transformations from a groupw.r.t. whih disrimination should remain invariant should not lead to signi�ant hangesin the proess output (e.g. in the m.s. sense). To relate this notion to ARD above, varying xalong suh invariant diretions should indue a oordinate of x (non-linear in general) whihis irrelevant for predition. Chapter 11 in [59℄ gives a number of methods for modifyinga ovariane funtion in order to inorporate invariane knowledge to some degree, alsoreviewing work in that diretion whih we omit here.Finally, Minka [38℄ pointed out that instanes of the \learning how to learn" or \priorlearning" paradigm an be seen as learning a GP prior frommulti-task data (see his paper forreferenes). In fat, the setup is the one of a standard hierarhial model frequently used inBayesian statistis to implement realisti prior distributions. We have aess to several noisysamples and make the assumption that these have been sampled from di�erent realisationsof the latent proess whih in turn have been sampled i.i.d. from the proess prior. Dataof this sort is very valuable for inferring aspets of the underlying ovariane funtion. Ina simple multi-task senario a multi-layer pereptron is �t to several samples by penalisedmaximum likelihood, sharing the same input-to-hidden weights but using di�erent sets ofhidden-to-output weights for eah sample. The idea is that the hidden units might disoverfeatures whih are important in general, while the ombination in the uppermost layer isspei�. If we plae Gaussian priors on the hidden-to-output weights, this beomes a GPmodel with a ovariane funtion determined by the hidden units. More generally, we anstart from any parametri family of ovariane funtions and learn hyperparameters or eventhe hyperposterior from multi-task data using marginal likelihood maximisation togetherwith the hierarhial sampling model. An approximate implementation of this idea has beenreported in [51℄.9.5 Kernels for Disrete ObjetsAs mentioned in Setion 2, in priniple the input spae X is not restrited to be Rg or evena group. For example, Gaussian proesses over latties are important in vision appliations(in the form of a Gaussian Markov random �eld with sparse strutured inverse ovarianematrix). For Gaussian likelihoods, the posterior mean an be determined most eÆientlyusing a onjugate gradients solver63 and the embedded trees algorithm of Wainwright,Sudderth and Willsky [82℄ an be used to ompute the marginal varianes as well. Kernelmethods, i.e. methods whih use ovariane matries over variables determined from the\spatial" relationship of these (or assoiated ovariates) have been proposed for a number62Although a 180-degree rotation of a 6 results in a 9.63Loopy belief propagation renders the orret mean as well if it onverges [83℄, but is muh slower andoften numerially unstable.



of problems involving disrete spaes X (�nite or ountably in�nite). Our aim in this setionis no more than to give a few seleted examples.Kernels an be de�ned on the set of �nite-length strings from a �nite alphabet. Manystring kernels have been proposed reently, but we will not try to review any of this work.Important appliations of string kernels (or distane measures between sequenes) arise fromproblems in DNA or RNA biology where statistial models have to be built for nuleotidesequenes. Many proposed string kernels are speial ases of onvolution kernels introduedby Haussler [21℄. Maybe the most interesting ase disussed there is the extension of ahidden Markov random �eld (HMRF). The latter is a Markov random �eld (MRF) withobserved variables x, latent variables u and lique potentials Cd(xd; ud) where xd; ud aresubsets of omponents of x; u, and u is marginalised over. If we replae the lique potentialby positive de�nite kernels Kd((xd; ud); (x0d; u0d)) and marginalise over u; u0, the result is aovariane kernel whih an also be seen as unnormalised joint generative distribution for(x;x0). If the original MRF has a struture whih allows for tratable omputation, thesame algorithm an be used to evaluate the ovariane funtion eÆiently. For example, ahidden Markov model (HMM) for sequenes an be extended to a pair-HMM in this way,emitting two observed sequenes sharing the same latent sequene, and many string kernelsarise as speial ases of this onstrution.In pratie, string kernels (and more generally kernels obtained from joint probabilitiesunder pair-HMRFs) often su�er from the \ridge problem": K(x;x) is muh larger thanK(x;x0) for many x0 for whih a priori we would like to attain a signi�ant orrelation,espeially if rather long sequenes are ompared. For example, in models involving DNAsequenes we would like sequenes to orrelate strongly if they are homologous, i.e. enodefor proteins of very similar funtion. In a standard string kernel, two sequenes are stronglyorrelated if both an be obtained from a ommon \anestor" latent sequene by few opera-tions suh as insertions and substitutions (this anestor model is motivated by the evolutionof genes and gives a good example for the pair-HMM setup). However, often homologoussequenes di�er quite substantially in regions on whih the struture of the funtional partof the protein does not depend strongly. Suh \remote" homologies are the really interestingones, sine very lose homologies an often be deteted using simpler statistial tehniquesthan proess models based on string kernels. On the other hand, it may be possible to spotsuh homologies by going beyond string kernels and pair-HMRF onstrutions, for exam-ple building on the general framework given in [10℄ where kernels are obtained from �nitetransduers.A oneptually simple way to obtain a kernel on X is to embed X in some Eulidean spaeRg , then to onatenate the embedding with any of the known Rg kernels, for examplethe Gaussian one (27). An example is the Fisher kernel [23℄ whih maps datapoints totheir \Fisher sores" under a parametri model. There has been a surge of interest reentlyin automati methods for parameterising low-dimensional non-linear manifolds (e.g., [77,56℄) by loal Eulidean oordinates. Although these methods are non-parametri, they anbe used to �t onventional parametri mixture models in order to obtain a parametriembedding whih ould then be used to obtain a kernel.Reently, Kondor and La�erty [29℄ proposed kernels on disrete objets using oneptsfrom spetral graph theory (di�usion on graphs). If X is �nite, a ovariane funtion onX is simply a positive semide�nite matrix. If H is a symmetri generator matrix, the



orresponding exponential kernel is de�ned asK(�) = exp(�H ) =Xj�1 �jj!Hj; � � 0: (33)We de�ne K�(x;x0) =K(�)x;x0 , where we use elements of X as indies into the matrix K(�).K(�) is positive de�nite. In fat, it has the same eigenvetors asH , but the eigenspetrum istransformed via �! exp(��). In pratie, general exponential kernels annot be omputedfeasibly if X is large, in partiular there is no general eÆient way of omputing kernelmatries of K� over points of interest. It might be possible to approximate marginalisationsof K(�) by sampling. The kernel and generator matries are linked by the heat equation���K(�) =HK(�):It is interesting to note that every in�nitely divisible ovariane funtion K� with saleparameter � on X has the form (33). Namely, if K is the ovariane matrix for K� , thenH = �K=�� at � = 0. Kondor and La�erty are interested in di�usion kernels on graphsas speial ases of exponential kernels. Here, the generator is the negative of the so-alledgraph Laplaian. The onstrution an be seen as stationary Markov hain (random walk)in ontinuous time on the verties of the graph. The kernel K�(x;x0) is the probability ofbeing at x0 at time �, given that the state at time 0 was x. This interpretation requiresthat H1 = 0 whih is true for the negative graph Laplaian and whih implies that K(�)is (doubly) stohasti. The same equation desribes heat ow or di�usion from an initialdistribution. The idea is to desribe the struture of X (in the sense of \loseness", i.e.lose points should be highly orrelated under the ovariane funtion) in terms of loalneighbourhood assoiation whih indue an (weighted or unweighted) undireted graph.Then, the orrelation at some x with all other points is proportional to the distributionof a random walk started at x after time �. Similar ideas have been used very e�etivelyfor non-parametri lustering or lassi�ation with partially labelled data [76℄. Kondor andLa�erty give examples for graphs of speial regular strutures for whih the di�usion kernelan be determined eÆiently. These inlude ertain speial ases of string kernels (here, Xis in�nite and the analogue to Markov hains has to be treated more arefully). In situationswhere K� annot be determined by known simple reursive formulae, one ould representX by a representative sample inluding the training set (but also unlabelled data). If thegenerator matrix of the underlying graph (projeted onto the representative sample in asensible way) is sparse, its leading eigenvetors and eigenvalues ould be approximatedby sparse eigensolvers whih would lead to an approximation of K(�) whih is low-rankoptimal w.r.t. the Frobenius norm. Kondor and La�erty also note that on the graph givenby a regular grid in Rg , the generator matrix onverges towards the usual Laplaian operatorand K� towards the Gaussian kernel (27) as the mesh size approahes 0.9.6 How Useful are Unertainty Estimates?In this setion we have highlighted a number of powerful tehniques of enoding priorknowledge in a ovariane funtion or learning an appropriate kernel. For many problems inmahine learning (espeially in lassi�ation) one does not observe a big di�erene in gen-eralisation error over a range of di�erent ommon kernels, while signi�ant di�erenes arise



in the unertainty estimates (preditive varianes) for Bayesian GP tehniques. Moreover,the disussion in Setion 7 suggests that muh of the additional omplexity in Bayesian GPmethods as ompared to SVM arise exatly beause suh unertainty estimates are desiredas well. It is therefore important to ask how useful these estimates are in pratie.Stritly speaking, both frequentist on�dene intervals and Bayesian unertainty estimatesare tied to assumptions whih are likely to be violated in non-trivial real world situations.The former are onditioned on a null hypothesis whih is ertainly violated at some sale,the latter require the data to be generated by the model. In a Bayesian setting, di�erentpriors and models an be ompared either to onlude that the preditions enjoy a ertainrobustness or to detet mismathes whih should trigger a re�nement.In the ase of GP models, the hoie of the ovariane funtion an have a signi�ant e�eton the unertainty estimates. We demonstrate this fat using a simple one-dimensionalregression task. Note that in GP regression with Gaussian noise, the error bars do notdepend on the targets (this is di�erent for non-Gaussian likelihoods, e.g. in lassi�ation).Data was sampled from a noisy sine wave around �=2; (3=2)�, a single point at �, thenoise standard deviation was � = 0:05. We ompare the RBF ovariane funtion (27) withw = 4 against the Mat�ern kernel with di�erent � and � = (w(2� + 1))1=2, the proessvariane was C = 1 in all ases. Reall that for the Mat�ern kernel, � ontrols the degree ofm.s. di�erentiability of the proess, while the RBF proess is m.s. analyti. Figure 5 showsmean preditions and one standard deviation error bars (the noise level was set to the truevalue).As expeted, for the Ornstein-Uhlenbek prior (� = 1=2) the mean predition interpolatesthe data, the error bars grow to the maximum value 1 very rapidly away from the data. ABrownian motion proess is not suitable as prior for a smoothing tehnique. The tendenyto interpolate rather than smooth the data diminishes with growing �, as does the speedwith whih the error bars grow to 1 away from data. Note also the very slim error bars forthe RBF predition in the data-rih regions, expressing the strong (prior) belief that theunderlying funtion is smooth, thus lose to the smooth mean predition there. Stein [74℄notes that preditions using the RBF ovariane funtion often ome with unrealistiallysmall error bars.In many situations, the unertainty estimates themselves are of less importane than thequality of the deisions based on them. In the Bayesian ontext, deisions are made bysubstituting the preditive distribution inferred from data for the unknown truth. Utilityvalues an be omputed as expetations over the preditive distribution and \Bayesianoptimal" deisions be made by omparing these for di�erent alternatives. A simple examplearises in binary lassi�ation if the task allows us to rejet a ertain fration of the testpatterns. The Bayesian optimal deision is to rejet patterns for whih the target preditivedistribution P (y�jx�;D) is most unertain (has highest entropy). A similar setting is treatedheuristially with SVM disriminants rejeting those patterns for whih the disriminantvalue is losest to zero. Note that in both ases, we are interested in the order relations of thesores over a test set rather than their numerial values. A study omparing both praties(the GP tehnique is a sparse IVM approximation [31℄ using the same amount of runningtime) has been done in [63℄, Set. 4.7.2. It onludes that on the example onsidered theSVM rejet strategy shows signi�ant weaknesses ompared to the approximate BayesianIVM setup and that the additional work for obtaining unertainty estimates an pay o�.6464It is shown that large wrong preditive means are often aompanied by large preditive varianes,
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Figure 5: Error bars for noisy sine regression task for di�erent ovariane funtions. Meanpredition (solid), errors bars (dotted), true urve (dashed), data (dots). Upper left: RBF,w = 4. Upper right: Ornstein-Uhlenbek (Mat�ern, � = 1=2), � = 2:8284. Lower left: Mat�ern,� = 3=2; � = 4. Lower right: Mat�ern, � = 3=2; � = 4:899.Note that these shortomings of SVM annot be alleviated by postho transformations ofthe disriminant output (as suggested by [50℄) beause these leave order relations invariant.10 SummaryIn this paper, we desribed entral properties of Gaussian proesses and statistial mod-els based on GPs together with eÆient generi ways of approximate inferene and modelseletion. The fous is less on giving algorithmi desriptions of onrete inferene approxi-mations and their variational optimisation problems, whih may be found in the referenesprovided. Instead we hope to have onveyed the basi onepts of latent variables andGaussian random �elds required to understand these non-parametri algorithms and tohave highlighted some of the essential di�erenes to parametri statistial models. By theexplaining the superior performane of the Bayesian sore whih ombines these two quantities.



evolution of ever more powerful omputers and the development of fast sparse inferene ap-proximations, we feel that GP models will beome appliable to large-data problems whihwere previously restrited to parametri models. GP models are more powerful and exiblethan simple linear parametri models and easier to handle than ompliated ones suh asmulti-layer pereptrons, and the availability of fast algorithms should remove remainingobstales of them beoming part of the standard toolbox of mahine learning pratitioners.AknowledgementsWe thank Chris Williams for many disussions and important omments on early drafts,David Barber and Bernhard Sh�olkopf for orretions and improvements, BernhardSh�olkopf and the MPI T�ubingen for their hospitality in September 2003, furthermore NeilLawrene, Ralf Herbrih, Lehel Csat�o, Manfred Opper, Carl Rasmussen, Amos Storkey andMihael Tipping for disussions and omments. The author gratefully aknowledges sup-port through a researh studentship from Mirosoft Researh Ltd. during his postgraduatestudies.A AppendixIn setion A.1, we desribe the notational onventions used in this paper and some oneptsfrom probability theory. In Setion A.2 we ollet some de�nitions.A.1 NotationVetors a = (ai)i = (a1 : : : an)T (olumn by default) and matries A = (ai;j)i;j are writtenin bold-fae. If A 2 Rm;n , I � f1; : : : ;mg; J � f1; : : : ; ng are index sets,65 then AI;Jdenotes the jIj � jJ j sub-matrix formed from A by seleting the orresponding entries(i; j); i 2 I; j 2 J .Some speial vetors and matries are de�ned as follows: 0 = (0)i and 1 = (1)i the vetorsof all zero and all ones, Æj = (Æi;j)i the j-th standard unit vetor. Here, Æi;j = 1 if i = j,and 0 otherwise (Kroneker symbol). Furthermore, I = (Æi;j)i;j is the identity matrix.The supersript T denotes transposition. diaga is the matrix with diagonal a and 0 else-where. diagA is the vetor ontaining the diagonal of A. trA is the sum of the diagonalelements of A, trA = 1T (diagA). jAj denotes the determinant of the square matrix A.For p > 1, kakp denotes the p-norm of the vetor a, kakp = (Pi jaijp)1=p. If nothing elseis said, k � k = k � k2, the Eulidean norm. Relations are vetorised in Matlab style, as aresalar funtions: a � b means that ai � bi for all i, and f(a) = (f(ai))i.We do not distinguish notationally between a random variable and its possible values.Vetor or matrix random variables are written in the same way as vetors or matries. If adistribution has a density, we generally use the same notation for the distribution and itsdensity funtion. If x is a random variable, then E[x℄ denotes the expetation (or expetedvalue) of x. If A is an event, then PrfAg denotes its probability. The probability spae will65All index sets and sets of data points are assumed to be ordered, although we use a notation knownfrom unordered sets.



usually be lear from the ontext, but for larity we often use an additional subsript, e.g.PrSfAg or EP [x℄ (meaning that x � P ). By IA, we denote the indiator funtion of anevent A, i.e. IA = 1 if A is true, IA = 0 otherwise. Note that PrfAg = E[IA℄. The deltadistribution Æx plaes mass 1 onto the point x and no mass elsewhere, Æx(B) = Ifx2Bg. LetX ; Y; Z be sets of random variables, X ; Y non-empty. We write X ?Y jZ to denote theonditional independene of X and Y given Z: the onditional distribution of X given Y; Zdoes not depend on Y.log denotes the logarithm to Euler's base e. The notation f(x) / g(x) means that f(x) =g(x) for  6= 0 onstant w.r.t. x. We often use this notation with the left hand side beinga density. By sgnx, we denote the sign of x, i.e. sgnx = +1 for x > 0, sgnx = �1 forx < 0, and sgn 0 = 0. The Landau O-notation is de�ned as g(n) = O(f(n)) i� there existsa onstant  � 0 suh that g(n) �  f(n) for almost all n.We use some probability-theoreti onepts and notation whih might be unfamiliar to thereader. A measure is denoted by d�(x), the Lebesgue measure in Rg is denoted by dx. If Ais a measurable set (\event"), �(A) = R Ifx2Agd�(x) denotes its mass under �. A measureis �nite if the mass of the whole spae is �nite, and a probability measure if this mass is1. If d� is a probability measure, we denote its distribution by �. The events A of mass 0are alled null sets.66 For example, in Rg with Lebesgue measure (the usual \volume") allaÆne spaes of dimension < g are null sets. A property is almost surely (a.s.) true if theevent of it being false is a null set. d�1 is alled absolutely ontinuous w.r.t. d�2 if all nullsets of d�1 are null sets of d�2 (the notation is d�1 � d�2). The theorem of Radon andNikodym states that d�1 has a density f(x) w.r.t. d�2, i.e.�1(A) = Z Ifx2Agf(x) d�2(x)for all measurable A, i� d�1 � d�2. In this ase,f(x) = d�1(x)d�2(x)is alled Radon-Nikodym derivative or simply density w.r.t. d�2.A.2 De�nitionsDe�nition 1 (Relative Entropy) Let P; Q be two probability measures on the samespae with Q � P , suh that the density dQ=dP exists almost everywhere. The relativeentropy is de�ned as D[Q kP ℄ = EQ �log dQdP � = Z �log dQdP � dQ:If Q is not absolutely ontinuous w.r.t. P , we set D[Q kP ℄ =1. It is always non-negative,and equal to 0 i� Q = P . The funtion (Q;P ) 7! D[Q kP ℄ is stritly onvex.66In order not to run into trouble, we always assume that our probability spae is omplete, meaning thatits sigma-algebra ontains all subsets of null sets.
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